Aspects of the present disclosure relate generally to fiber optic connectors, ferrules that may be used with fiber optic connectors, and methods of manufacturing ferrules and connectors.
Ferrules in use today are often made of zirconia because zirconia ferrules tend to be particularly durable and the manufacturers can produce zirconia ferrules with high-precision dimensional tolerances at very low cost. The color of zirconia ferrules is generally a distinct glossy white and their overall appearance is generally the same, regardless of the manufacturer.
Mechanical polishing is typically used when manufacturing fiber optic connectors with ferrules and associated optical fibers because mechanical polishing is an industry-proven way to achieve a fiber and ferrule geometry that is compliant with current international standard specifications, such as having a fiber height of ±100 nm from the ferrule end face, depending on connector type and radius of curvature and apex offset. Mechanical polishing is also capable of removing excess epoxy on the end face.
One problem with zirconia ferrules is that the zirconia may not survive direct contact with high quantities of laser power. Contact with the laser beam may cause micro-cracking of the zirconia. Therefore it is generally difficult to laser process a short glass fiber protruding from the zirconia ferrule. As such, conventional laser-cut fibers have a significant length of the fibers protruding from the end face of a zirconia ferrule to prevent damage to the zirconia. This length is typically greater than 50 μm and since the industry standard for fiber protrusion is +/−100 nm, additional processing is typically needed.
A need exists for a ferrule system that facilitates laser processing of optical fibers at a close distance to the ferrule, such as a distance less than 50 μm from the end face of the ferrule.
Inventive and innovative technology disclosed herein includes a fiber optic connector having a ferrule configured to facilitate a manufacturing process to achieve industry-standard specifications for the geometry of the end face of the ferrule on a terminated optical cable assembly. The ferrule includes two or more pieces.
In some embodiments, an outer piece of the ferrule includes zirconia to provide strength and durability for the ferrule, while maintaining the overall appearance of a conventional ferrule. An inner piece of the ferrule includes a material, such as fused silica, that melts and/or ablates in a manner similar to silica-based optical fibers. The ferrule facilitates laser-forming and processing of the optical fiber in one process step, and the inner piece may subsequently be inserted into and secured within the outer piece of the ferrule.
One embodiment relates to a method of manufacturing a fiber optic connector. The method includes a step of stripping an optical fiber of one or more polymeric coatings to expose a glass cladding of the optical fiber. The method includes another step of inserting the optical fiber into an inner piece of a ferrule, where the inner piece includes silica. Further, the method includes steps of processing the optical fiber in the inner piece of the ferrule using a laser and, subsequent to the processing step, inserting the inner piece of the ferrule into an outer piece of the ferrule. The outer piece includes a ceramic material that is more durable than the inner piece.
Another embodiment relates to a ferrule for a fiber optic connector, which includes an inner piece including a first material and an outer piece including a second material. The outer piece surrounds the inner piece, and the inner piece extends beyond an end of the outer piece. Yet another embodiments relates to a fiber optic connector including such a ferrule, where the inner piece extends beyond the end of the outer piece by a distance of at least 10 micrometers.
Additional features and advantages are set forth in the Detailed Description that follows, and in part will be readily apparent to those skilled in the art from the description or recognized by practicing the embodiments as described in the written description and claims hereof, as well as the appended drawings. It is to be understood that both the foregoing general description and the following Detailed Description are merely exemplary, and are intended to provide an overview or framework to understand the nature and character of the claims.
The accompanying Figures are included to provide a further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiments, and together with the Detailed Description serve to explain principles and operations of the various embodiments. As such, the disclosure will become more fully understood from the following Detailed Description, taken in conjunction with the accompanying Figures, in which:
Before turning to the Figures, which illustrate exemplary embodiments now described in detail, it should be understood that the present inventive and innovative technology is not limited to the details or methodology set forth in the Detailed Description or illustrated in the Figures. For example, as will be understood by those of ordinary skill in the art, features and attributes associated with embodiments shown in one of the Figures may be applied to embodiments shown in others of the Figures.
