Fiber optic connectors and connectorization employing adhesive admitting adapters

Information

  • Patent Grant
  • 11536913
  • Patent Number
    11,536,913
  • Date Filed
    Friday, November 19, 2021
    3 years ago
  • Date Issued
    Tuesday, December 27, 2022
    2 years ago
Abstract
Fiber optic connectors, connector housings, connectorized cable assemblies, and methods for the connectorization of cable assemblies are provided with particular cable adapter features, adapter extensions, multi-diametrical sealing flexures, subcutaneous sealing elements, and combinations thereof, for improved connector and cable performance, integrity, and durability.
Description
BACKGROUND
Field

The present disclosure relates generally to assemblies for interconnecting or otherwise terminating optical fibers and fiber optic cables in a manner suitable for mating with corresponding optical receptacles.


Technical Background

Optical fibers are used in an increasing number and variety of applications, such as a wide variety of telecommunications and data transmission applications. As a result, fiber optic networks include an ever increasing number of terminated optical fibers and fiber optic cables that can be conveniently and reliable mated with corresponding optical receptacles in the network. These terminated optical fibers and fiber optic cables are available in a variety of connectorized formats including, for example, hardened OptiTap® and OptiTip® connectors, field-installable UniCam® connectors, preconnectorized single or multi-fiber cable assemblies with SC, FC, or LC connectors, etc., all of which are available from Corning Incorporated, with similar products available from other manufacturers, as is well documented in the patent literature.


The optical receptacles with which the aforementioned terminated fibers and cables are coupled are commonly provided at optical network units (ONUs), network interface devices (NIDs), and other types of network devices or enclosures, and often require hardware that is sufficiently robust to be employed in a variety of environments under a variety of installation conditions. These conditions may be attributable to the environment in which the connectors are employed, or the habits of the technicians handling the hardware. Consequently, there is a continuing drive to enhance the robustness of these connectorized assemblies, while preserving quick, reliable, and trouble-free optical connection to the network.


BRIEF SUMMARY

According to the subject matter of the present disclosure, fiber optic connectors, connectorized cable assemblies, and methods for the connectorization of cable assemblies are provided. In accordance with a first variety of embodiments of the present disclosure, connectorized fiber optic cable assemblies are provided comprising a connector housing, a ferrule, a cable adapter, an adapter extension, a fiber optic cable, and a multi-diametrical sealing flexure. The connector housing comprises a ferrule retaining portion, an adapter seating portion, and a longitudinal axis extending through the ferrule retaining portion of the connector housing and the adapter seating portion of the connector housing. The ferrule is retained by the ferrule retaining portion of the connector housing and comprises an optical fiber bore. The cable adapter comprises an optical cable passageway, an optical fiber passageway, an extension securement portion, a housing insert portion seated in the adapter seating portion of the connector housing, and an adapter abutment positioned between the extension securement portion and the housing insert portion. The adapter extension is secured to the extension securement portion of the cable adapter and comprises an extended cable passageway. The fiber optic cable extends along the extended cable passageway of the adapter extension and the optical cable passageway of the cable adapter and comprises an optical fiber extending along optical fiber passageway of the cable adapter to the optical fiber bore of the ferrule. The multi-diametrical sealing flexure comprises a cable engaging portion engaging an outer cable surface of the fiber optic cable, a housing engaging portion engaging an outer housing surface of the connector housing, and an intermediate flexure portion extending from the cable engaging portion to the housing engaging portion and engaging an outer extension surface of the adapter extension.


In accordance with additional embodiments of the present disclosure, the adapter extension may be integrated with the cable adapter, e.g., as a unitary molded part.


In accordance with still further embodiments of the present disclosure, fiber optic connectors are provided comprising a connector housing, a ferrule, a cable adapter, and an adapter extension. The adapter extension is integrated with, or structurally configured to be secured to, the extension securement portion of the cable adapter and comprises an extended cable passageway. The adapter abutment and the connector housing are structurally configured to form an adapter sealing interface where the adapter abutment contacts an abutment facing surface of the connector housing. The adapter sealing interface forms a non-destructive flexural relief point along a length of the longitudinal axis. The adapter sealing interface originates at a housing-to-adapter elbow comprising an exposed anchoring face oriented towards the ferrule retaining portion of the connector housing.


In accordance with still further embodiments of the present disclosure, methods of connectorizing fiber optic cables are provided where a cable adapter is seated in the adapter seating portion of the connector housing with the adapter abutment limiting an extent to which the cable adapter extends into the adapter seating portion of the connector housing. The adapter extension is secured to the extension securement portion of the cable adapter and a fiber optic cable is extended along the extended cable passageway of the adapter extension and the optical cable passageway of the cable adapter. The fiber optic cable comprises an optical fiber extending along optical fiber passageway of the cable adapter to the optical fiber bore of the ferrule. An outer cable surface of the fiber optic cable, an outer housing surface of the connector housing, and an outer extension surface of the adapter extension are engaged with a multi-diametrical sealing flexure comprising a cable engaging portion, a housing engaging portion, and an intermediate flexure portion extending from the cable engaging portion to the housing engaging portion.


In accordance with additional embodiments of the present disclosure, connectorized fiber optic cable assemblies are provided comprising a multi-diametrical sealing flexure and a subcutaneous sealing element. The multi-diametrical sealing flexure comprises a cable engaging portion engaging an outer cable surface of the fiber optic cable and a housing engaging portion engaging an outer housing surface of the connector housing. The subcutaneous sealing element is positioned between an outer surface of the connector housing and an inner surface of the multi-diametrical sealing flexure to bound an entire rotational periphery of the connector housing about the longitudinal axis of the connector housing and form an annular projection in an outer surface of the multi-diametrical sealing flexure.


In accordance with alternative embodiments of the present disclosure, fiber optic connectors are provided comprising a connector housing and a cable adapter where the cable adapter comprises an optical cable passageway, an optical fiber passageway, a housing insert portion, an adhesive window, and an adapter abutment. The housing insert portion is structurally configured to be seated in the adapter seating portion of the connector housing to align the optical cable passageway and the optical fiber passageway with the longitudinal axis of the connector housing. The adhesive window resides in the housing insert portion in communication with the optical fiber passageway. The adapter abutment and the connector housing are structurally configured to form an adapter sealing interface where the adapter abutment contacts an abutment facing surface of the connector housing, and the cable adapter and the connector housing are structurally configured to form complementary keying surfaces that are positioned to align the adhesive injection port of the connector housing with the adhesive window of the cable adapter.


In accordance with further alternative embodiments of the present disclosure, connectorized fiber optic cable assemblies are provided comprising a connector housing, a ferrule, a cable adapter, and a fiber optic cable. The cable adapter comprises an adhesive window and the cable adapter and the connector housing are structurally configured to form complementary keying surfaces that are positioned to align the adhesive injection port of the connector housing with the adhesive window of the cable adapter. The optical fiber crosses the adhesive window of the cable adapter in a fiber potting portion of the optical fiber passageway of the cable adapter.


In accordance with still further alternative embodiments of the present disclosure, methods of connectorizing fiber optic cables are provided where the complementary keying surfaces formed by the cable adapter and the connector housing are aligned and the cable adapter is seated in the adapter seating portion of the connector housing to align the adhesive injection port of the connector housing with the adhesive window of the cable adapter. A fiber optic cable is extended along the optical cable passageway of the cable adapter and the longitudinal axis of the connector housing into the ferrule retaining portion of the connector housing such that the optical fiber crosses the adhesive window of the cable adapter in a fiber potting portion of the optical fiber passageway of the cable adapter. A ferrule is positioned along an end portion of the optical fiber and is retained in the ferrule retaining portion of the connector housing. An adhesive is injected through the adhesive injection port of the connector housing, into the adhesive window of the cable adapter to secure the cable adapter in the connector housing and the optical fiber in the cable adapter.


In accordance with additional alternative embodiments of the present disclosure, fiber optic connectors are provided comprising a connector housing and a cable adapter, where an interior surface of the connector housing and an exterior surface of the cable adapter form a capillary gap when the housing insert portion of the cable adapter is seated in the adapter seating portion of the connector housing. The the capillary gap is displaced from the longitudinal axis of the connector housing from the adapter sealing interface to an adhesive barrier formed by portions of the cable adapter and the connector housing when the housing insert portion of the cable adapter is seated in the adapter seating portion of the connector housing.


In accordance with further alternative embodiments of the present disclosure, a connector housing is provided comprising a ferrule retaining portion, a keying portion, a sealing element retaining portion, and an adhesive injection port where the adhesive injection port is defined in a potting portion of the connector housing and is separated from the ferrule retaining portion of the connector housing and the keying portion of the connector housing by the sealing element retaining portion of the connector housing, along the longitudinal axis of the connector housing.


Although the concepts of the present disclosure are described herein with reference to a set of drawings that show a particular type of fiber optic cable, and connector components of particular size and shape, it is contemplated that the concepts may be employed in any optical fiber connectorization scheme including, for example, and without limitation, hardened OptiTap® and OptiTip® connectors, field-installable UniCam® connectors, single or multi-fiber cable assemblies with SC, FC, LC, or multi-fiber connectors, etc.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The following detailed description of specific embodiments of the present disclosure can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:



FIG. 1 illustrates a connectorized cable assembly according to one embodiment of the present disclosure;



FIG. 2 illustrates a connectorized cable assembly employing a hardened OptiTap optical connector;



FIG. 3 illustrates a connectorized cable assembly employing a type SC optical connector;



FIG. 4 is a cross-sectional illustration of the connectorized fiber optic cable assembly of FIG. 1;



FIG. 4A is an exploded view of selected components of FIG. 4;



FIG. 5 is a schematic illustration of the multicomponent bending stiffness profile that may be presented by a fiber optic connector and a connectorized fiber optic cable assembly according to the present disclosure;



FIG. 6 is an alternative exploded view of selected components of FIG. 4;



FIG. 7 illustrates a cable adapter and adapter extension according to embodiments of the present disclosure;



FIG. 8 illustrates a cable adapter according to embodiments of the present disclosure;



FIG. 9 illustrates an adapter extension according to embodiments of the present disclosure;



FIG. 10 illustrates a portion of a connectorized cable assembly according to embodiments of the present disclosure;



FIG. 11 illustrates the manner in which a cable adapter may interface with a connector housing according to embodiments of the present disclosure; and



FIG. 12 illustrates the use of a subcutaneous sealing element in a connectorized cable assembly of the present disclosure.





DETAILED DESCRIPTION

Referring initially to FIGS. 1-3, as is noted above, the connectorization concepts of the present disclosure may be employed in a variety of optical fiber connectorization schemes including, for example, and without limitation, hardened OptiTap® and OptiTip® connectors, field-installable UniCam® connectors, single or multi-fiber cable assemblies with SC, FC, LC, or multi-fiber connectors, etc. To help illustrate this point, FIG. 1 illustrates a connectorized cable assembly 100 according to an embodiment of the present disclosure where the connectorized cable assembly defines a customized connectorization profile that is particularly well suited to interface with an optical connectorization terminal comprising a plurality of relatively closely packed connection ports.


Although the following description presents the concepts of the present disclosure in the context of the connectorized cable assembly 100 illustrated in FIG. 1, it is contemplated that the concepts of the present disclosure will enjoy equal applicability to any of a variety of cable assembly types. For example, and not by way of limitation, FIG. 2 illustrates a connectorized cable assembly 100′ employing a conversion housing 200 for a hardened optical connector, one embodiment of which is available under the trade name OptiTap®. OptiTap® type conversion housings 200, and some other hardened connector conversion housings, will comprise a pair of opposing fingers 202 comprising opposing interior faces that extend parallel to, and are arranged symmetrically about, the longitudinal axis of the connector housing. The finger spacing between the opposing interior faces of the opposing fingers 202 is between 10.80 millimeters and 10.85 millimeters. finger depth along a direction parallel to the longitudinal axis of the connector housing is between 8.45 millimeters and 8.55 millimeters. The finger width along a direction perpendicular to the finger depth and the longitudinal axis of the connector housing is less than 10 millimeters. The outer faces of the opposing fingers lie along a common outside diameter of between 15.75 millimeters and 15.85 millimeters, and the outer face of one of the opposing fingers is truncated in a plane parallel to the opposing interior faces to define a truncated span extending from the outer face of the truncated opposing finger to the outer face of the opposite finger of between about 14.75 millimeters and about 14.95 millimeters. This truncation provides a keying functionality when the connector is paired with a connection port with complementary keying surfaces.


As a further non-limiting example, FIG. 3 illustrates a connectorized cable assembly 100″ employing a type SC conversion housing 300. Type SC conversion housings are characterized by a connector footprint as set forth in IEC 61754-4, published by the International Electrical Commission, which defines the standard interface dimensions for the type SC family of fiber optic connectors and may be updated periodically. As is noted in the aforementioned standard, the parent connector for the type SC connector family is a single position plug connector which is characterized by a 2.5 millimeters nominal ferrule diameter. It includes a push-pull coupling mechanism which is spring loaded relative to the ferrule in the direction of the optical axis. The plug has a single male key which may be used to orient and limit the relative position between the connector and the component to which it is mated. The optical alignment mechanism of the connector is of a resilient sleeve style. IEC 61754-4 defines the standard interface dimensions of active device receptacles for the type SC connectors. The receptacles are used to retain the connector plug and mechanically maintain the optical datum target of the plugs at a defined position within the receptacle housings. The SC connector standard encompasses simplex plug connector interfaces, simplex adaptor connector interfaces, duplex plug connector interfaces, and duplex adaptor connector interfaces.


Referring to FIG. 4, which is a cross-sectional illustration of the connectorized fiber optic cable assembly 100 of FIG. 1, to FIG. 4A, which is an exploded view of selected components of FIG. 4, and to FIG. 6, which is an alternative exploded view of selected components of the assembly 100, it is noted that the assembly 100 generally comprises a connector housing 10, an ferrule 20, a cable adapter 30, an adapter extension 40, a fiber optic cable 50 comprising an optical fiber 52, and a multi-diametrical sealing flexure 60. The connector housing 10, ferrule 20, cable adapter 30, adapter extension 40, and multi-diametrical sealing flexure 60 may be presented as respective single piece components, i.e., components that are fabricated from a single material and have a unitary compositional construction.


