The present disclosure relates generally to devices used in optical fiber communication systems. More particularly, the present disclosure relates to fiber optic connectors used in optical fiber communication systems.
Fiber optic communication systems are becoming prevalent in part because service providers want to deliver high bandwidth communication capabilities (e.g., data invoice) to customers. Fiber optic communication systems employ a network of fiber optic cables to transmit large volumes of data invoice signals over relatively long distances. Optical fiber connectors are an important part of most fiber optic communication systems. Fiber optic connectors allow two optical fibers to be quickly, optically connected without requiring a splice. Fiber optic connectors can be used to optically interconnect two lengths of optical fiber. Optical fiber connectors can also be used to interconnect lengths of optical fiber to passive and active equipment.
A typical fiber optic connector includes a ferrule assembly supported at a distal end of a connector housing. A spring may be used to bias the ferrule assembly in a distal direction relative to the connector housing. The ferrule functions to support an end portion of at least one optical fiber. In the case of a multi-fiber ferrule, the ends of multiple fibers are supported. The ferrule has a distal end faced at which a polished end of the optical fiber is located. When two fiber optic connectors are interconnected, the distal end faces of the ferrules abut one another. Often, the ferrules are biased together by at least one spring. With the fiber optic connectors connected, their respective optical fibers are coaxially aligned such that the end faces of the optical fibers directly oppose one another. In this way, an optical signal can be transmitted from optical fiber to optical fiber through the aligned end faces of the optical fibers. For many fiber optic connector styles, alignment between two fiber optic connectors is provided through the use of an intermediate fiber optic adapter.
One aspect of the present disclosure relates to a fiber optic connector having a field installable connector housing assembly. Another aspect of the present disclosure relates to a fiber optic connector system that facilitates installing optical fiber in ducts or other small conduits often found in buildings such a multiple dwelling units.
A further aspect of the present disclosure relates to a fiber optic connection system where a ferrule is mounted at the end of an optical fiber (e.g., at a factory or other manufacturing center), and a connector housing is field installed at the end of the optical fiber after the optical fiber has been installed at a desired location. For example, the optical fiber can be installed within a conduit, duct or other structure within a building before the connector housing is installed at the end of the optical fiber over the ferrule. In certain examples, a spring and a strain relief boot can be factory installed on the optical fiber. In certain examples, the optical fiber can include a protective buffer layer such as a 900 micron loose or tight buffer tube/jacket. In certain examples, the optical fiber can be incorporated within a cable having an outer jacket and a strength layer (e.g., an aramid yarn strength layer or other layer suitable for providing tensile reinforcement to the optical fiber) positioned between the optical fiber and the outer jacket. In certain examples, the fiber optic cable can have an outer diameter less than 1.5 millimeters or less than 1.4 millimeters or less than 1.3 millimeters, or less than or equal to 1.2 millimeters.
A variety of additional aspects will be set forth in the description that follows. The aspects relate to individual features and to combinations of features. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the broad inventive concepts upon which the examples disclosed herein are based.
The main connector housing 34 forms a front plug portion of the fiber optic connector 20 and is adapted to receive the ferrule 24, the ferrule hub 26, the spring 28 and the front spring stop 38 of the mounting block 30 (see
In certain examples, the spring 28 biases the ferrule hub 26 and the ferrule 24 in a forward direction relative to the main connector housing in 34. In certain examples, a front end face 44 of the ferrule 24 is accessible at a front end 46 of the main connector housing 34. A polished end face of the optical fiber 22 can be located at the front end face 44 of the ferrule 24. In certain examples, the front end face 44 can be angled relative to a longitudinal axis of the optical fiber 22. In other examples, front end face 44 can be perpendicular relative to the longitudinal axis of the optical fiber 22.
In certain examples, the optical fiber 22 includes a core, a cladding layer surrounding the core, one or more coating layers surrounding the cladding layer, and a buffer layer surrounding the one or more coating layers. In certain examples, the core can have an outer diameter in the range of 8-12 microns, the cladding can have an outer diameter in the range of 120-130 microns, the one or more coatings can have an outer diameter in the range of 240-260 microns, and the outer buffer layer can have an outer diameter in the range of 800-1,000 microns. In certain examples, the outer buffer layer can be a loose or tight buffer tube having an outer diameter of about 900 microns. In certain examples, only the core and the cladding of the optical fiber 22 are supported within the ferrule 24.