Referring to
According to an exemplary embodiment, the optical fiber 116 may be installed in the inner piece 112, laser processed, and then (i.e., subsequently thereto) inserted into the outer piece 114. According to an exemplary embodiment, the radius of curvature and apex offset of the optical fiber 116 (on the end thereof) may be controlled by the laser process and the height of the optical fiber 116 relative to the adjoining end face 140 (
The relative height H of the inner piece 112 to the outer piece 114 (see
According to an exemplary embodiment, the material of the inner piece 112 is primarily (e.g., at least 50% by volume, at least 70% by volume, consists essentially of, consists entirely of) fused silica or another material that will process in a manner similar to the optical fiber 116. For example, if the optical fiber 116 is made from a material other than glass, the inner ferrule material 112 could be selected to match the material of the optical fiber 116. Accordingly, the material of the inner piece 112 of the ferrule 110 is selected and configured to melt and/or ablate using a laser of a particular wavelength and power that may also cut (i.e. cleave), shape (i.e. machine), bond (i.e. partially melt), and/or polish the optical fiber 116.
Referring to
Referring now to
Silica may be used as a material of the inner ferrule 112 because silica may share common material properties with silica optical fibers having germania-doped cores. The optical fiber 116 may be bonded to the ferrule 110 using any method that yields acceptable results. In some embodiments, the fiber 116 is bonded to the ferrule 110 using a CO2 laser, such as by laser welding; and both forming and bonding the fiber 116 may be accomplished with a common laser (e.g., beam of same wavelength), such as during the same manufacturing step. The resulting assembly of the ferrule 110 and the optical fiber 116 may then be placed into a port or fixture that registers the position of the ferrule 110. With understanding of the position of the ferrule 110 (and components thereof) a CO2 laser beam may be shaped, focused, and aligned relative to the ferrule 110 for further processing.
Referring now to
The laser is selected to produce enough energy to maintain an acceptable energy density. For example, in some embodiments the energy distribution of the laser beam 138 is at least about 10,000 W/mm2. A diffractive optic that can shape the energy distribution is another viable alternative to sweeping the beam 138. Companies such as Holo-Cor (a division of Laser Components) may provide the ability to produce a uniform energy distribution and shape (see, e.g., beam spot of
An exemplary product and process may include stripping a 250 μm acrylate coating off of the optical fiber 116 using a 9.3- or 10.6-μm CO2 laser (e.g., the laser having at least 400 W capacity), then inserting the prepared fiber 116 into the inner piece 112 of the ferrule 110 to a predetermined position. The end face 1140 of the ferrule 110 may already be positioned appropriately relative to the laser. The laser beam 138 would then thermally form the end face 140 of both the optical fiber 116 and the ferrule 110 simultaneously, and bond them together in the radial and/or longitudinal axis of the optical fiber 116. In some embodiments, the resulting geometry of the end face 140 and the visual quality is compliant with industry standards.
In other contemplated embodiments, the ferrule 110 may be rotated during laser processing to achieve a uniform shape of the end face 140. Such rotation may be a partial rotation, a rocking motion, a full 360-degree turn, and/or a continuous spinning rotation.
Once the inner piece 112 of the ferrule 110 and the optical fiber 116 have been processed, the assembly 112/116 may be inserted into the outer piece 114 of the ferrule 110, positioned and aligned, and locked into place with any acceptable means. Some such means include chemical adhesives (e.g., thermoplastic, thermoset) and/or mechanical interlocks (e.g., friction fit, flange or latch). The optical fiber 116 position relative to the outer diameter of the outer piece 114 of the ferrule 110 may be adjusted before locking the inner piece 112 of the ferrule 110 in place, to provide concentricity of the optical fiber 116 within the ferrule 110.