The connector housing 10 comprises a ferrule retaining portion 12, an adapter seating portion 14, and a longitudinal axis A that is obscured in FIGS. 4 and 4A but extends along the optical fiber 52 of the fiber optic cable 50, through the ferrule retaining portion 12 and the adapter seating portion 14 of the connector housing 10. The ferrule 20 is retained by the ferrule retaining portion 12 of the connector housing and comprises an optical fiber bore 22 that is aligned with the longitudinal axis A of the connector housing 10. For single fiber cables this alignment will be coaxial. For multifiber cables, this alignment will be orthogonally offset for one, more than one, or all of the optical fibers of the cable.


The cable adapter 30 comprises an optical cable passageway 32 and an optical fiber passageway 34, which are partially obscured in FIGS. 4 and 4A by the fiber optic cable 50, but are illustrated with further clarity in FIG. 11. The cable adapter 30 further comprises an extension securement portion 36, a housing insert portion 38 seated in the adapter seating portion 14 of the connector housing 10, and an adapter abutment 35. The adapter abutment 35, which functions as a stop surface, is positioned between the extension securement portion 36 and the housing insert portion 38 and serves to limit an extent to which the cable adapter 30 may extend into the adapter seating portion 14 of the connector housing 10.


The adapter extension 40 is secured to the extension securement portion 36 of the cable adapter 30 and comprises an extended cable passageway 42, which is partially obscured in FIGS. 4 and 4A by the fiber optic cable 50, but is illustrated with further clarity in FIG. 9. The fiber optic cable 50 extends along the extended cable passageway 42 of the adapter extension 40 and the optical cable passageway 32 of the cable adapter 30. The optical fiber 52 of the fiber optic cable 50 extends along optical fiber passageway 34 of the cable adapter 30 to the optical fiber bore 22 of the ferrule 20.


The multi-diametrical sealing flexure 60 comprises a cable engaging portion 62 engaging an outer cable surface of the fiber optic cable, a housing engaging portion 64 engaging an outer housing surface of the connector housing, and an intermediate flexure portion 66 extending from the cable engaging portion 62 to the housing engaging portion 64 and engaging an outer extension surface 44 of the adapter extension 40.



FIG. 5 is a schematic illustration of the multicomponent bending stiffness profile that may be presented by a fiber optic connector and a connectorized fiber optic cable assembly according to the present disclosure to protect the optical fiber 52 and other components of the fiber optic cable 50 from undue stress during installation and use. This bending stiffness profile and its respective component index values are conceptually related to the well-established concept of “flexural modulus,” which can be used to characterize a material's ability to bend. Generally, stiffer connector components will yield less to bending forces than others and, as a result, generally higher bending index values can be associated with particular portions of such components. The bending index values B1, B2, B3, etc., recited herein are location-specific values that characterize the particular bending behavior of the connector at specific locations in the connector and will depend, for example, on the material forming the parts, the size and geometry of the parts, and the manner in which the parts cooperate with other parts in the connector assembly. For this reason, the bending index values B1, B2, B3, etc., are discussed herein in relative terms, with B1 being generally larger than B2, B2 being generally larger than B3, and B3 representing a degree of stiffness, or bend resistance, that may be greater than that of the fiber optic cable that is used with the optical fiber connector. In this manner, a connectorized fiber optic cable assembly may be constructed to present a degree of bend resistance that progresses from a relatively small value along the fiber optic cable itself, to progressively higher values as the cable extends farther and farther into the connector assembly of the cable. All bending index values and relative values disclosed herein are understood to be referenced at room temperature, which is defined herein as a temperature of between about 20° C. and bout 25° C.


More particularly, a particular bending index value Bn at a specific free end location n on a connector part, refers to the bend resistance of the part at the free end, under a given non-destructive transverse fiber load F applied to the free end, and can be quantified by referring to the degree to which the free end deflects relative to an anchored portion of the connector assembly. Referring to the schematic illustration of FIG. 5, this relationship can be characterized by the following relation:







B
n

=

F

tan


(

θ
n

)








where θn is the angle of deflection of the part at its free end, relative to an anchored portion of the connector assembly, and F represents the fiber load, in Newtons. In the context of connectorized cable assemblies, it is contemplated that some fiber optic cables will be so flexible that they do not support their own weight without bending, even when a relatively short length of cable is presented. In these cases, it may be said that the bending index value at a location along the cable will be very close to zero. At the opposite end of the spectrum lie highly rigid components, like connector housings, which may be characterized by nearly infinite bending index values under given non-destructive transverse loads.


It is contemplated that suitable transverse fiber loads F for establishing a particular bending index value Bn will typically fall between about 10 N and about 50 N and can be considered non-destructive so long as it does not cause the cable adapter to deflect more than 45 degrees relative to connector housing, when the connector housing includes the anchored portion of the connector. Non-destructive transverse fiber loads F will also not be so great as to separate components of the connector from each other, damage components of the connector, or exceed the load limit of the connector port with which the connector is designed to cooperate.


Referring collectively to FIGS. 4, 4A, 5, and 6, a cable assembly 100 according to the present disclosure may comprise a multicomponent bending stiffness profile comprising a first bending index value B1 at a free end of the extension securement portion 36 of the cable adapter 30, a second bending index value B2 at a free end of the adapter extension 40, and a third bending index value B3 at a free end of the multi-diametrical sealing flexure 60, where B1>B2>B3. In one embodiment, B1>2(B2) and B2>2(B3), with B3 representing a degree of resistance to bending that is greater than that of the fiber optic cable. In many cases, the connector housing 10 will relatively rigid. For example, the multicomponent bending stiffness profile may further comprise a housing bending index B0 that is at least three times greater than the first bending index value B1.


The inherent stiffness of each of the various materials used to fabricate the fiber optic connectors and connectorized fiber optic cable assemblies according to the present disclosure may also play a significant role in protecting the optical fiber 52 and other components of the fiber optic cable 50 from undue stress during installation and use. For example, given a relatively rigid connector housing 10 characterized by a Young's modulus EH, it is contemplated that the cable adapter 30 may be characterized by a Young's modulus EA, which is less than EH. Similarly, the adapter extension 40 may be characterized by a Young's modulus EE, which is less than EA. Finally, the multi-diametrical sealing flexure 60 may be characterized by a Young's modulus EF, which is less than EE. The resulting assembly will assume a bend profile not unlike that illustrated schematically in FIG. 5, under given transverse loads. In particular embodiments, the connector housing 10 and the cable adapter 30 are fabricated from Polyetherimide, Polyethersulfone, PEEK, or combinations thereof.


In particular embodiments, the adapter extension 40 is characterized by a Young's modulus of between about 80 MPa and about 500 MPa, and the multi-diametrical sealing flexure 60 is characterized by a Young's modulus of between about 30 MPa and about 80 MPa, at room temperature. In such embodiments, the connector housing 10 may be characterized by a Young's modulus of between about 2000 MPa and about 6000 MPa, and the cable adapter 30 may be characterized by a Young's modulus of between about 1500 MPa and about 6000 MPa, at room temperature.


As is illustrated schematically in FIG. 5, and referring to the components illustrated in FIGS. 4, 4A and 6, the cable assembly 100 may be described as comprising a first bending terminus B1 at a free end of the extension securement portion 36 of the cable adapter 30, a second bending terminus B2 at a free end of the adapter extension 40, and a third bending terminus B3 at a free end of the multi-diametrical sealing flexure 60. In this context, embodiments are contemplated where the free end of the adapter extension 40 is displaced from the free end of the extension securement portion of the cable adapter 30 along the longitudinal axis A by an effective extension length dE of at least about 15 centimeters, or by an effective extension length dE of between about 15 millimeters and about 30 millimeters. Similarly, the free end of the multi-diametrical sealing flexure 60 may be displaced from the free end of the adapter extension 40 by an effective flexure length dF of at least about 30 millimeters, or by an effective flexure length dF of between about 30 millimeters and about 100 millimeters. In some implementations of the concepts of the present disclosure, it may be more preferable to refer to the following relation as a guide to designing the adapter extension 40 and the multi-diametrical sealing flexure 60:






1



d
F


d
E




4
.





In other implementations of the concepts of the present disclosure, it may be more preferable to ensure that the effective extension length dE is at least about 10% of a length of a connectorized span of the cable assembly and that the effective flexure length dF is at least about 20% of a length of a connectorized span of the cable assembly.


Fiber optic connectors and connectorized fiber optic cable assemblies according to the present disclosure may be conveniently defined with reference to the various connector component interfaces embodied therein. These connector component interfaces may be presented at a variety of locations in an assembly and typically play a significant role in the integrity of the assembly because they provide non-destructive points of relief in the assembly under transverse loads. For example, referring to FIGS. 4 and 4A, a connectorized fiber optic cable assembly 100 according to the present disclosure may comprises a cable entry interface I1, an adapter abutment interface I2, and an adapter sealing interface I3. The cable entry interface I1 is formed by an inner surface of the extended cable passageway 42 of the adapter extension 40 and an outer surface of the fiber optic cable 50, where the fiber optic cable 50 extends into the extended cable passageway 42 of the adapter extension 40 towards the ferrule 20. The adapter abutment interface I2 is formed by the adapter extension 40 and the adapter abutment 35 of the cable adapter 30, where the adapter extension 40 contacts an extension-facing surface 37 of the adapter abutment 35. The adapter sealing interface I3 is formed by the adapter abutment 35 and the connector housing 10, where the adapter abutment 35 contacts an abutment facing surface 16 of the connector housing 10. The adapter abutment interface I2 may be orthogonal to the longitudinal axis A of the connector housing 10. The adapter sealing interface I3 originates at a housing-to-adapter elbow and may be orthogonal to the longitudinal axis A of the connector housing 10. The cable entry interface I1 originates at a cable-to-connector elbow and may be oriented parallel to the longitudinal axis A of the connector housing 10, or otherwise be displaced from but extend in a common direction as the longitudinal axis A.


As is illustrated in FIG. 4, the multi-diametrical sealing flexure 60 forms respective strain relieving sealing bridges across each of these interfaces, i.e., by extending across the cable entry interface I1, the adapter abutment interface I2, and the adapter sealing interface I3. More particularly, the cable entry interface I1, the adapter abutment interface I2, and the adapter sealing interface I3 form respective non-destructive flexural relief points that are distributed along the length of the fiber optic connector formed by the connector housing 10, the ferrule 20, the cable adapter 30, and the adapter extension 40. The multi-diametrical sealing flexure 60 is sufficiently flexible to maintain a seal across these flexural relief points as the connectorized portion of the cable assembly 100 is subject to a transverse load, for example, a bend of at least about 90 degrees along the longitudinal axis of the connector.


Connectorized fiber optic cable assemblies according to the present disclosure may further comprise an adapter mounting interface I4 formed by an inner surface of the extended cable passageway 42 of the adapter extension 40 and an outer surface of the extension securement portion 36 of the cable adapter 30, where the cable adapter 30 extends into the extended cable passageway 42 of the adapter extension 40, towards the cable entry interface I1 of the adapter extension 40. In the illustrated embodiment, the adapter mounting interface I4 is generally oriented parallel to the longitudinal axis A of the connector housing 10 but includes irregularities to enhance securement of the adapter extension 40 to the cable adapter 30.


Referring to FIG. 4, it is noteworthy that the aforementioned cable-to-connector and housing-to-adapter elbows, at which the cable entry interface I1 and adapter sealing interface I3 originate are oriented in opposite directions relative to the longitudinal axis A. More specifically, referring to FIG. 4A, the cable-to-connector elbow E1 is oriented away from the ferrule retaining portion 12 of the connector housing 10, while, referring to FIG. 11, the housing-to-adapter elbow E2 is oriented in the opposite direction. The housing-to-adapter elbow E2 comprises an exposed anchoring face 39 on the adapter abutment 35 that is oriented towards the ferrule retaining portion 12 of the connector housing 10. The surface area of the exposed anchoring face 39 is, for example, at least about 5 square millimeters to ensure that it is sufficiently large to help fix the multi-diametrical sealing flexure 60 in place about the connector housing 10, the adapter extension 40, and the fiber optic cable 50. For example, where the exposed anchoring face 39 is presented as a substantially continuous annulus with an inner radius of about 1.5 centimeters and an outer radius of about 1.75 centimeters, the exposed anchoring face 39 would have a surface area of about 2.5 square centimeters. The opposing elbows E1, E2 act to secure the multi-diametrical sealing flexure 60 in place along the longitudinal axis A as it forms respective sealing bridges across the cable-to-connector elbow E1 and the oppositely directed housing-to-adapter elbow E2.


Referring further to FIGS. 4, 4A, 6, and 11, it is noted that the optical fiber passageway 34 of the cable adapter 30 is positioned along the longitudinal axis A between the optical cable passageway 32 of the cable adapter 30 and the ferrule 20. The optical cable passageway 32 of the cable adapter 30 is larger than the optical fiber passageway 34 of the cable adapter 30 because it must additionally accommodate a unstripped cable, i.e., a cable including a jacket, while the optical fiber passageway merely needs to be large enough to accommodate a stripped cable.


As is illustrated in FIG. 4A, the housing insert portion 38 of the cable adapter 30 extends from the adapter abutment 35, along the longitudinal axis A, towards the ferrule 20 for a seated length dS. The extension securement portion 36 of the cable adapter 30 extends from the adapter abutment 35 in an opposite direction along the longitudinal axis A for an extension receiving length dR, where:







d
R

<


d
S

.






The free end of the extension securement portion 36 of the cable adapter 30 is displaced from a free end of the adapter extension 40 along the longitudinal axis by an effective extension length dE, where:







d
R

<


d
E

.





In a variety of embodiments, it is contemplated that the extended cable passageway 42 of the adapter extension may be between about 15 and about 30 millimeters in length, and the adapter extension 40 may comprise a wall thickness that is between about 1 millimeter and about 4 millimeters, over a majority of the length of the extended cable passageway 42 of the adapter extension 40. In other embodiments, the extended cable passageway of the adapter extension 40 is at least about 15 centimeters in length and the adapter extension 40 comprises a wall thickness that is less than about 1 millimeter over a majority of the length of the extended cable passageway 42 of the adapter extension 40. In still further embodiments, the extended cable passageway 42 of the adapter extension is at least about 20% as long as a connectorized span of the cable assembly 100, or between about 10% and about 30% as long as a connectorized span of the cable assembly, excluding the multi-diametrical sealing flexure 60. In other embodiments, the cable engaging portion 62 of the multi-diametrical sealing flexure 60 is at least about 50% as long as the extended cable passageway 42 of the adapter extension 40, or between about 50% and about 400% as long as the extended cable passageway of the adapter extension.