It will also be appreciated that the core and the cladding can be constructed of a material suitable for conveying an optical signal such a glass (e.g., a silica-based material). The cladding layer can have an index of refraction that is less than the index of refraction of the core. This difference between the index of refraction of the cladding layer and the index of refraction of the core allows an optical signal that is transmitted through the optical fiber to be confined to the core. In certain examples, the optical fiber is a bend insensitive fiber having multiple cladding layers separated by one or more trench layers. The one or more coating layers typically have a polymeric construction such as acrylate.
In certain examples, the optical fiber is incorporated into a fiber optic cable having a strength layer (e.g., a layer of aramid yarn) surrounded by an outer jacket. In certain embodiments, the buffer layer is eliminated and the strength layer directly surrounds the coating layer of the optical fiber. In certain examples, the fiber optic cable has an outer diameter less than 1.5 millimeters, or less than 1.4 millimeters, or less than 1.3 millimeters, or less than or equal to 1.2 millimeters. For example, some such optical fibers are disclosed in U.S. application Ser. No. 12/473,931, filed May 28, 2009, and titled “FIBER OPTIC CABLE,” the disclosure of which is hereby incorporated herein by reference.
The main connector housing 34 of the fiber optic connector 20 forms a plug portion of the fiber optic connector 20 that is configured to fit within a corresponding fiber optic adapter. In the depicted embodiment, the main connector housing 34 is an LC-type connector housing configured to fit within an LC-type fiber optic adapter. The main connector housing 34 includes a front latch 50 for securing the main connector housing 34 within the fiber optic adapter. The main connector housing 34 also includes rear latches 52 (
The strain relief sleeve 32 is elongated and has a central opening for receiving the optical fiber 22. In certain examples, the strain relief sleeve 32 has a polymeric construction and is flexible. In certain examples, the strain relief sleeve 32 has a tapered construction that reduces in cross-sectional size as the strain relief sleeve 32 extends rearwardly from the mounting block 30. In certain examples, the strain relief sleeve 32 can have a segmented construction that enhances flexibility (see
Referring to
As shown at
The top and bottom pieces 30A, 30B of the mounting block 30 can include mating pins 74 and openings 76 provided at the front extension 62 at the interface between the top and bottom pieces 30A, 30B (see
The ferrule 24, the ferrule hub 26, the spring 28, and the strain relief sleeve 32 can form a first sub-assembly 80 (see
In certain examples, the ferrule 24 can be mounted in the ferrule hub 26 such that a rotational position of a core offset of the optical fiber 22 relative to the ferrule 24 is set at predetermined rotational position relative to the ferrule hub 26. This core offset provides tuning of the connector. The term “core offset” refers to a direction in which the core is offset from being perfectly concentric with the ferrule 24. In certain examples, the end face of the ferrule 24 can be polished at an angle, and the ferrule 24 can be mounted in the ferrule hub 26 such that the angle can be set at a desired rotational orientation relative to the ferrule hub 26 in the factory. Providing a keyed relationship between the ferrule hub 26 and the main connector housing 34, combined with establishing a predetermined rotational relationship between the ferrule hub 26 and the angle or core concentricity of the ferrule end face 44, enables the angle of the end face or the core concentricity to be set at a predetermined rotational orientation relative to the main connector housing 34.