Referring now to
Referring to
Referring to
Advantages of technology disclosed herein, in some embodiments, include reduction and/or elimination of mechanical polishing of the optical fiber 116 and ferrule end face 140; reduction and/or elimination of consumables for mechanical polishing; reduction of overhead costs to manage polishing equipment and consumables; reduction of process variation, defects, and scrap; reduction in manufacturing cycle time; the ability to implement a single connector manufacturing process using automated lasers, reduction in process steps for connector termination, reduction in labor content per connector termination, reduction in operator influence on process outcome, improved end face 140 visual quality and geometry, process flexibility, maintaining of overall appearance of current ferrules/connectors.
The construction and arrangements of the ferrules and fiber optic connectors, as shown in the various exemplary embodiments, are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes, and proportions of the various members, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter described herein. Some elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. The order or sequence of any process, logical algorithm, or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes and omissions may also be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the present inventive and innovative technology.
This application claims the benefit of priority under 35 U.S.C. §119 of U.S. Provisional Application Ser. No. 61/752,697 filed on Jan. 15, 2013 the content of which is relied upon and incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5216734 | Grinderslev | Jun 1993 | A |
5278928 | Ueda et al. | Jan 1994 | A |
5291570 | Filgas et al. | Mar 1994 | A |
5790732 | Ueda | Aug 1998 | A |
6282349 | Griffin | Aug 2001 | B1 |
6413450 | Mays, Jr. | Jul 2002 | B1 |
6738544 | Culbert et al. | May 2004 | B2 |
6774341 | Ohta | Aug 2004 | B2 |
6792008 | Wolak et al. | Sep 2004 | B2 |
6951994 | Mays, Jr. | Oct 2005 | B2 |
6960027 | Krah et al. | Nov 2005 | B1 |
6963687 | Vergeest et al. | Nov 2005 | B2 |
7029187 | Chapman et al. | Apr 2006 | B2 |
7082250 | Jones et al. | Jul 2006 | B2 |
7142741 | Osborne | Nov 2006 | B2 |
7147384 | Hardcastle et al. | Dec 2006 | B2 |
7264403 | Danley et al. | Sep 2007 | B1 |
7377700 | Manning et al. | May 2008 | B2 |
8109679 | Danley et al. | Feb 2012 | B2 |
20030068138 | Jack et al. | Apr 2003 | A1 |
20030235373 | Ishii et al. | Dec 2003 | A1 |
20040020906 | Ohta | Feb 2004 | A1 |
20080188843 | Appling et al. | Aug 2008 | A1 |
20090226136 | Shimizu et al. | Sep 2009 | A1 |
20100104243 | Kewitsch | Apr 2010 | A1 |
20120263422 | Lu | Oct 2012 | A1 |
20130343710 | Danley et al. | Dec 2013 | A1 |
20140072262 | Ohara | Mar 2014 | A1 |
20140105546 | Baca et al. | Apr 2014 | A1 |
20140105547 | Baca et al. | Apr 2014 | A1 |
Number | Date | Country |
---|---|---|
0574015 | Jan 2001 | EP |
4-326309 | Nov 1992 | JP |
10-221568 | Aug 1998 | JP |
WO 2005045494 | May 2005 | WO |
Entry |
---|
Laser Cleaving of Optical Connectors, IEEE Xplore Abstract Sheet, downloaded from internet on Feb. 3, 2016, 2 pages. |
Laser Polishing of Optical Fiber End Surface, Optical Engineering, SPIE Digital Library, downloaded from internet on Feb. 3, 2016, 7 pages. |
Laser-Induced Fracturing: An Alternative to Mechanical Polishing and Patterning of LiNbO3 Integrated Optics Chips, Journal of Lightwave Technology, OSA Publishing, vol. 22, Issue 5, downloaded from internet on Feb. 3, 2016, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20140199027 A1 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
61752697 | Jan 2013 | US |