The adapter extension 40 may be fabricated from a material that is characterized by a Young's modulus of between about 80 MPa and about 500 MPa, at room temperature. For example, the adapter extension 40 may be fabricated from a thermoplastic elastomer such as Hytrel® 8238. Reference herein to a component being “fabricated from” a material should be taken to mean that the material takes up at least a majority of the material volume of the part, and often the substantial entirety of the part.


As is illustrated in FIG. 7, the adapter extension 40 may comprise an interior adapter-engaging surface 45 that is rotationally asymmetric relative to a longitudinal axis of the adapter extension 40, i.e., an axis that would extend along the longitudinal axis A of the connector housing 10 illustrated in FIG. 6. In which case, the extension securement portion 36 of the cable adapter 30 would comprise an exterior securement surface 31 that complements the rotational asymmetry of the interior adapter-engaging surface 45 of the adapter extension 40. This asymmetry helps to ensure that the adapter extension 40 and the fiber optic cable running there through, assume a proper rotational orientation relative to the cable adapter 30. To enhance securement, the interior adapter-engaging surface 45 of the adapter extension 40 and the exterior securement surface 31 of the extension securement portion 36 of the cable adapter 30 may comprise complementary locking projections 33 and locking recesses 43. In addition, the adapter extension 40 may comprise a rotationally symmetric an exterior surface 44 that spans a substantial entirety of the adapter extension 40 to enhance the ability of the adapter extension 40 to interface securely with the multi-diametrical sealing flexure 60.


It is contemplated that multi-diametrical sealing flexures according to the present disclosure may be characterized by a Young's modulus of between about 30 MPa and about 80 MPa, at room temperature. For example, and not by way of limitation, multi-diametrical sealing flexures may comprise a heat shrink tube, i.e., a tubular structure and suitable composition that may be shrunk about the remaining parts of the connectorized cable assembly at a temperature that is low enough to avoid heat related damage to the remaining parts of the connectorized cable assembly. For example, it is contemplated that suitable heat shrink tubing may comprise adhesive lined polyolefin 3:1 or 4:1 heat shrink tubing.


Referring to FIGS. 4 and 6, the cable engaging portion 62 of the multi-diametrical sealing flexure 60 may be between about 30 and about 100 millimeters in length and the multi-diametrical sealing flexure 60 may comprises a wall thickness that is less than about 1 millimeter, or between about 1 millimeters and about 4 millimeters, over a majority of the length of the cable engaging portion 62 of the multi-diametrical sealing flexure 60. In some embodiments, the cable engaging portion 62 of the multi-diametrical sealing flexure is at least about 20% as long as a connectorized span of the cable assembly 100.


The adapter 30 and adapter extension 40 are illustrated in FIGS. 4, 4A, 6, and 7 as two separate components that are secured to each other. It is also contemplated that the adapter extension 40 may be integrated with the cable adapter 30 as a single component, in which case it would be preferable to fabricate the unitary component such that the portion forming the adapter extension 40 is made from a material characterized by a Young's modulus EE that would be less than the Young's modulus EA of the portion forming the cable adapter 30. For example, the adapter 30 and adapter extension 40 may be fabricated as a unitary molded part.


Referring to FIGS. 7, 8, 10, and 11, where like elements are denoted with like reference numerals, particular embodiments of the present disclosure relate specifically to the use of adhesives in connectorization, to the features of the cable adapter 30 and the adapter seating portion 14 of the connector housing 10, and the manner in which these features cooperate to facilitate effective connectorization of a fiber optic cable assembly. FIG. 10 illustrates the connectorized fiber optic cable assembly 100 of FIG. 1 from a different perspective, and without a multi-diametrical sealing flexure, to help clarify the nature of particular components of the assembly. More specifically, in FIG. 10, the fiber optic connector portion of the cable assembly 100 comprises a connector housing 10 with a ferrule retaining portion 12 and an adapter seating portion 14, as is described above. FIG. 10 also shows adhesive injection ports 70 in the adapter seating portion 14 of the connector housing 10, which ports extend through the wall of the connector housing 10, i.e., from an outer surface of the connector housing 10 to an inner surface of the connector housing 10, and permit the pressurized or non-pressurized introduction of adhesive into an interior potting cavity of the connector housing 10.


Referring specifically to FIGS. 10 and 11, as is noted above, the cable adapter comprises an optical cable passageway 32, an optical fiber passageway 34, and a housing insert portion 38 that is structurally configured to be seated in the adapter seating portion 14 of the connector housing 10. The optical cable passageway 32 of the cable adapter 30 is preferably large enough to accommodate a jacketed portion J of a fiber optic cable 50. The optical fiber passageway 34 of the cable adapter 30 is smaller than the optical cable passageway 32 and is large enough to accommodate a coated and/or buffered optical fiber C and any longitudinal strength members S running with the coated optical fiber C. In this context, the optical cable passageway 32 may be provided with a stripped cable transition T1 to a reduced interior cross section that is large enough to accommodate a stripped optical cable. Similarly, the optical fiber passageway 34 may be provided with an optical fiber transition T2 to a reduced interior cross section comprising an optical fiber port that is large enough to accommodate a coated optical fiber.


It is contemplated that the above-noted cable adapter passageways can be sized and shaped to accommodate a variety of fiber optic cables including, for example, a single fiber cable of the type illustrated in FIG. 10. In one embodiment, for a coated optical fiber having an OD of about 900 μm (micrometers), the optical fiber aperture of the cable adapter will have an ID of about 950 μm, to provide about 50 μm of free space about the coated optical fiber. Similarly, the optical fiber passageway will be large enough to provide up to about 200 μm of free space about the optical fiber and associated strength members. The reduced interior cross section of the optical cable passageway will be large enough to provide up to about 300 μm of free space about the stripped cable portion, and the larger portion of the optical cable passageway will provide up to about 300 μm of free space about the jacketed fiber optic cable.



FIG. 10 also illustrates the provision of a pair of opposed fiber clamping windows 15 in the connector housing 10. These clamping windows 15 provide a clear path to the coated/buffered portion C of the optical fiber 52 inside the connector housing 10, between the fiber buckling chamber 18 and the ferrule retaining portion 12 of the connector housing 10 to facilitate fiber clamping during ferrule or ferrule holder installation. More specifically, the optical fiber 52 may be clamped in a suitable manner through these opposing windows 15 as the ferrule 20 and/or ferrule holder 25 is inserted into housing and installed on the end of the optical fiber 52. Clamping the optical fiber 52 in this manner helps prevent the optical fiber 52 from being pushed rearward or buckling as the ferrule 20 and/or ferrule holder 25 is installed.



FIG. 12 illustrates the provision of a subcutaneous sealing element 90 between an outer surface of the connector housing 10 and an inner surface of the multi-diametrical sealing flexure 60. The subcutaneous sealing element 90 may be presented as an O-ring or other type of sealing element, may bound an entire rotational periphery of the connector housing 10 about the longitudinal axis A of the connector housing 10, and may cooperate with the multi-diametrical sealing flexure 60 to form an annular projection 94 in an outer surface of the multi-diametrical sealing flexure 60. The outer surface of the connector housing 10 may be provided with a seal accommodating groove 92 may be formed in the outer surface of the connector housing 10 to receive and secure the subcutaneous sealing element 90 beneath the multi-diametrical sealing flexure 60. As is illustrated in FIG. 12, this sealing element 90 can be used to create a continuous, sealed interference fit between the connectorized portion of the cable assembly and the port structure 96 with which it is to be coupled to keep dirt and debris from lodging in the circumferential gap between the connector and the port.



FIGS. 7, 8, 10, and 11 most clearly show an adhesive window 80 in the housing insert portion 38 of the cable adapter 30. This adhesive window 80 communicates with the optical fiber passageway 34 of the cable adapter 30 to provide a path for injecting an adhesive through one or both of the adhesive injection port 70, into the adhesive window 80, to secure the cable adapter 30 in the connector housing 10 and to secure the optical fiber 52, and any associated cable components in the housing insert portion 38 of the cable adapter 30.


The adhesive window 80 should be large enough to provide clearance for adhesive introduced into one or both of the injection ports 70 to pass across at least a portion of the optical fiber passageway 34 of the cable adapter 30 when a stripped portion of a fiber optic cable 50 extends along the optical fiber passageway 34. In particular embodiments, including the illustrated embodiment, the adhesive window 80 extends across the entirety, or at least a majority, of the cable adapter 30 in a crossing direction that is orthogonal to the optical fiber passageway 34 of the cable adapter 30. The adhesive window 80 also extends orthogonally to the crossing direction and the optical fiber passageway 34 to a lateral depth that is large enough to reduce the outer wall thickness of the cable adapter 30. This enlarges a portion the optical fiber passageway 34 to form a fiber potting portion in the optical fiber passageway where a substantial amount of adhesive can be held and cured to secure the optical fiber 52 and any associated cable components in the expanded space, in the cable adapter 30. In particular embodiments, it is contemplated that the lateral depth reduces the outer wall thickness of the cable adapter 30 in the fiber potting portion of the optical fiber passageway 34 by between about 0.3 millimeters and about 0.8 millimeters.


To facilitate the aforementioned pressurized or non-pressurized adhesive injection, the cable adapter 30 and the connector housing 10 can be structurally configured to form complementary keying surfaces that are positioned to align the adhesive injection ports 70 of the connector housing 10 with the adhesive window 80 of the cable adapter 30. More specifically, complementary keying surfaces may be formed where the adapter abutment 35 contacts the abutment facing surface 16 of the connector housing by, for example, providing a keyed cut-out 72 in the connector housing 10 and a keyed projection 74 in the cable adapter 30.



FIG. 11 and, to some extent, FIG. 10 show how an interior surface of the connector housing 10 and an exterior surface of the cable adapter 30 can be fashioned to form a capillary gap G when the housing insert portion 38 of the cable adapter 30 is seated in the adapter seating portion 14 of the connector housing 10. This capillary gap G is illustrated in FIGS. 10 and 11 as an annular gap that is interrupted by the adhesive injection ports 70 of the connector housing 10 and the adhesive window 80 of the cable adapter 30. Even if the capillary gap G is not an annular gap, it may be displaced from and extend parallel to the longitudinal axis of the connector housing 10, which runs coaxially with the core of the optical fiber 52.


In the illustrated embodiment, the capillary gap G is formed between an expanded inner dimension of the connector housing 10 and a restricted outer dimension of the cable adapter 30. It is, however, contemplated that a suitable capillary gap G may be formed by merely restricting the inner dimension of the connector housing 10 or the outer dimension of the cable adapter 30. Although the preferred size of the capillary gap will be dependent on the particular adhesive in use, it is contemplated that suitable gap spacings will, in many case, be less than about 0.15 millimeters for a majority of the extent of the gap, or between about 0.1 millimeters and about 0.3 millimeters for a majority of the extent of the gap. Preferred gap lengths will also depend on the particular adhesive in use, but it is contemplated that a suitable gaps will extend at least about 3 millimeters, or between about 3 millimeters and about 15 millimeters, parallel to the longitudinal axis.


Regardless of whether connectorized fiber optic cable assemblies according to the present disclosure utilize a capillary gap G, it is noted that, for optimum adhesion, an adhesive should thoroughly “wet out” the surfaces of the connector assembly to be bonded. In other words, the adhesive should flow and cover the surfaces to maximize the contact area and the attractive forces between the adhesive and bonding surfaces. Lower surface energy materials tend to spontaneously wet out higher energy surfaces. For a liquid adhesive to effectively wet out a surface, the surface energy of the adhesive should be as low, or lower than, the surface energy of the surfaces of the substrates to be bonded. If the liquid surface energy is significantly above that of the substrate surface, the substrate does not wet as well. Substrates to be bonded may be fabricated from materials, like ABS plastics, having relatively high surface energies. Alternatively, the surface of a relatively low surface energy material, like polypropylene or polyethylene, may be treated to increase the surface energy by, for example, exposing the surface to UV light, etching the surface, and/or treating the surface with a solvent.


Referring further to FIGS. 10 and 11, in the illustrated embodiment, the capillary gap G is displaced from and extends parallel to the longitudinal axis of the connector housing from the adapter sealing interface I3 to an adhesive barrier 82 formed by portions of the cable adapter 30 and the connector housing 10 when the housing insert portion 38 of the cable adapter 30 is seated in the adapter seating portion 14 of the connector housing 10. The adhesive barrier can be positioned between the capillary gap G and the ferrule retaining portion 12 of the connector housing, between the capillary gap G and a fiber buckling chamber 18 of the connector housing 10, or both, to help preserve the integrity of the optical coupling at the ferrule 20.


For annular capillary gaps G, this adhesive barrier 82 is also annular. The adhesive barrier 82 can be formed at a press-fit engagement interface between respective surfaces of the cable adapter 30 and the connector housing 10. This type of press-fit engagement can be facilitated by restricting the inner dimension of the connector housing, expanding the outer dimension of the cable adapter, or both.


The adhesive injection ports 70 and the adhesive window 80 can be positioned between the adapter sealing interface I3 and the adhesive barrier 82 to help facilitate uniform distribution of the injected adhesive.


To maintain the integrity of the adhesive barrier 82 and permit passage of the optical fiber 52, the cable adapter 30 also comprises a fiber admitting face 84 extending across an interior dimension of the annular adhesive barrier 82 and comprising an optical fiber aperture 86. The optical fiber aperture 86 is designed to closely approximate the size and shape of the external profile of the optical fiber portion of the connectorized optical cable. For example, and not by way of limitation, for single fiber cables, the optical fiber aperture will have a diameter of between about 250 μm and about 1 millimeters, depending on whether the fiber is coated and/or buffered. The adapter sealing interface I3, the adhesive barrier 82, and the fiber admitting face 84 collectively form a closed end of the connector housing when the cable adapter 30 is seated in the adapter seating portion 14 of the connector housing 10.