Referring to
Referring back to
When the end of the optical fiber 22 with the first sub-assembly 80 mounted thereon has been routed to a desired position at the field location, the mounting block 30 can be snapped over the strain relief sleeve 32; and the ferrule 22, the ferrule hub 26, and the spring 28 can be inserted into the backside of the main connector housing 34. The main connector housing 34 is then latched to the mounting block 30 and the fiber optic connector 20 is fully assembled. Thereafter, the fiber optic connector 20 can be used in the same way as a standard type of connector. For certain applications, it will be appreciated that the spring 28 may be optional. In this regard,
This application is a continuation of application Ser. No. 16/819,750, filed Mar. 16, 2020, now U.S. Pat. No. 11,372,172, which is a continuation of application Ser. No. 16/278,266, filed Feb. 18, 2019, now U.S. Pat. No. 10,591,678, which is a continuation of application Ser. No. 15/948,258, filed Apr. 9, 2018, now U.S. Pat. No. 10,215,930, which is a continuation of application Ser. No. 15/224,069, filed Jul. 29, 2016, now U.S. Pat. No. 9,939,591, which is a continuation of application Ser. No. 14/934,354, filed Nov. 6, 2015, now U.S. Pat. No. 9,417,403, which is a continuation of application Ser. No. 14/091,984, filed Nov. 27, 2013, now U.S. Pat. No. 9,182,567, which application claims the benefit of provisional application Ser. No. 61/731,838, filed Nov. 30, 2012, which applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4201444 | McCartney et al. | May 1980 | A |
4217030 | Howarth | Aug 1980 | A |
4268115 | Slemon et al. | May 1981 | A |
4327964 | Haesly et al. | May 1982 | A |
4635875 | Apple | Jan 1987 | A |
4691988 | Tremblay et al. | Sep 1987 | A |
4715675 | Kevern et al. | Dec 1987 | A |
4762389 | Kaihara | Aug 1988 | A |
5076656 | Briggs | Dec 1991 | A |
5212752 | Stephenson et al. | May 1993 | A |
5216733 | Nagase et al. | Jun 1993 | A |
5231685 | Hanzawa et al. | Jul 1993 | A |
5245683 | Belenkiy et al. | Sep 1993 | A |
5253315 | Fentress | Oct 1993 | A |
5261019 | Beard et al. | Nov 1993 | A |
5287425 | Chang | Feb 1994 | A |
5452386 | Van Woesik | Sep 1995 | A |
5465313 | Belenkiy et al. | Nov 1995 | A |
5471713 | Alter et al. | Dec 1995 | A |
5524159 | Turgeon et al. | Jun 1996 | A |
5619610 | King et al. | Apr 1997 | A |
5637010 | Jost et al. | Jun 1997 | A |
5640476 | Womack et al. | Jun 1997 | A |
5682541 | Lee et al. | Oct 1997 | A |
5809192 | Manning et al. | Sep 1998 | A |
5862289 | Walter et al. | Jan 1999 | A |
5863083 | Giebel et al. | Jan 1999 | A |
5897393 | Haftmann | Apr 1999 | A |
5898808 | Morlion et al. | Apr 1999 | A |
5915058 | Clairardin et al. | Jun 1999 | A |
5946435 | Zheng et al. | Aug 1999 | A |
5946436 | Takashi | Aug 1999 | A |
5953475 | Beier et al. | Sep 1999 | A |
6019520 | Lin et al. | Feb 2000 | A |
6079881 | Roth | Jun 2000 | A |
6081647 | Roth et al. | Jun 2000 | A |
6151432 | Nakajima et al. | Nov 2000 | A |
6154597 | Roth | Nov 2000 | A |
6245999 | Costigan et al. | Jun 2001 | B1 |
6287018 | Andrews et al. | Sep 2001 | B1 |
6296399 | Halbach et al. | Oct 2001 | B1 |
6325547 | Cammons et al. | Dec 2001 | B1 |
6396993 | Giebel et al. | May 2002 | B1 |