To help facilitate uniform adhesive injection through one or both of the adhesive injection ports 70, the connector housing 10 may be provided with a relief port in the adapter seating portion 14 of the connector housing 10. In one embodiment, adhesive is injected through only one of the injection ports 70 and the remaining injection port serves as the relief port—allowing air inside the connector assembly to escape when adhesive is injected. In another embodiment, the relief port is provided along a portion of the adapter sealing interface I3, for example by providing relief gaps between the keyed cut-out 72 and the keyed projection 74.


Referring to FIGS. 10 and 12, in particular embodiments of the present disclosure, it is contemplated that the adhesive injection ports 70 of the connector housing 10 may be positioned to ensure that any excess adhesive or other surface irregularities created on the outer surface of the connector housing 10 when adhesive is injected into an interior potting cavity of the connector housing 10 through the adhesive injection ports 70 will not interfere with the keying or sealing functionality of the connectorized cable assembly 100 when it is engaged with a suitable port structure 96. It may also be advantageous to ensure that the adhesive injection ports 70 are positioned to prevent adhesive interference with the ferrule retaining portion 12 of the connector housing 10, and the ferrule 20, ferrule holder 25, and ferrule retention spring 26 incorporated therein. It may be further advantageous to ensure that the adhesive injection ports 70 are positioned to prevent adhesive interference with conversion housing engagement features, in embodiments where such features are provided on the connector housing 10. This positioning can be significant in embodiments of the present disclosure that utilize a cable adapter 30, and embodiments of the present disclosure where a cable adapter 30 and an adapter extension 40 are not needed.


More specifically, referring to FIGS. 10 and 12, the connector housing comprises ferrule retention features 12a, 12b in the ferrule retaining portion 12 of the connector housing, a keying feature 17 defined as a longitudinally oriented cut-out on an outer surface of the connector housing 10 in a keying portion of the connector housing, and sealing element retaining features 11a, 11b defined on the outer surface of the connector housing 10 in a sealing element retaining portion of the connector housing. The keying portion of the connector housing 10 is structurally configured to inhibit rotation of the connector housing 10 about the longitudinal axis when the housing 10 is engaged with a complementary keying portion of the port structure 96. The sealing element retention features 11a, 11b are structurally configured to help retain a sealing element 13 therein. The sealing element 13 may, for example, comprise an O-ring, and is designed to cooperate with an inner surface of the port structure 96 to help create a sealed engagement with the port structure 96 in the manner illustrated in FIG. 12.


The adhesive injection ports 70 are defined in a potting portion of the connector housing and extend from the outer surface of the connector housing 10 to an inner surface of the connector housing 10 to communicate with an interior potting cavity of the connector housing 10. In this embodiment, the adhesive injection ports 70 are positioned rearwardly of the ferrule retaining portion 12, the keying feature 17, and the sealing element retention features 11a, 11b. Stated differently, the adhesive injection ports 70 are separated from the ferrule retaining portion 12 of the connector housing 10 and the keying portion of the connector housing 10 by the sealing element retaining portion of the connector housing 10, along the longitudinal axis of the connector housing 10.


In particular embodiments, the connector housing 10 may further comprises a locking portion comprising a locking feature 19 that is defined on the outer surface of the connector housing 10 and is designed to inhibit axial movement of the connector housing 10 along a retracting direction of the fiber optic connector when the connectorized cable assembly 100 is engaged with a complementary securing member of a complementary port structure 96. In these embodiments, the adhesive injection ports 70 will be separated from the locking portion of the connector housing by the sealing element retaining portion of the connector housing 10, along the longitudinal axis of the connector housing 10, to help ensure that any excess adhesive or other surface irregularities created on the outer surface of the connector housing 10 when adhesive is injected into the interior potting cavity of the connector housing 10 through the adhesive injection ports 70 will not interfere with the locking functionality of the locking feature 19.


Referring to FIGS. 1-3, in addition to FIGS. 10 and 12, in further embodiments of the present disclosure, the connector housing 10 may comprise conversion housing engagement features. For example, the connector housing 10 may comprise a first type of engagement feature 204, in the form of an external threaded portion on the conversion housing 10, for interfacing with a complementary threaded portion of hardened conversion housing 200. The connector may also comprise a second type of engagement feature 304, in the form of tabs or slots near the ferrule retaining portion 12 of the conversion housing 10, for interfacing with a type SC conversion housing 300. In these embodiments, the adhesive injection ports 70 may be separated from the conversion housing engagement features 204, 304 by the sealing element retaining portion of the connector housing 10, along the longitudinal axis of the connector housing 10, to help ensure that any excess adhesive or other surface irregularities created on the outer surface of the connector housing 10 when adhesive is injected into the interior potting cavity of the connector housing 10 through the adhesive injection ports 70 will not interfere with proper engagement with the conversion housings 200, 300.


As is illustrated in FIGS. 10 and 12, the keying feature 17, the sealing element retention features 11a, 11b, the ferrule retention features 12a, 12b, and the locking feature 19 may be defined in the connector housing 10 in a variety of ways including, for example, as projections, depressions, or cut-outs, formed on or in an outer or inner surface of the connector housing 10, through the connector housing 10, or combinations thereof.


It is noted that recitations herein of a component of the present disclosure being “structurally configured” in a particular way, to embody a particular property, or to function in a particular manner, are structural recitations, as opposed to recitations of intended use. More specifically, reference herein to the manner in which a component is “structurally configured” denotes an existing physical condition of the component and, as such, is to be taken as a definite recitation of the structural characteristics of the component.


It is noted that terms like “preferably,” “commonly,” and “typically,” when utilized herein, are not utilized to limit the scope of the claimed invention or to imply that certain features are critical, essential, or even important to the structure or function of the claimed invention. Rather, these terms are merely intended to identify particular aspects of an embodiment of the present disclosure or to emphasize alternative or additional features that may or may not be utilized in a particular embodiment of the present disclosure.


For the purposes of describing and defining the present invention it is noted that the terms “substantially” and “about” are utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. The terms “substantially” and “about” are also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.


Having described the subject matter of the present disclosure in detail and by reference to specific embodiments thereof, it is noted that the various details disclosed herein should not be taken to imply that these details relate to elements that are essential components of the various embodiments described herein, even in cases where a particular element is illustrated in each of the drawings that accompany the present description. Further, it will be apparent that modifications and variations are possible without departing from the scope of the present disclosure, including, but not limited to, embodiments defined in the appended claims. More specifically, although some aspects of the present disclosure are identified herein as preferred or particularly advantageous, it is contemplated that the present disclosure is not necessarily limited to these aspects.


It is noted that one or more of the following claims utilize the term “wherein” as a transitional phrase. For the purposes of defining the present invention, it is noted that this term is introduced in the claims as an open-ended transitional phrase that is used to introduce a recitation of a series of characteristics of the structure and should be interpreted in like manner as the more commonly used open-ended preamble term “comprising.”

Claims
  • 1. A fiber optic connector comprising: a connector housing comprising a longitudinal axis;a multi-diametrical sealing flexure comprising a cable engaging portion sized for engaging an outer cable surface and a connector housing engaging portion sized for engaging an outer housing surface of the connector housing; anda subcutaneous sealing element configured for positioning between an outer surface of the connector housing and an inner surface of the multi-diametrical sealing flexure, wherein the subcutaneous sealing element bounds an entire rotational periphery of the connector housing about the longitudinal axis of the connector housing and cooperates with the multi-diametrical sealing flexure to form an annular projection in an outer surface of the multi-diametrical sealing flexure when assembled.
  • 2. The fiber optic connector of claim 1, wherein the connector housing defines a sealing element retention feature.
  • 3. The fiber optic connector of claim 2, further comprising a sealing element configured for positioning on the sealing element retention feature of the connector housing.
  • 4. The fiber optic connector of claim 3, wherein the sealing element is an O-ring.
  • 5. The fiber optic connector of claim 1, wherein an outer surface of the connector housing defines a seal accommodating groove, and wherein the seal accommodating groove is configured for positioning the subcutaneous sealing element.
  • 6. The fiber optic connector of claim 1, wherein the subcutaneous sealing element comprises an O-ring.
  • 7. The fiber optic connector of claim 1 terminating a fiber optic cable comprising an optical fiber.
  • 8. The fiber optic connector of claim 1, wherein the connector housing has a Young's modulus EH and the multi-diametrical sealing flexure has a Young's modulus EF such that EF is less than EH.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 16/814,461, filed Mar. 10, 2020, which is a continuation of U.S. patent application Ser. No. 16/015,588, now U.S. Pat. No. 10,605,998 B1, filed Jun. 22, 2018, which was filed under 35 U.S.C. 111(a) as a continuation-in-part of International Patent Application No. PCT/US2017/064063, filed Nov. 30, 2017. U.S. patent application Ser. No. 16/015,588, filed Jun. 22, 2018, also claims priority to U.S. Provisional Ser. No. 62/526,011, filed Jun. 28, 2017, U.S. Provisional Ser. No. 62/526,195, filed Jun. 28, 2017, and U.S. Provisional Ser. No. 62/526,018, filed Jun. 28, 2017.

US Referenced Citations (1059)
Number Name Date Kind
3074107 Kiyoshi et al. Jan 1963 A
3532783 Pusey et al. Oct 1970 A
3792284 Kaelin Feb 1974 A
3912362 Hudson Oct 1975 A
4003297 Mott Jan 1977 A
4077567 Ginn et al. Mar 1978 A
4148557 Garvey Apr 1979 A
4167303 Bowen et al. Sep 1979 A
4168109 Dumire Sep 1979 A
4188088 Andersen et al. Feb 1980 A
4336977 Monaghan et al. Jun 1982 A
4354731 Mouissie Oct 1982 A
4373777 Borsuk et al. Feb 1983 A
4413880 Forrest et al. Nov 1983 A
4423922 Porter Jan 1984 A
4440471 Knowles Apr 1984 A
4461537 Raymer et al. Jul 1984 A
4515434 Margolin et al. May 1985 A
4547937 Collins Oct 1985 A
4560232 O'Hara Dec 1985 A
4615581 Morimoto Oct 1986 A
4634214 Cannon et al. Jan 1987 A
4634858 Gerdt et al. Jan 1987 A
4684205 Margolin et al. Aug 1987 A
4688200 Poorman et al. Aug 1987 A
4690563 Barton et al. Sep 1987 A
4699458 Ohtsuki et al. Oct 1987 A
4705352 Margolin et al. Nov 1987 A
4711752 Deacon et al. Dec 1987 A
4715675 Kevern et al. Dec 1987 A
4723827 Shaw et al. Feb 1988 A
4741590 Caron May 1988 A
4763983 Keith Aug 1988 A
4783137 Kosman Nov 1988 A
4842363 Margolin et al. Jun 1989 A
4844570 Tanabe Jul 1989 A
4854664 McCartney Aug 1989 A
4856867 Gaylin Aug 1989 A
4877303 Caldwell et al. Oct 1989 A
4902238 Iacobucci Feb 1990 A
4913514 Then Apr 1990 A
4921413 Blew May 1990 A
4944568 Danbach et al. Jul 1990 A
4960318 Nilsson et al. Oct 1990 A
4961623 Midkiff et al. Oct 1990 A
4964688 Caldwell et al. Oct 1990 A
4979792 Weber et al. Dec 1990 A
4994134 Knecht et al. Feb 1991 A
4995836 Toramoto Feb 1991 A
5007860 Robinson et al. Apr 1991 A
5016968 Hammond et al. May 1991 A
5028114 Krausse et al. Jul 1991 A
5058984 Bulman Oct 1991 A
5067783 Lampert Nov 1991 A
5073042 Mulholland et al. Dec 1991 A
5076656 Briggs et al. Dec 1991 A
5085492 Kelsoe et al. Feb 1992 A
5088804 Grinderslev Feb 1992 A
5091990 Leung et al. Feb 1992 A
5095176 Harbrecht et al. Mar 1992 A
5129023 Anderson et al. Jul 1992 A
5131735 Berkey et al. Jul 1992 A
5134677 Leung et al. Jul 1992 A
5136683 Aoki et al. Aug 1992 A
5142602 Cabato et al. Aug 1992 A
5146519 Miller et al. Sep 1992 A
5155900 Grois et al. Oct 1992 A
5162397 Descamps et al. Nov 1992 A
5180890 Pendergrass et al. Jan 1993 A
5189718 Barrett et al. Feb 1993 A
5210810 Darden et al. May 1993 A
5212752 Stephenson et al. May 1993 A
5214732 Beard et al. May 1993 A
5224187 Davisdon Jun 1993 A
5231685 Hanzawa et al. Jul 1993 A
5245683 Belenkiy et al. Sep 1993 A
5263105 Johnson et al. Nov 1993 A
5263239 Ziemek Nov 1993 A
5276750 Manning Jan 1994 A
5313540 Ueda et al. May 1994 A
5317663 Beard et al. May 1994 A
5321917 Franklin et al. Jun 1994 A
5367594 Essert et al. Nov 1994 A
5371823 Barrett et al. Dec 1994 A
5375183 Edwards et al. Dec 1994 A
5381494 O'Donnell et al. Jan 1995 A
5390269 Palecek et al. Feb 1995 A
5394494 Jennings et al. Feb 1995 A
5394497 Erdman et al. Feb 1995 A
5408570 Cook et al. Apr 1995 A
5416874 Giebel et al. May 1995 A
5425121 Cooke et al. Jun 1995 A
5452388 Rittle et al. Sep 1995 A
5519799 Murakami May 1996 A
5553186 Allen Sep 1996 A
5557696 Stein Sep 1996 A
5569050 Lloyd Oct 1996 A
5588077 Woodside Dec 1996 A
5600747 Yamakawa et al. Feb 1997 A
5603631 Kawahara et al. Feb 1997 A
5608828 Coutts et al. Mar 1997 A
5631993 Cloud et al. May 1997 A
5647045 Robinson et al. Jul 1997 A
5673346 Iwano et al. Sep 1997 A
5682451 Lee et al. Oct 1997 A
5694507 Walles Dec 1997 A
5748821 Schempp et al. May 1998 A
5761359 Chudoba et al. Jun 1998 A
5781686 Robinson et al. Jul 1998 A
5782892 Castle et al. Jul 1998 A
5789701 Wettengel et al. Aug 1998 A
5790740 Cloud et al. Aug 1998 A
5791918 Pierce Aug 1998 A
5796895 Jennings et al. Aug 1998 A
RE35935 Cabato et al. Oct 1998 E
5818993 Chudoba et al. Oct 1998 A
5857050 Jiang et al. Jan 1999 A
5862290 Burek et al. Jan 1999 A
5867621 Luther et al. Feb 1999 A
5883999 Cloud et al. Mar 1999 A
5884000 Cloud et al. Mar 1999 A
5884001 Cloud et al. Mar 1999 A
5884002 Cloud et al. Mar 1999 A
5884003 Cloud et al. Mar 1999 A
5887099 Csipkes et al. Mar 1999 A
5913001 Nakajima Jun 1999 A
5920669 Knecht et al. Jul 1999 A
5923804 Rosson Jul 1999 A
5925191 Stein et al. Jul 1999 A
5926596 Edwards et al. Jul 1999 A
5960141 Sasaki et al. Sep 1999 A
5961344 Rosales et al. Oct 1999 A
5971626 Knodell et al. Oct 1999 A
5993070 Tamekuni et al. Nov 1999 A
RE36592 Giebel et al. Feb 2000 E
6030129 Rosson Feb 2000 A
6035084 Haake et al. Mar 2000 A
6045270 Weiss Apr 2000 A
6079881 Roth Jun 2000 A
6094517 Yuuki Jul 2000 A
6108482 Roth Aug 2000 A
6112006 Foss Aug 2000 A
6149313 Giebel et al. Nov 2000 A
6151432 Nakajima et al. Nov 2000 A
RE37028 Cooke et al. Jan 2001 E
6173097 Throckmorton et al. Jan 2001 B1
6179482 Takizawa et al. Jan 2001 B1
6188822 McAlpine et al. Feb 2001 B1
6193421 Tamekuni et al. Feb 2001 B1
RE37079 Stephenson et al. Mar 2001 E
RE37080 Stephenson et al. Mar 2001 E
6200040 Edwards et al. Mar 2001 B1
6206579 Selfridge et al. Mar 2001 B1
6206581 Driscoll Mar 2001 B1
6220762 Kanai et al. Apr 2001 B1
6224268 Manning et al. May 2001 B1
6224270 Nakajima et al. May 2001 B1
6229944 Yokokawa et al. May 2001 B1
6234683 Waldron et al. May 2001 B1
6234685 Carlisle et al. May 2001 B1
6249628 Rutterman et al. Jun 2001 B1
6256438 Gimblet Jul 2001 B1
6261006 Selfridge Jul 2001 B1
6264374 Selfridge et al. Jul 2001 B1
6287016 Weigel Sep 2001 B1
6293710 Lampert et al. Sep 2001 B1
6298190 Waldron et al. Oct 2001 B2
6305849 Roehrs et al. Oct 2001 B1
6321013 Hardwick et al. Nov 2001 B1
6356390 Hall, Jr. Mar 2002 B1
6356690 McAlpine et al. Mar 2002 B1
6357929 Roehrs et al. Mar 2002 B1
6371660 Roehrs et al. Apr 2002 B1
6375363 Harrison Apr 2002 B1
6379054 Throckmorton et al. Apr 2002 B2
6386891 Howard et al. May 2002 B1
6402388 Imazu et al. Jun 2002 B1
6404962 Hardwick et al. Jun 2002 B1
6409391 Chang Jun 2002 B1
6422764 Marrs et al. Jul 2002 B1
6427035 Mahony Jul 2002 B1
6428215 Nault Aug 2002 B1
6439780 Mudd et al. Aug 2002 B1
6466725 Battey et al. Oct 2002 B2
6496641 Mahony Dec 2002 B1
6501888 Gimblet et al. Dec 2002 B2
6522804 Mahony Feb 2003 B1
6529663 Parris et al. Mar 2003 B1
6533468 Nakajima et al. Mar 2003 B2
6536956 Luther et al. Mar 2003 B2
6539147 Mahony Mar 2003 B1
6540410 Childers et al. Apr 2003 B2
6542652 Mahony Apr 2003 B1
6542674 Gimblet Apr 2003 B1
6546175 Wagman et al. Apr 2003 B1
6554489 Kent et al. Apr 2003 B2
6579014 Melton et al. Jun 2003 B2
6599026 Fahrnbauer et al. Jul 2003 B1
6599027 Miyake et al. Jul 2003 B2
6614980 Mahony Sep 2003 B1
6618526 Jackman et al. Sep 2003 B2
6619697 Griffioen et al. Sep 2003 B2
6621964 Quinn et al. Sep 2003 B2
6625375 Mahony Sep 2003 B1
6629782 McPhee et al. Oct 2003 B2
6644862 Berto et al. Nov 2003 B1
6648520 McDonald et al. Nov 2003 B2
6668127 Mahony Dec 2003 B1
6672774 Theuerkorn et al. Jan 2004 B2
6678442 Gall et al. Jan 2004 B2
6678448 Moisel et al. Jan 2004 B2
6685361 Rubino et al. Feb 2004 B1
6695489 Nault Feb 2004 B2
6702475 Giobbio et al. Mar 2004 B1
6714708 McAlpine et al. Mar 2004 B2
6714710 Gimblet Mar 2004 B2
6729773 Finona et al. May 2004 B1
6738555 Cooke et al. May 2004 B1
6748146 Parris Jun 2004 B2
6748147 Quinn et al. Jun 2004 B2
6771861 Wagner et al. Aug 2004 B2
6785450 Wagman et al. Aug 2004 B2
6789950 Loder et al. Sep 2004 B1
6809265 Gladd et al. Oct 2004 B1
6841729 Sakabe et al. Jan 2005 B2
6848838 Doss Feb 2005 B2
6856748 Elkins, II Feb 2005 B1
6877906 Mizukami et al. Apr 2005 B2
6880219 Griffioen et al. Apr 2005 B2
6899467 McDonald et al. May 2005 B2
6908233 Nakajima et al. Jun 2005 B2
6909821 Ravasio et al. Jun 2005 B2
6916120 Zimmel et al. Jul 2005 B2
6944387 Howell et al. Sep 2005 B2
6962445 Zimmel et al. Nov 2005 B2
6970629 Lail et al. Nov 2005 B2
6983095 Reagan et al. Jan 2006 B2
7011454 Caveney et al. Mar 2006 B2
7013074 Battey et al. Mar 2006 B2
7025507 de Marchi Apr 2006 B2
7033191 Cao Apr 2006 B1
7044650 Tran et al. May 2006 B1
7052185 Rubino et al. May 2006 B2
7079734 Seddon et al. Jul 2006 B2
7088899 Reagan et al. Aug 2006 B2
7090406 Melton et al. Aug 2006 B2
7090407 Melton et al. Aug 2006 B2
7090409 Nakajima et al. Aug 2006 B2
7103255 Reagan et al. Sep 2006 B2
7103257 Donaldson et al. Sep 2006 B2
7104702 Barnes et al. Sep 2006 B2
7111990 Melton et al. Sep 2006 B2
7113679 Melton et al. Sep 2006 B2
7118283 Nakajima et al. Oct 2006 B2
7118284 Nakajima et al. Oct 2006 B2
7120347 Blackwell et al. Oct 2006 B2
7137742 Theuerkorn et al. Nov 2006 B2
7146089 Reagan et al. Dec 2006 B2
7146090 Vo et al. Dec 2006 B2
7150567 Luther et al. Dec 2006 B1
7165893 Schmitz Jan 2007 B2
7171102 Reagan et al. Jan 2007 B2
7178990 Caveney et al. Feb 2007 B2
7184634 Hurley et al. Feb 2007 B2
7195403 Oki et al. Mar 2007 B2
7200317 Reagan et al. Apr 2007 B2
7201518 Holmquist Apr 2007 B2
7204644 Barnes et al. Apr 2007 B2
7213975 Khemakhem et al. May 2007 B2
7213980 Oki et al. May 2007 B2
7228047 Szilagyi et al. Jun 2007 B1
7232260 Takahashi et al. Jun 2007 B2
7236670 Lail et al. Jun 2007 B2
7241056 Kuffel et al. Jul 2007 B1
7260301 Barth et al. Aug 2007 B2
7261472 Suzuki et al. Aug 2007 B2
7266265 Gall et al. Sep 2007 B2
7266274 Elkins et al. Sep 2007 B2
7270487 Billman et al. Sep 2007 B2
7277614 Cody et al. Oct 2007 B2
7279643 Morrow et al. Oct 2007 B2
7292763 Smith et al. Nov 2007 B2
7302152 Luther et al. Nov 2007 B2
7318677 Dye Jan 2008 B2
7326091 Nania et al. Feb 2008 B2
7330629 Cooke et al. Feb 2008 B2
7333708 Blackwell et al. Feb 2008 B2
7336873 Lail et al. Feb 2008 B2
7341382 Dye Mar 2008 B2
7346256 Marrs et al. Mar 2008 B2
7349605 Noonan et al. Mar 2008 B2
7357582 Oki et al. Apr 2008 B2
7366416 Ramachandran et al. Apr 2008 B2
7394964 Tinucci et al. Jul 2008 B2
7397997 Ferris et al. Jul 2008 B2
7400815 Mertesdorf et al. Jul 2008 B2
7407332 Oki et al. Aug 2008 B2
7428366 Mullaney et al. Sep 2008 B2
7444056 Allen et al. Oct 2008 B2
7454107 Miller et al. Nov 2008 B2
7463803 Cody et al. Dec 2008 B2
7467896 Melton et al. Dec 2008 B2
7469091 Mullaney et al. Dec 2008 B2
7477824 Reagan et al. Jan 2009 B2
7480437 Ferris et al. Jan 2009 B2
7484898 Katagiyama et al. Feb 2009 B2
7485804 Dinh et al. Feb 2009 B2
7489849 Reagan et al. Feb 2009 B2
7492996 Kowalczyk et al. Feb 2009 B2
7497896 Bromet et al. Mar 2009 B2
7512304 Gronvall et al. Mar 2009 B2
7520678 Khemakhem et al. Apr 2009 B2
7539387 Mertesdorf et al. May 2009 B2
7539388 Mertesdorf et al. May 2009 B2
7542645 Hua et al. Jun 2009 B1
7559702 Fujiwara et al. Jul 2009 B2
7565055 Lu et al. Jul 2009 B2
7568845 Caveney et al. Aug 2009 B2
7572065 Lu et al. Aug 2009 B2
7591595 Lu et al. Sep 2009 B2
7614797 Lu et al. Nov 2009 B2
7621675 Bradley Nov 2009 B1
7627222 Reagan et al. Dec 2009 B2