6398422 | Szilagyi et al. | Jun 2002 | B1 |
6419399 | Loder et al. | Jul 2002 | B1 |
6428215 | Nault | Aug 2002 | B1 |
6429373 | Scrimpshire et al. | Aug 2002 | B1 |
6540410 | Childers et al. | Apr 2003 | B2 |
6550978 | De Marchi | Apr 2003 | B2 |
6579014 | Melton et al. | Jun 2003 | B2 |
6648520 | McDonald et al. | Nov 2003 | B2 |
6672774 | Theuerkorn et al. | Jan 2004 | B2 |
6695489 | Nault | Feb 2004 | B2 |
6811321 | Schmalzigaug et al. | Nov 2004 | B1 |
6899467 | McDonald et al. | May 2005 | B2 |
6902140 | Huang | Jun 2005 | B1 |
6913392 | Grzegorzewska et al. | Jul 2005 | B2 |
6935789 | Gross, III et al. | Aug 2005 | B2 |
6945704 | Yamaguchi | Sep 2005 | B2 |
6960025 | Gurreri | Nov 2005 | B2 |
7090406 | Melton et al. | Aug 2006 | B2 |
7147384 | Hardcastle et al. | Dec 2006 | B2 |
7198409 | Smith et al. | Apr 2007 | B2 |
7204016 | Roth et al. | Apr 2007 | B2 |
7204644 | Barnes et al. | Apr 2007 | B2 |
7226215 | Bareel et al. | Jun 2007 | B2 |
7281859 | Mudd et al. | Oct 2007 | B2 |
7344317 | Krowiak et al. | Mar 2008 | B2 |
7357579 | Feldner | Apr 2008 | B2 |
7369738 | Larson et al. | May 2008 | B2 |
7406241 | Opaluch | Jul 2008 | B1 |
7510335 | Su et al. | Mar 2009 | B1 |
7530745 | Holmquist | May 2009 | B2 |
7572065 | Lu et al. | Aug 2009 | B2 |
7574095 | Lock et al. | Aug 2009 | B2 |
7614797 | Lu et al. | Nov 2009 | B2 |
7614799 | Bradley et al. | Nov 2009 | B2 |
7676132 | Mandry et al. | Mar 2010 | B1 |
7712974 | Yazaki et al. | May 2010 | B2 |
7744288 | Lu et al. | Jun 2010 | B2 |
7775726 | Pepin et al. | Aug 2010 | B2 |
7785015 | Melton et al. | Aug 2010 | B2 |
7806599 | Margolin et al. | Oct 2010 | B2 |
7838775 | Montena | Nov 2010 | B2 |
8311378 | Niiyama et al. | Nov 2012 | B2 |
8391664 | Kowalczyk et al. | Mar 2013 | B2 |
8393803 | Hogue | Mar 2013 | B2 |
8439577 | Jenkins | May 2013 | B2 |
8443488 | Zhang | May 2013 | B2 |
8480312 | Smith et al. | Jul 2013 | B2 |
8548293 | Kachmar | Oct 2013 | B2 |
8577199 | Pierce et al. | Nov 2013 | B2 |
8647140 | Annecke | Feb 2014 | B2 |
8753022 | Schroeder et al. | Jun 2014 | B2 |
8821180 | Blakborn et al. | Sep 2014 | B2 |
9106003 | Anderson et al. | Aug 2015 | B2 |
9130303 | Anderson et al. | Sep 2015 | B2 |
9182567 | Mullaney | Nov 2015 | B2 |
9216530 | Vaccaro | Dec 2015 | B2 |
9229173 | Yamauchi et al. | Jan 2016 | B2 |
9239441 | Melton et al. | Jan 2016 | B2 |
9268102 | Daems et al. | Feb 2016 | B2 |
9285559 | Stockton et al. | Mar 2016 | B1 |
9297976 | Hill et al. | Mar 2016 | B2 |
9417403 | Mullaney et al. | Aug 2016 | B2 |
9470847 | Grinderslev | Oct 2016 | B2 |
9557496 | Irwin et al. | Jan 2017 | B2 |
9684138 | Lu | Jun 2017 | B2 |
9739971 | Eberle, Jr. et al. | Aug 2017 | B2 |
9804342 | Little et al. | Oct 2017 | B2 |
9829649 | Liu et al. | Nov 2017 | B2 |
9910224 | Liu et al. | Mar 2018 | B2 |
9939591 | Mullaney et al. | Apr 2018 | B2 |
9971104 | Tong et al. | May 2018 | B2 |
10018797 | Cheng et al. | Jul 2018 | B2 |
10067301 | Murray et al. | Sep 2018 | B2 |
10073224 | Tong et al. | Sep 2018 | B2 |
10215930 | Mullaney et al. | Feb 2019 | B2 |
10281649 | Nhep et al. | May 2019 | B2 |
10466425 | Liu et al. | Nov 2019 | B2 |
10473867 | Tong et al. | Nov 2019 | B2 |
10591678 | Mullaney et al. | Mar 2020 | B2 |
10613278 | Kempeneers | Apr 2020 | B2 |