7628545 Cody et al. Dec 2009 B2
7628548 Benjamin et al. Dec 2009 B2
7646958 Reagan et al. Jan 2010 B1
7653282 Blackwell et al. Jan 2010 B2
7654747 Theuerkorn et al. Feb 2010 B2
7654748 Kuffel et al. Feb 2010 B2
7658549 Elkins et al. Feb 2010 B2
7661995 Nania et al. Feb 2010 B2
7677814 Lu et al. Mar 2010 B2
7680388 Reagan et al. Mar 2010 B2
7708476 Liu May 2010 B2
7709733 Plankell May 2010 B1
7712971 Lee et al. May 2010 B2
7713679 Ishiduka et al. May 2010 B2
7722262 Caveney et al. May 2010 B2
7726998 Siebens Jun 2010 B2
7738759 Parikh et al. Jun 2010 B2
7740409 Bolton et al. Jun 2010 B2
7742117 Lee et al. Jun 2010 B2
7742670 Benjamin et al. Jun 2010 B2
7744286 Lu et al. Jun 2010 B2
7744288 Lu et al. Jun 2010 B2
7747117 Greenwood et al. Jun 2010 B2
7751666 Parsons et al. Jul 2010 B2
7753596 Cox Jul 2010 B2
7762726 Lu et al. Jul 2010 B2
7785015 Melton et al. Aug 2010 B2
7785019 Lewallen et al. Aug 2010 B2
7802926 Leeman et al. Sep 2010 B2
7805044 Reagan et al. Sep 2010 B2
7806599 Margolin et al. Oct 2010 B2
7820090 Morrow et al. Oct 2010 B2
7844148 Jenkins et al. Nov 2010 B2
7844158 Gronvall et al. Nov 2010 B2
7844160 Reagan et al. Nov 2010 B2
7869681 Battey et al. Jan 2011 B2
RE42094 Barnes et al. Feb 2011 E
7881576 Melton et al. Feb 2011 B2
7889961 Cote et al. Feb 2011 B2
7891882 Kuffel et al. Feb 2011 B2
7903923 Gronvall et al. Mar 2011 B2
7903925 Cooke et al. Mar 2011 B2
7918609 Melton et al. Apr 2011 B2
7933517 Ye et al. Apr 2011 B2
7938670 Nania et al. May 2011 B2
7941027 Mertesdorf et al. May 2011 B2
7942590 Lu et al. May 2011 B2
7959361 Lu et al. Jun 2011 B2
8002476 Caveney et al. Aug 2011 B2
8005335 Reagan et al. Aug 2011 B2
8023793 Kowalczyk et al. Sep 2011 B2
8025445 Rambow et al. Sep 2011 B2
8041178 Lu et al. Oct 2011 B2
8052333 Kuffel et al. Nov 2011 B2
8055167 Park et al. Nov 2011 B2
8083418 Fujiwara et al. Dec 2011 B2
8111966 Holmberg et al. Feb 2012 B2
8137002 Lu et al. Mar 2012 B2
8147147 Khemakhem et al. Apr 2012 B2
8157454 Ito et al. Apr 2012 B2
8164050 Ford et al. Apr 2012 B2
8202008 Lu et al. Jun 2012 B2
8213761 Gronvall Jul 2012 B2
8218935 Reagan et al. Jul 2012 B2
8224145 Reagan et al. Jul 2012 B2
8229263 Parris et al. Jul 2012 B2
8231282 Kuffel et al. Jul 2012 B2
8238706 Kachmar Aug 2012 B2
8238709 Solheid et al. Aug 2012 B2
8249450 Conner Aug 2012 B2
8256971 Caveney et al. Sep 2012 B2
8267596 Theuerkorn Sep 2012 B2
8272792 Coleman et al. Sep 2012 B2
RE43762 Smith et al. Oct 2012 E
8301003 De et al. Oct 2012 B2
8301004 Cooke et al. Oct 2012 B2
8317411 Fujiwara et al. Nov 2012 B2
8348519 Kuffel et al. Jan 2013 B2
8363999 Mertesdorf et al. Jan 2013 B2
8376629 Cline et al. Feb 2013 B2
8376632 Blackburn et al. Feb 2013 B2
8402587 Sugita et al. Mar 2013 B2
8408811 De et al. Apr 2013 B2
8414196 Lu et al. Apr 2013 B2
8439577 Jenkins May 2013 B2
8465235 Jenkins et al. Jun 2013 B2
8466262 Siadak et al. Jun 2013 B2
8472773 De Jong Jun 2013 B2
8480312 Smith et al. Jul 2013 B2
8494329 Nhep et al. Jul 2013 B2
8496384 Kuffel et al. Jul 2013 B2
8506173 Lewallen et al. Aug 2013 B2
8520996 Cowen et al. Aug 2013 B2
8534928 Cooke et al. Sep 2013 B2
8536516 Ford et al. Sep 2013 B2
8556522 Cunningham Oct 2013 B2
8573855 Nhep Nov 2013 B2
8591124 Griffiths et al. Nov 2013 B2
8622627 Elkins et al. Jan 2014 B2
8622634 Arnold et al. Jan 2014 B2
8635733 Bardzilowski Jan 2014 B2
8662760 Cline et al. Mar 2014 B2
8668512 Chang Mar 2014 B2
8678668 Cooke et al. Mar 2014 B2
8687930 McDowell et al. Apr 2014 B2
8702324 Caveney et al. Apr 2014 B2
8714835 Kuffel et al. May 2014 B2
8727638 Lee et al. May 2014 B2
8737837 Conner et al. May 2014 B2
8755654 Danley et al. Jun 2014 B1
8755663 Makrides-Saravanos et al. Jun 2014 B2
8758046 Pezzetti et al. Jun 2014 B2
8764316 Barnette Jul 2014 B1
8770861 Smith et al. Jul 2014 B2
8770862 Lu et al. Jul 2014 B2
8821036 Shigehara Sep 2014 B2
8837894 Holmberg et al. Sep 2014 B2
8864390 Chen et al. Oct 2014 B2
8870469 Kachmar Oct 2014 B2
8879883 Parikh et al. Nov 2014 B2
8882364 Busse et al. Nov 2014 B2
8917966 Thompson et al. Dec 2014 B2
8974124 Chang Mar 2015 B2
8992097 Koreeda et al. Mar 2015 B2
8998502 Benjamin et al. Apr 2015 B2
8998506 Pepin et al. Apr 2015 B2
9011858 Siadak et al. Apr 2015 B2
9039293 Hill et al. May 2015 B2
9075205 Pepe et al. Jul 2015 B2
9146364 Chen et al. Sep 2015 B2
9151906 Kobayashi et al. Oct 2015 B2
9151909 Chen et al. Oct 2015 B2
9158074 Anderson et al. Oct 2015 B2
9158075 Benjamin et al. Oct 2015 B2
9182567 Mullaney Nov 2015 B2
9188759 Conner Nov 2015 B2
9207410 Lee et al. Dec 2015 B2
9207421 Conner Dec 2015 B2
9213150 Matsui et al. Dec 2015 B2
9223106 Coan et al. Dec 2015 B2
9239441 Melton et al. Jan 2016 B2
9268102 Daems et al. Feb 2016 B2
9274286 Caveney et al. Mar 2016 B2
9279951 McGranahan et al. Mar 2016 B2
9285550 Nhep et al. Mar 2016 B2
9297974 Valderrabano et al. Mar 2016 B2
9297976 Hill et al. Mar 2016 B2
9310570 Busse et al. Apr 2016 B2
9316791 Durrant et al. Apr 2016 B2
9322998 Miller Apr 2016 B2
9360640 Ishigami et al. Jun 2016 B2
9383539 Power et al. Jul 2016 B2
9400364 Hill et al. Jul 2016 B2
9405068 Graham et al. Aug 2016 B2
9417403 Mullaney et al. Aug 2016 B2
9423584 Coan et al. Aug 2016 B2
9435969 Lambourn et al. Sep 2016 B2
9442257 Lu Sep 2016 B2
9450393 Thompson et al. Sep 2016 B2
9459412 Katoh Oct 2016 B2
9482819 Li et al. Nov 2016 B2
9482829 Lu et al. Nov 2016 B2
9513444 Barnette et al. Dec 2016 B2
9513451 Corbille et al. Dec 2016 B2
9535229 Ott et al. Jan 2017 B2
9541711 Raven et al. Jan 2017 B2
9551842 Theuerkorn Jan 2017 B2
9557504 Holmberg et al. Jan 2017 B2
9581775 Kondo et al. Feb 2017 B2
9588304 Durrant et al. Mar 2017 B2
9612407 Kobayashi et al. Apr 2017 B2
9618704 Dean et al. Apr 2017 B2
9618718 Islam Apr 2017 B2
9624296 Siadak et al. Apr 2017 B2
9625660 Daems et al. Apr 2017 B2
9638871 Bund et al. May 2017 B2
9645331 Kim May 2017 B1
9645334 Ishii et al. May 2017 B2
9651741 Isenhour et al. May 2017 B2
9664862 Lu et al. May 2017 B2
9678285 Hill et al. Jun 2017 B2
9678293 Coan et al. Jun 2017 B2
9684136 Cline et al. Jun 2017 B2
9684138 Lu Jun 2017 B2
9696500 Barnette et al. Jul 2017 B2
9711868 Scheucher Jul 2017 B2
9720193 Nishimura Aug 2017 B2
9733436 Van et al. Aug 2017 B2
9739951 Busse et al. Aug 2017 B2
9762322 Amundson Sep 2017 B1
9766416 Kim Sep 2017 B1
9772457 Hill et al. Sep 2017 B2
9804343 Hill et al. Oct 2017 B2
9810855 Cox et al. Nov 2017 B2
9810856 Graham et al. Nov 2017 B2
9829658 Nishimura Nov 2017 B2
9829668 Claessens et al. Nov 2017 B2
9851522 Reagan et al. Dec 2017 B2
9857540 Ahmed et al. Jan 2018 B2
9864151 Lu Jan 2018 B2
9878038 Siadak et al. Jan 2018 B2
D810029 Robert et al. Feb 2018 S
9885841 Pepe et al. Feb 2018 B2
9891391 Watanabe Feb 2018 B2
9905933 Scheucher Feb 2018 B2
9910236 Cooke et al. Mar 2018 B2
9921375 Compton et al. Mar 2018 B2
9927580 Bretz et al. Mar 2018 B2
9933582 Lin Apr 2018 B1
9939591 Mullaney et al. Apr 2018 B2
9964713 Barnette et al. May 2018 B2
9964715 Lu May 2018 B2
9977194 Waldron et al. May 2018 B2
9977198 Bund et al. May 2018 B2
9983374 Li et al. May 2018 B2
10007068 Hill et al. Jun 2018 B2
10031302 Ji et al. Jul 2018 B2
10036859 Daems et al. Jul 2018 B2
10038946 Smolorz Jul 2018 B2
10042136 Reagan et al. Aug 2018 B2
10061090 Coenegracht Aug 2018 B2
10073224 Tong et al. Sep 2018 B2
10094986 Barnette et al. Oct 2018 B2
10101538 Lu et al. Oct 2018 B2
10107968 Tong et al. Oct 2018 B2
10109927 Scheucher Oct 2018 B2
10114176 Gimblet et al. Oct 2018 B2
10126508 Compton et al. Nov 2018 B2
10180541 Coenegracht et al. Jan 2019 B2
10209454 Isenhour et al. Feb 2019 B2
10215930 Mullaney et al. Feb 2019 B2
10235184 Walker Mar 2019 B2
10261268 Theuerkorn Apr 2019 B2
10268011 Ne et al. Apr 2019 B2
10288820 Coenegracht May 2019 B2
10317628 Van et al. Jun 2019 B2
10324263 Bund et al. Jun 2019 B2
10338323 Lu et al. Jul 2019 B2
10353154 Ott et al. Jul 2019 B2
10353156 Hill et al. Jul 2019 B2
10359577 Dannoux et al. Jul 2019 B2
10371914 Coan et al. Aug 2019 B2
10379298 Dannoux et al. Aug 2019 B2
10386584 Rosson Aug 2019 B2
10401575 Daily et al. Sep 2019 B2
10401578 Coenegracht Sep 2019 B2
10401584 Coan et al. Sep 2019 B2
10409007 Kadar-Kallen et al. Sep 2019 B2
10422962 Coenegracht Sep 2019 B2
10422970 Holmberg et al. Sep 2019 B2
10429593 Baca et al. Oct 2019 B2
10429594 Dannoux et al. Oct 2019 B2
10434173 Siadak et al. Oct 2019 B2
10439295 Scheucher Oct 2019 B2
10444442 Takano et al. Oct 2019 B2
10451811 Coenegracht et al. Oct 2019 B2
10451817 Lu Oct 2019 B2
10451830 Szumacher et al. Oct 2019 B2
10488597 Parikh et al. Nov 2019 B2
10495822 Nhep Dec 2019 B2
10502916 Coan et al. Dec 2019 B2
10520683 Nhep Dec 2019 B2
10539745 Kamada et al. Jan 2020 B2
10545298 Bauco Jan 2020 B2
10578821 Ott et al. Mar 2020 B2
10585246 Bretz et al. Mar 2020 B2
10591678 Mullaney et al. Mar 2020 B2
10605998 Rosson Mar 2020 B2
10606006 Hill et al. Mar 2020 B2
10613278 Kempeneers et al. Apr 2020 B2
10620388 Isenhour et al. Apr 2020 B2
10656347 Kato May 2020 B2
10677998 Van et al. Jun 2020 B2
10680343 Scheucher Jun 2020 B2
10712516 Courchaine et al. Jul 2020 B2
10739534 Murray et al. Aug 2020 B2
10746939 Lu et al. Aug 2020 B2
10761274 Pepe et al. Sep 2020 B2
10782487 Lu Sep 2020 B2
10802236 Kowalczyk et al. Oct 2020 B2
10830967 Pimentel et al. Nov 2020 B2
10830975 Vaughn et al. Nov 2020 B2
10852498 Hill et al. Dec 2020 B2
10852499 Cooke et al. Dec 2020 B2
10859771 Nhep Dec 2020 B2
10859781 Hill et al. Dec 2020 B2
10962731 Coenegracht Mar 2021 B2
10976500 Ott et al. Apr 2021 B2
11061191 Van Baelen et al. Jul 2021 B2
20010002220 Throckmorton et al. May 2001 A1
20010012428 Nakajima et al. Aug 2001 A1
20010019654 Waldron et al. Sep 2001 A1
20010036342 Knecht et al. Nov 2001 A1
20010036345 Gimblet et al. Nov 2001 A1
20020012502 Farrar Jan 2002 A1
20020062978 Sakabe et al. May 2002 A1
20020064364 Battey et al. May 2002 A1
20020076165 Childers et al. Jun 2002 A1
20020079697 Griffioen et al. Jun 2002 A1
20020081077 Nault Jun 2002 A1
20020122634 Miyake et al. Sep 2002 A1
20020122653 Donaldson et al. Sep 2002 A1
20020131721 Gaio et al. Sep 2002 A1
20020159745 Howell et al. Oct 2002 A1
20020172477 Quinn et al. Nov 2002 A1
20030031447 Nault Feb 2003 A1
20030059181 Jackman et al. Mar 2003 A1
20030063866 Melton et al. Apr 2003 A1
20030063867 McDonald et al. Apr 2003 A1
20030063868 Fentress Apr 2003 A1
20030063897 Heo Apr 2003 A1
20030080555 Griffioen et al. May 2003 A1
20030086664 Moisel et al. May 2003 A1
20030094298 Morrow et al. May 2003 A1
20030099448 Gimblet May 2003 A1
20030103733 Fleenor et al. Jun 2003 A1
20030123813 Ravasio et al. Jul 2003 A1
20030128936 Fahrnbauer et al. Jul 2003 A1
20030165311 Wagman et al. Sep 2003 A1
20030201117 Sakabe et al. Oct 2003 A1
20030206705 McAlpine et al. Nov 2003 A1
20030210875 Wagner et al. Nov 2003 A1
20040047566 McDonald et al. Mar 2004 A1
20040052474 Lampert et al. Mar 2004 A1
20040057676 Doss et al. Mar 2004 A1
20040057681 Quinn et al. Mar 2004 A1
20040072454 Nakajima et al. Apr 2004 A1
20040076377 Mizukami et al. Apr 2004 A1
20040076386 Nechitailo Apr 2004 A1
20040086238 Finona et al. May 2004 A1
20040096162 Kocher et al. May 2004 A1
20040120662 Lail et al. Jun 2004 A1
20040120663 Lail et al. Jun 2004 A1
20040157449 Hidaka et al. Aug 2004 A1
20040157499 Nania et al. Aug 2004 A1
20040206542 Gladd et al. Oct 2004 A1
20040223699 Melton et al. Nov 2004 A1
20040223720 Melton et al. Nov 2004 A1
20040228589 Melton et al. Nov 2004 A1
20040240808 Rhoney et al. Dec 2004 A1
20040247251 Rubino et al. Dec 2004 A1
20040252954 Ginocchio et al. Dec 2004 A1
20040262023 Morrow et al. Dec 2004 A1
20050019031 Ye et al. Jan 2005 A1
20050036744 Caveney et al. Feb 2005 A1
20050036786 Ramachandran et al. Feb 2005 A1
20050053342 Melton et al. Mar 2005 A1
20050054237 Gladd et al. Mar 2005 A1
20050084215 Grzegorzewska et al. Apr 2005 A1
20050105873 Reagan et al. May 2005 A1
20050123422 Lilie Jun 2005 A1
20050129379 Reagan et al. Jun 2005 A1
20050163448 Blackwell et al. Jul 2005 A1
20050175307 Battey et al. Aug 2005 A1
20050180697 De Marchi Aug 2005 A1
20050213890 Barnes et al. Sep 2005 A1
20050213892 Barnes et al. Sep 2005 A1
20050213899 Hurley et al. Sep 2005 A1
20050213902 Parsons Sep 2005 A1
20050213921 Mertesdorf et al. Sep 2005 A1
20050226568 Nakajima et al. Oct 2005 A1
20050232550 Nakajima et al. Oct 2005 A1
20050232552 Takahashi et al. Oct 2005 A1
20050232567 Reagan et al. Oct 2005 A1
20050244108 Billman et al. Nov 2005 A1
20050271344 Grubish et al. Dec 2005 A1
20050281510 Vo et al. Dec 2005 A1
20050281514 Oki et al. Dec 2005 A1
20050286837 Oki et al. Dec 2005 A1
20050286838 Oki et al. Dec 2005 A1
20060002668 Lail et al. Jan 2006 A1
20060008232 Reagan et al. Jan 2006 A1
20060008233 Reagan et al. Jan 2006 A1
20060008234 Reagan et al. Jan 2006 A1
20060045428 Theuerkorn et al. Mar 2006 A1
20060045430 Theuerkorn et al. Mar 2006 A1
20060056769 Khemakhem et al. Mar 2006 A1
20060056770 Schmitz Mar 2006 A1
20060088247 Tran et al. Apr 2006 A1
20060093278 Elkins et al. May 2006 A1
20060093303 Reagan et al. May 2006 A1
20060093304 Battey et al. May 2006 A1
20060098932 Battey et al. May 2006 A1
20060120672 Cody et al. Jun 2006 A1
20060127016 Baird et al. Jun 2006 A1
20060133748 Seddon et al. Jun 2006 A1
20060133758 Mullaney et al. Jun 2006 A1
20060133759 Mullaney et al. Jun 2006 A1
20060147172 Luther et al. Jul 2006 A1
20060153503 Suzuki Jul 2006 A1
20060153517 Reagan et al. Jul 2006 A1
20060165352 Caveney et al. Jul 2006 A1
20060171638 Dye Aug 2006 A1
20060171640 Dye Aug 2006 A1
20060210750 Morrow et al. Sep 2006 A1
20060233506 Noonan et al. Oct 2006 A1
20060257092 Lu et al. Nov 2006 A1
20060269204 Barth et al. Nov 2006 A1
20060269208 Allen et al. Nov 2006 A1
20060280420 Blackwell et al. Dec 2006 A1
20060283619 Kowalczyk et al. Dec 2006 A1
20060291787 Seddon Dec 2006 A1
20070031100 Garcia et al. Feb 2007 A1
20070031103 Tinucci et al. Feb 2007 A1
20070036483 Shin et al. Feb 2007 A1
20070041732 Oki et al. Feb 2007 A1
20070047897 Cooke et al. Mar 2007 A1
20070077010 Melton et al. Apr 2007 A1
20070098343 Miller et al. May 2007 A1
20070110374 Oki et al. May 2007 A1
20070116413 Cox May 2007 A1
20070127872 Caveney et al. Jun 2007 A1
20070140642 Mertesdorf et al. Jun 2007 A1
20070160327 Lewallen et al. Jul 2007 A1
20070189674 Scheibenreif et al. Aug 2007 A1
20070237484 Reagan et al. Oct 2007 A1
20070263961 Khemakhem et al. Nov 2007 A1
20070286554 Kuffel et al. Dec 2007 A1
20080019641 Elkins et al. Jan 2008 A1
20080020532 Monfray et al. Jan 2008 A1
20080044145 Jenkins et al. Feb 2008 A1
20080069511 Blackwell et al. Mar 2008 A1
20080080817 Melton et al. Apr 2008 A1
20080112681 Battey et al. May 2008 A1
20080131068 Mertesdorf et al. Jun 2008 A1
20080138016 Katagiyama et al. Jun 2008 A1
20080138025 Reagan et al. Jun 2008 A1
20080166906 Nania et al. Jul 2008 A1
20080175541 Lu Jul 2008 A1
20080175542 Lu Jul 2008 A1
20080175544 Fujiwara et al. Jul 2008 A1
20080175546 Lu Jul 2008 A1
20080175548 Knecht et al. Jul 2008 A1
20080226252 Mertesdorf et al. Sep 2008 A1
20080232743 Gronvall et al. Sep 2008 A1
20080240658 Leeman et al. Oct 2008 A1
20080260344 Smith et al. Oct 2008 A1
20080260345 Mertesdorf et al. Oct 2008 A1
20080264664 Dinh et al. Oct 2008 A1
20080273837 Margolin et al. Nov 2008 A1
20080310796 Lu Dec 2008 A1
20080317415 Hendrickson Dec 2008 A1
20090003772 Lu et al. Jan 2009 A1
20090034923 Miller et al. Feb 2009 A1
20090041411 Melton et al. Feb 2009 A1
20090041412 Danley et al. Feb 2009 A1
20090060421 Parikh et al. Mar 2009 A1
20090060423 Melton et al. Mar 2009 A1
20090067791 Greenwood et al. Mar 2009 A1
20090067849 Oki et al. Mar 2009 A1
20090074363 Parsons et al. Mar 2009 A1
20090074369 Bolton et al. Mar 2009 A1
20090123115 Gronvall et al. May 2009 A1
20090129729 Caveney et al. May 2009 A1
20090136184 Abernathy May 2009 A1
20090148101 Lu et al. Jun 2009 A1
20090148102 Lu et al. Jun 2009 A1
20090148103 Lu et al. Jun 2009 A1
20090148104 Lu Jun 2009 A1
20090148118 Gronvall et al. Jun 2009 A1
20090148120 Reagan et al. Jun 2009 A1
20090156041 Radle Jun 2009 A1
20090162016 Lu et al. Jun 2009 A1
20090185835 Park et al. Jul 2009 A1
20090190895 Reagan et al. Jul 2009 A1
20090238531 Holmberg et al. Sep 2009 A1
20090245737 Fujiwara et al. Oct 2009 A1
20090245743 Cote et al. Oct 2009 A1
20090263097 Solheid et al. Oct 2009 A1
20090297112 Mertesdorf et al. Dec 2009 A1
20090317039 Blazer et al. Dec 2009 A1
20090317045 Reagan et al. Dec 2009 A1
20100008909 Siadak et al. Jan 2010 A1
20100014813 Ito et al. Jan 2010 A1
20100014824 Lu et al. Jan 2010 A1
20100014867 Ramanitra et al. Jan 2010 A1
20100015834 Siebens Jan 2010 A1
20100021254 Jenkins et al. Jan 2010 A1
20100034502 Lu et al. Feb 2010 A1
20100040331 Khemakhem et al. Feb 2010 A1
20100040338 Sek Feb 2010 A1
20100054680 Lochkovic Mar 2010 A1
20100061685 Kowalczyk et al. Mar 2010 A1
20100074578 Imaizumi et al. Mar 2010 A1
20100080516 Coleman et al. Apr 2010 A1
20100086260 Parikh et al. Apr 2010 A1
20100086267 Cooke et al. Apr 2010 A1
20100092129 Conner Apr 2010 A1
20100092133 Conner Apr 2010 A1
20100092136 Nhep Apr 2010 A1
20100092146 Conner et al. Apr 2010 A1
20100092169 Conner et al. Apr 2010 A1
20100092171 Conner Apr 2010 A1
20100129034 Kuffel et al. May 2010 A1
20100144183 Nania et al. Jun 2010 A1
20100172616 Lu et al. Jul 2010 A1
20100197222 Scheucher Aug 2010 A1
20100215321 Jenkins Aug 2010 A1
20100220962 Caveney et al. Sep 2010 A1
20100226615 Reagan et al. Sep 2010 A1
20100232753 Parris et al. Sep 2010 A1
20100247053 Cowen et al. Sep 2010 A1
20100266242 Lu et al. Oct 2010 A1
20100266244 Lu et al. Oct 2010 A1
20100266245 Sabo Oct 2010 A1
20100272399 Griffiths et al. Oct 2010 A1
20100284662 Reagan et al. Nov 2010 A1
20100290741 Lu et al. Nov 2010 A1
20100303426 Davis Dec 2010 A1
20100303427 Rambow et al. Dec 2010 A1
20100310213 Lewallen et al. Dec 2010 A1
20100322563 Melton et al. Dec 2010 A1
20100329625 Reagan et al. Dec 2010 A1
20110019964 Nhep et al. Jan 2011 A1
20110047731 Sugita Mar 2011 A1
20110067452 Gronvall et al. Mar 2011 A1
20110069932 Overton et al. Mar 2011 A1
20110108719 Ford et al. May 2011 A1
20110116749 Kuffel et al. May 2011 A1
20110123166 Reagan et al. May 2011 A1
20110129186 Lewallen et al. Jun 2011 A1
20110164854 Desard et al. Jul 2011 A1
20110222826 Blackburn et al. Sep 2011 A1
20110229098 Abernathy Sep 2011 A1
20110262099 Castonguay et al. Oct 2011 A1
20110262100 Reagan et al. Oct 2011 A1
20110299814 Nakagawa Dec 2011 A1
20110305421 Caveney et al. Dec 2011 A1
20120002925 Nakagawa Jan 2012 A1
20120008909 Mertesdorf et al. Jan 2012 A1
20120045179 Theuerkorn Feb 2012 A1
20120063724 Kuffel et al. Mar 2012 A1
20120063729 Fujiwara et al. Mar 2012 A1
20120106912 McGranahan et al. May 2012 A1
20120106913 Makrides-Saravanos et al. May 2012 A1
20120134629 Lu et al. May 2012 A1
20120183268 De et al. Jul 2012 A1
20120213478 Chen et al. Aug 2012 A1
20120251060 Hurley Oct 2012 A1
20120251063 Reagan et al. Oct 2012 A1
20120252244 Elkins et al. Oct 2012 A1
20120275749 Kuffel et al. Nov 2012 A1
20120321256 Caveney et al. Dec 2012 A1
20130004122 Kingsbury Jan 2013 A1
20130020480 Ford et al. Jan 2013 A1
20130034333 Holmberg et al. Feb 2013 A1
20130064506 Eberle et al. Mar 2013 A1
20130094821 Logan Apr 2013 A1
20130109213 Chang May 2013 A1
20130114930 Smith et al. May 2013 A1
20130136402 Kuffel et al. May 2013 A1
20130170834 Cho et al. Jul 2013 A1
20130209099 Reagan et al. Aug 2013 A1
20130236139 Chen et al. Sep 2013 A1
20130266562 Siadak et al. Oct 2013 A1
20130315538 Kuffel et al. Nov 2013 A1
20140016902 Pepe et al. Jan 2014 A1
20140029897 Shimazu Jan 2014 A1
20140050446 Chang Feb 2014 A1
20140056561 Lu et al. Feb 2014 A1
20140079356 Pepin et al. Mar 2014 A1
20140133804 Lu et al. May 2014 A1
20140133806 Hill et al. May 2014 A1
20140133807 Katoh May 2014 A1
20140133808 Hill et al. May 2014 A1
20140153876 Dendas Jun 2014 A1
20140153878 Mullaney Jun 2014 A1
20140161397 Gallegos et al. Jun 2014 A1
20140205257 Durrant et al. Jul 2014 A1
20140219609 Nielson et al. Aug 2014 A1
20140219622 Coan et al. Aug 2014 A1
20140233896 Ishigami et al. Aug 2014 A1
20140241670 Barnette et al. Aug 2014 A1
20140241671 Koreeda et al. Aug 2014 A1
20140241689 Bradley et al. Aug 2014 A1
20140254987 Caveney et al. Sep 2014 A1
20140294395 Waldron et al. Oct 2014 A1
20140314379 Lu et al. Oct 2014 A1
20140328559 Kobayashi et al. Nov 2014 A1
20140341511 Daems Nov 2014 A1
20140348467 Cote et al. Nov 2014 A1
20140355936 Bund Dec 2014 A1
20150003787 Chen et al. Jan 2015 A1
20150003788 Chen et al. Jan 2015 A1
20150036982 Nhep et al. Feb 2015 A1
20150110451 Blazer et al. Apr 2015 A1
20150144883 Sendelweck May 2015 A1
20150153532 Holmberg et al. Jun 2015 A1
20150168657 Islam Jun 2015 A1
20150183869 Siadak et al. Jul 2015 A1
20150185423 Matsui et al. Jul 2015 A1
20150253527 Hill et al. Sep 2015 A1
20150253528 Corbille et al. Sep 2015 A1
20150268423 Burkholder et al. Sep 2015 A1
20150268434 Barnette et al. Sep 2015 A1
20150293310 Kanno Oct 2015 A1
20150309274 Hurley et al. Oct 2015 A1
20150316727 Kondo et al. Nov 2015 A1
20150346435 Kato Dec 2015 A1
20150346436 Pepe et al. Dec 2015 A1
20160015885 Pananen et al. Jan 2016 A1
20160041346 Barnette et al. Feb 2016 A1