10620385 | Nhep et al. | Apr 2020 | B2 |
10641970 | Ott et al. | May 2020 | B2 |
10698166 | Liu et al. | Jun 2020 | B2 |
10895698 | Nhep et al. | Jan 2021 | B2 |
10976500 | Ott et al. | Apr 2021 | B2 |
11002917 | Liu et al. | May 2021 | B2 |
11119283 | Tong et al. | Sep 2021 | B2 |
11372172 | Mullaney et al. | Jul 2022 | B2 |
11378756 | Ott et al. | Jul 2022 | B2 |
11409051 | Nhep et al. | Aug 2022 | B2 |
11474306 | Liu et al. | Oct 2022 | B2 |
11506844 | Liu et al. | Nov 2022 | B2 |
20010012428 | Nakajima et al. | Aug 2001 | A1 |
20010014197 | De Marchi | Aug 2001 | A1 |
20020076165 | Childers et al. | Jun 2002 | A1 |
20020106163 | Cairns | Aug 2002 | A1 |
20020139966 | Griffioen et al. | Oct 2002 | A1 |
20020186934 | Hug et al. | Dec 2002 | A1 |
20030063868 | Fentress | Apr 2003 | A1 |
20030077045 | Teenor et al. | Apr 2003 | A1 |
20030215191 | Taira et al. | Nov 2003 | A1 |
20030231839 | Chen et al. | Dec 2003 | A1 |
20040023598 | Zimmel et al. | Feb 2004 | A1 |
20040076389 | Ozaki | Apr 2004 | A1 |
20040101254 | Erdman et al. | May 2004 | A1 |
20040105625 | Ueda et al. | Jun 2004 | A1 |
20040117981 | Roth et al. | Jun 2004 | A1 |
20040165832 | Bates, III et al. | Aug 2004 | A1 |
20040223699 | Melton et al. | Nov 2004 | A1 |
20050084215 | Grzegorzewska et al. | Apr 2005 | A1 |
20050135755 | Kiani et al. | Jun 2005 | A1 |
20060093300 | Marrs et al. | May 2006 | A1 |
20060115219 | Mudd et al. | Jun 2006 | A1 |
20070025665 | Dean, Jr. et al. | Feb 2007 | A1 |
20070036506 | Kewitsch | Feb 2007 | A1 |
20070172173 | Adomeit et al. | Jul 2007 | A1 |
20070263960 | Lock et al. | Nov 2007 | A1 |
20070284146 | Dower et al. | Dec 2007 | A1 |
20080011990 | Kostet et al. | Jan 2008 | A1 |
20080013891 | Nishioka et al. | Jan 2008 | A1 |
20080089650 | Legler et al. | Apr 2008 | A1 |
20080175546 | Lu et al. | Jul 2008 | A1 |
20080226234 | Droege | Sep 2008 | A1 |
20080226236 | Pepin et al. | Sep 2008 | A1 |
20080273855 | Bradley et al. | Nov 2008 | A1 |
20090148101 | Lu et al. | Jun 2009 | A1 |
20090148109 | Takahashi et al. | Jun 2009 | A1 |
20090185779 | Gurreri et al. | Jul 2009 | A1 |
20100202748 | Pierce et al. | Aug 2010 | A1 |
20110002586 | Nhep | Jan 2011 | A1 |
20110097044 | Saito et al. | Apr 2011 | A1 |
20110170829 | Bradley | Jul 2011 | A1 |
20110176785 | Kowalczyk et al. | Jul 2011 | A1 |
20120027355 | LeBlanc et al. | Feb 2012 | A1 |
20120170896 | Skluzacek | Jul 2012 | A1 |
20120243831 | Chen | Sep 2012 | A1 |
20120257859 | Nhep | Oct 2012 | A1 |
20130058615 | Matthew et al. | Mar 2013 | A1 |
20130077928 | Hsing | Mar 2013 | A1 |
20130094828 | Loeffelholz et al. | Apr 2013 | A1 |
20130101258 | Hikosaka et al. | Apr 2013 | A1 |
20130177283 | Theuerkom et al. | Jul 2013 | A1 |
20130322826 | Henke et al. | Dec 2013 | A1 |
20140023326 | Anderson et al. | Jan 2014 | A1 |
20140050446 | Chang et al. | Feb 2014 | A1 |
20140086534 | Lu et al. | Mar 2014 | A1 |
20140133808 | Hill et al. | May 2014 | A1 |
20140153878 | Mullaney | Jun 2014 | A1 |
20140219621 | Barette, Jr. et al. | Aug 2014 | A1 |
20140235091 | Wang et al. | Aug 2014 | A1 |
20140295700 | Natoli et al. | Oct 2014 | A1 |
20150017827 | Vaccaro | Jan 2015 | A1 |
20150136439 | Vaccaro | May 2015 | A1 |
20150268434 | Barette, Jr. et al. | Sep 2015 | A1 |
20150338582 | Halls et al. | Nov 2015 | A1 |
20160187590 | Lu | Jun 2016 | A1 |
20160306122 | Tong et al. | Oct 2016 | A1 |
20160349458 | Murray et al. | Dec 2016 | A1 |
20160356963 | Liu et al. | Dec 2016 | A1 |
20160356964 | Liu et al. | Dec 2016 | A1 |
20170131509 | Xiao et al. | May 2017 | A1 |
20180106972 | Liu et al. | Apr 2018 | A1 |
20180224608 | Liu et al. | Aug 2018 | A1 |
20180348447 | Nhep et al. | Dec 2018 | A1 |
20200088951 | Liu et al. | Mar 2020 | A1 |
20200355876 | Liu et al. | Nov 2020 | A1 |
20210215888 | Nhep et al. | Jul 2021 | A1 |
20210286137 | Ott et al. | Sep 2021 | A1 |
20210333478 | Liu et al. | Oct 2021 | A1 |
Number | Date | Country |
---|---|---|
1175002 | Mar 1998 | CN |
1333471 | Jan 2002 | CN |
1910488 | Feb 2007 | CN |
101084460 | Dec 2007 | CN |
101084461 | Dec 2007 | CN |
101346653 | Jan 2009 | CN |
101641627 | Feb 2010 | CN |
201527493 | Jul 2010 | CN |
201926781 | Aug 2011 | CN |
102313934 | Jan 2012 | CN |
102360104 | Feb 2012 | CN |
102460259 | May 2012 | CN |
202583527 | Dec 2012 | CN |
202815276 | Mar 2013 | CN |
202956505 | May 2013 | CN |
203054267 | Jul 2013 | CN |
103353635 | Oct 2013 | CN |
103718392 | Apr 2014 | CN |
203688854 | Jul 2014 | CN |
203786340 | Aug 2014 | CN |
203825243 | Sep 2014 | CN |
105093420 | Nov 2015 | CN |
105093421 | Nov 2015 | CN |
0 330 399 | Aug 1989 | EP |
0 429 398 | May 1991 | EP |
0740174 | Oct 1996 | EP |
2012153 | Jul 2009 | EP |
2 128 675 | Dec 2009 | EP |
2 355 286 | Aug 2011 | EP |
2 482 109 | Aug 2012 | EP |
2 031 719 | Jan 2013 | EP |
2 509 532 | Jul 2014 | GB |
2001-147344 | May 2001 | JP |
2004-126371 | Apr 2004 | JP |
2007-165235 | Jun 2007 | JP |
2008-152266 | Jul 2008 | JP |
2008299348 | Dec 2008 | JP |
0013052 | Mar 2000 | WO |
0140839 | Jun 2001 | WO |
02052310 | Jul 2002 | WO |
2006069092 | Jun 2006 | WO |
2006069093 | Jun 2006 | WO |
2008091720 | Jul 2008 | WO |
WO-2008094365 | Aug 2008 | WO |
2010118031 | Oct 2010 | WO |
2011092084 | Aug 2011 | WO |
2012037727 | Mar 2012 | WO |
2012125836 | Sep 2012 | WO |
2013077969 | May 2013 | WO |
2013126429 | Aug 2013 | WO |
2015028433 | Mar 2015 | WO |
2015144883 | Oct 2015 | WO |
2017106507 | Jun 2017 | WO |
2017106514 | Jun 2017 | WO |
Entry |
---|
European Search Report for Application No. 13858527.8 dated Jun. 21, 2016. |
International Search Report and Written Opinion for PCT/US2013/072018 dated Mar. 25, 2014. |
Fabricating with XIAMETER® High Consistency Silicon Rubber, Product Guide, Silicones Simplified XIAMETER® from Dow Corning, 50 pages (2009). |
XIAMETER® brand High Consistency Rubber (HCR) Bases—Asia (Excluding Japan) Selection Guide, Silicones Simplified XIAMETER® from Dow Corning, 6 pages (2011). |
Number | Date | Country | |
---|---|---|---|
20230040273 A1 | Feb 2023 | US |
Number | Date | Country | |
---|---|---|---|
61731838 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16819750 | Mar 2020 | US |
Child | 17850183 | US | |
Parent | 16278266 | Feb 2019 | US |
Child | 16819750 | US | |
Parent | 15948258 | Apr 2018 | US |
Child | 16278266 | US | |
Parent | 15224069 | Jul 2016 | US |
Child | 15948258 | US | |
Parent | 14934354 | Nov 2015 | US |
Child | 15224069 | US | |
Parent | 14091984 | Nov 2013 | US |
Child | 14934354 | US |