20160062053 Mullaney Mar 2016 A1
20160085032 Lu et al. Mar 2016 A1
20160109671 Coan et al. Apr 2016 A1
20160116686 Durrant et al. Apr 2016 A1
20160126667 Droesbeke et al. May 2016 A1
20160131851 Theuerkorn May 2016 A1
20160131857 Pimentel et al. May 2016 A1
20160139346 Bund et al. May 2016 A1
20160154184 Bund et al. Jun 2016 A1
20160154186 Gimblet et al. Jun 2016 A1
20160161682 Nishimura Jun 2016 A1
20160161688 Nishimura Jun 2016 A1
20160161689 Nishimura Jun 2016 A1
20160187590 Lu Jun 2016 A1
20160202431 Hill et al. Jul 2016 A1
20160209599 Van Baelen Jul 2016 A1
20160209602 Theuerkorn Jul 2016 A1
20160209605 Lu Jul 2016 A1
20160216468 Gimblet et al. Jul 2016 A1
20160238810 Hubbard et al. Aug 2016 A1
20160246019 Ishii et al. Aug 2016 A1
20160249019 Westwick et al. Aug 2016 A1
20160259133 Kobayashi et al. Sep 2016 A1
20160259134 Daems et al. Sep 2016 A1
20160306122 Tong et al. Oct 2016 A1
20160327754 Hill et al. Nov 2016 A1
20170023758 Reagan et al. Jan 2017 A1
20170038538 Isenhour Feb 2017 A1
20170045699 Coan et al. Feb 2017 A1
20170052325 Mullaney et al. Feb 2017 A1
20170059784 Gniadek et al. Mar 2017 A1
20170123163 Lu et al. May 2017 A1
20170123165 Barnette et al. May 2017 A1
20170131509 Xiao et al. May 2017 A1
20170139158 Coenegracht May 2017 A1
20170160492 Lin Jun 2017 A1
20170168248 Hayauchi et al. Jun 2017 A1
20170168256 Reagan et al. Jun 2017 A1
20170170596 Goossens et al. Jun 2017 A1
20170176252 Marple Jun 2017 A1
20170176690 Bretz et al. Jun 2017 A1
20170182160 Siadak et al. Jun 2017 A1
20170219782 Nishimura Aug 2017 A1
20170235067 Holmberg et al. Aug 2017 A1
20170238822 Young et al. Aug 2017 A1
20170254961 Kamada et al. Sep 2017 A1
20170254962 Mueller-Schlomka et al. Sep 2017 A1
20170261696 Compton et al. Sep 2017 A1
20170261698 Compton et al. Sep 2017 A1
20170261699 Compton et al. Sep 2017 A1
20170285275 Hill et al. Oct 2017 A1
20170285279 Daems et al. Oct 2017 A1
20170288315 Scheucher Oct 2017 A1
20170293091 Lu et al. Oct 2017 A1
20170336587 Coan et al. Nov 2017 A1
20170343741 Coenegracht et al. Nov 2017 A1
20170343745 Rosson Nov 2017 A1
20170351037 Watanabe Dec 2017 A1
20180031774 Van et al. Feb 2018 A1
20180079569 Simpson Mar 2018 A1
20180081127 Coenegracht Mar 2018 A1
20180143386 Coan et al. May 2018 A1
20180151960 Scheucher May 2018 A1
20180180831 Blazer et al. Jun 2018 A1
20180224610 Pimentel et al. Aug 2018 A1
20180239094 Barnette et al. Aug 2018 A1
20180246283 Pepe et al. Aug 2018 A1
20180259721 Bund et al. Sep 2018 A1
20180267243 Nhep Sep 2018 A1
20180267265 Zhang et al. Sep 2018 A1
20180329149 Mullaney et al. Nov 2018 A1
20180348447 Nhep et al. Dec 2018 A1
20180372962 Isenhour et al. Dec 2018 A1
20190004251 Dannoux et al. Jan 2019 A1
20190004252 Rosson Jan 2019 A1
20190004255 Dannoux et al. Jan 2019 A1
20190004256 Rosson Jan 2019 A1
20190004258 Dannoux et al. Jan 2019 A1
20190011641 Isenhour et al. Jan 2019 A1
20190018210 Coan et al. Jan 2019 A1
20190033532 Gimblet et al. Jan 2019 A1
20190038743 Siadak et al. Feb 2019 A1
20190041584 Coenegracht et al. Feb 2019 A1
20190041585 Bretz et al. Feb 2019 A1
20190041595 Reagan et al. Feb 2019 A1
20190058259 Scheucher Feb 2019 A1
20190107677 Coenegracht et al. Apr 2019 A1
20190147202 Harney May 2019 A1
20190162910 Gurreri May 2019 A1
20190162914 Baca May 2019 A1
20190170961 Coenegracht et al. Jun 2019 A1
20190187396 Finnegan Jun 2019 A1
20190235177 Lu et al. Aug 2019 A1
20190250338 Mullaney et al. Aug 2019 A1
20190271817 Coenegracht Sep 2019 A1
20190324217 Lu et al. Oct 2019 A1
20190339460 Dannoux et al. Nov 2019 A1
20190339461 Dannoux et al. Nov 2019 A1
20190369336 Van et al. Dec 2019 A1
20190369345 Reagan et al. Dec 2019 A1
20190374637 Siadak et al. Dec 2019 A1
20200012051 Coenegracht et al. Jan 2020 A1
20200036101 Scheucher Jan 2020 A1
20200049922 Rosson Feb 2020 A1
20200057205 Dannoux et al. Feb 2020 A1
20200057222 Dannoux et al. Feb 2020 A1
20200057223 Dannoux et al. Feb 2020 A1
20200057224 Dannoux et al. Feb 2020 A1
20200057723 Chirca et al. Feb 2020 A1
20200096705 Rosson Mar 2020 A1
20200096709 Rosson Mar 2020 A1
20200096710 Rosson Mar 2020 A1
20200103599 Rosson Apr 2020 A1
20200103608 Hill et al. Apr 2020 A1
20200110229 Dannoux et al. Apr 2020 A1
20200110234 Holmberg et al. Apr 2020 A1
20200116949 Rosson Apr 2020 A1
20200116952 Rosson Apr 2020 A1
20200116953 Rosson Apr 2020 A1
20200116954 Rosson Apr 2020 A1
20200116958 Dannoux et al. Apr 2020 A1
20200116962 Dannoux et al. Apr 2020 A1
20200124805 Rosson Apr 2020 A1
20200124812 Dannoux et al. Apr 2020 A1
20200132939 Coenegracht et al. Apr 2020 A1
20200192042 Coan et al. Jun 2020 A1
20200209492 Rosson Jul 2020 A1
20200218017 Coenegracht Jul 2020 A1
20200225422 Van et al. Jul 2020 A1
20200225424 Coenegracht Jul 2020 A1
20200241211 Shonkwiler et al. Jul 2020 A1
20200348476 Hill et al. Nov 2020 A1
20200371306 Mosier Nov 2020 A1
20200393629 Hill et al. Dec 2020 A1
Foreign Referenced Citations (254)
Number Date Country
2006232206 Oct 2006 AU
1060911 May 1992 CN
1071012 Apr 1993 CN
1213783 Apr 1999 CN
1231430 Oct 1999 CN
1114839 Jul 2003 CN
1646962 Jul 2005 CN
1833188 Sep 2006 CN
1922523 Feb 2007 CN
1985205 Jun 2007 CN
101084461 Dec 2007 CN
101111790 Jan 2008 CN
101195453 Jun 2008 CN
201404194 Feb 2010 CN
201408274 Feb 2010 CN
201522561 Jul 2010 CN
101806939 Aug 2010 CN
101846773 Sep 2010 CN
101866034 Oct 2010 CN
101939680 Jan 2011 CN
201704194 Jan 2011 CN
102141655 Aug 2011 CN
102346281 Feb 2012 CN
202282523 Jun 2012 CN
203224645 Oct 2013 CN
203396982 Jan 2014 CN
103713362 Apr 2014 CN
104064903 Sep 2014 CN
104280830 Jan 2015 CN
104603656 May 2015 CN
105467529 Apr 2016 CN
105683795 Jun 2016 CN
110954996 Apr 2020 CN
3537684 Apr 1987 DE
3737842 Sep 1988 DE
19805554 Aug 1998 DE
0012566 Jun 1980 EP
0026553 Apr 1981 EP
0122566 Oct 1984 EP
0130513 Jan 1985 EP
0244791 Nov 1987 EP
0462362 Dec 1991 EP
0468671 Jan 1992 EP
0469671 Feb 1992 EP
0547778 Jun 1993 EP
0547788 Jun 1993 EP
0762171 Mar 1997 EP
0782025 Jul 1997 EP
0855610 Jul 1998 EP
0856751 Aug 1998 EP
0856761 Aug 1998 EP
0940700 Sep 1999 EP
0949522 Oct 1999 EP
0957381 Nov 1999 EP
0997757 May 2000 EP
1065542 Jan 2001 EP
1122566 Aug 2001 EP
1243957 Sep 2002 EP
1258758 Nov 2002 EP
1391762 Feb 2004 EP
1431786 Jun 2004 EP
1438622 Jul 2004 EP
1678537 Jul 2006 EP
1759231 Mar 2007 EP
1810062 Jul 2007 EP
2069845 Jun 2009 EP
2149063 Feb 2010 EP
2150847 Feb 2010 EP
2193395 Jun 2010 EP
2255233 Dec 2010 EP
2333597 Jun 2011 EP
2362253 Aug 2011 EP
2401641 Jan 2012 EP
2609458 Jul 2013 EP
2622395 Aug 2013 EP
2734879 May 2014 EP
2815259 Dec 2014 EP
2817667 Dec 2014 EP
2992372 Mar 2016 EP
3022596 May 2016 EP
3064973 Sep 2016 EP
3101740 Dec 2016 EP
3207223 Aug 2017 EP
3245545 Nov 2017 EP
3265859 Jan 2018 EP
3336992 Jun 2018 EP
3362830 Aug 2018 EP
3427096 Jan 2019 EP
3443395 Feb 2019 EP
3535614 Sep 2019 EP
3537197 Sep 2019 EP
3646074 May 2020 EP
3646079 May 2020 EP
1184287 May 2017 ES
2485754 Dec 1981 FR
2022284 Dec 1979 GB
2154333 Sep 1985 GB
2169094 Jul 1986 GB
52-030447 Mar 1977 JP
58-142308 Aug 1983 JP
61-145509 Jul 1986 JP
62-054204 Mar 1987 JP
63-020111 Jan 1988 JP
63-078908 Apr 1988 JP
63-089421 Apr 1988 JP
03-063615 Mar 1991 JP
03-207223 Sep 1991 JP
05-106765 Apr 1993 JP
05-142439 Jun 1993 JP
05-297246 Nov 1993 JP
06-320111 Nov 1994 JP
07-318758 Dec 1995 JP
08-050211 Feb 1996 JP
08-054522 Feb 1996 JP
08-062432 Mar 1996 JP
08-292331 Nov 1996 JP
09-049942 Feb 1997 JP
09-135526 May 1997 JP
09-159867 Jun 1997 JP
09-203831 Aug 1997 JP
09-325223 Dec 1997 JP
09-325249 Dec 1997 JP
10-170781 Jun 1998 JP
10-332953 Dec 1998 JP
10-339826 Dec 1998 JP
11-064682 Mar 1999 JP
11-119064 Apr 1999 JP
11-248979 Sep 1999 JP
11-271582 Oct 1999 JP
11-281861 Oct 1999 JP
11-326693 Nov 1999 JP
11-337768 Dec 1999 JP
11-352368 Dec 1999 JP
2000-002828 Jan 2000 JP
2001-116968 Apr 2001 JP
2001-290051 Oct 2001 JP
2002-520987 Jul 2002 JP
2002-250987 Sep 2002 JP
2003-009331 Jan 2003 JP
2003-070143 Mar 2003 JP
2003-121699 Apr 2003 JP
2003-177279 Jun 2003 JP
2003-302561 Oct 2003 JP
2004-361521 Dec 2004 JP
2005-024789 Jan 2005 JP
2005-031544 Feb 2005 JP
2005-077591 Mar 2005 JP
2005-114860 Apr 2005 JP
2005-520987 Jul 2005 JP
2006-023502 Jan 2006 JP
2006-146084 Jun 2006 JP
2006-259631 Sep 2006 JP
2006-337637 Dec 2006 JP
2007-078740 Mar 2007 JP
2007-121859 May 2007 JP
2008-191422 Aug 2008 JP
2008-250360 Oct 2008 JP
2009-265208 Nov 2009 JP
2010-152084 Jul 2010 JP
2010-191420 Sep 2010 JP
2011-033698 Feb 2011 JP
2013-041089 Feb 2013 JP
2013-156580 Aug 2013 JP
2014-085474 May 2014 JP
2014-095834 May 2014 JP
2014-134746 Jul 2014 JP
5537852 Jul 2014 JP
5538328 Jul 2014 JP
2014-157214 Aug 2014 JP
2014-219441 Nov 2014 JP
2015-125217 Jul 2015 JP
2016-109816 Jun 2016 JP
2016-109817 Jun 2016 JP
2016-109819 Jun 2016 JP
2016-156916 Sep 2016 JP
3207223 Nov 2016 JP
3207233 Nov 2016 JP
10-2013-0081087 Jul 2013 KR
222688 Apr 1994 TW
9425885 Nov 1994 WO
9836304 Aug 1998 WO
0127660 Apr 2001 WO
0192927 Dec 2001 WO
0192937 Dec 2001 WO
0225340 Mar 2002 WO
0336358 May 2003 WO
2004061509 Jul 2004 WO
2005045494 May 2005 WO
2006009597 Jan 2006 WO
2006052420 May 2006 WO
2006113726 Oct 2006 WO
2006123777 Nov 2006 WO
2008027201 Mar 2008 WO
2008150408 Dec 2008 WO
2008150423 Dec 2008 WO
2009042066 Apr 2009 WO
2009113819 Sep 2009 WO
2009117060 Sep 2009 WO
2009154990 Dec 2009 WO
2010092009 Aug 2010 WO
2010099141 Sep 2010 WO
2011044090 Apr 2011 WO
2011047111 Apr 2011 WO
2012027313 Mar 2012 WO
2012037727 Mar 2012 WO
2012044741 Apr 2012 WO
2012163052 Dec 2012 WO
2013016042 Jan 2013 WO
2013122752 Aug 2013 WO
2013126488 Aug 2013 WO
2013177016 Nov 2013 WO
2014151259 Sep 2014 WO
2014167447 Oct 2014 WO
2014179411 Nov 2014 WO
2014197894 Dec 2014 WO
WO-2015009435 Jan 2015 WO
2015144883 Oct 2015 WO
2015047508 Dec 2015 WO
2015197588 Dec 2015 WO
2016059320 Apr 2016 WO
2016073862 May 2016 WO
2016095213 Jun 2016 WO
2016100078 Jun 2016 WO
2016115288 Jul 2016 WO
2016156610 Oct 2016 WO
2016168389 Oct 2016 WO
WO-2016156610 Oct 2016 WO
2017063107 Apr 2017 WO
2017146722 Aug 2017 WO
2017155754 Sep 2017 WO
2017178920 Oct 2017 WO
2018083561 May 2018 WO
2018175123 Sep 2018 WO
2018204864 Nov 2018 WO
2019005190 Jan 2019 WO
2019005191 Jan 2019 WO
2019005192 Jan 2019 WO
2019005193 Jan 2019 WO
2019005194 Jan 2019 WO
2019005195 Jan 2019 WO
2019005196 Jan 2019 WO
2019005197 Jan 2019 WO
2019005198 Jan 2019 WO
2019005199 Jan 2019 WO
2019005200 Jan 2019 WO
2019005201 Jan 2019 WO
2019005202 Jan 2019 WO
2019005203 Jan 2019 WO
2019005204 Jan 2019 WO
2019006176 Jan 2019 WO
2019036339 Feb 2019 WO
2019126333 Jun 2019 WO
2019195652 Oct 2019 WO
2020101850 May 2020 WO
Non-Patent Literature Citations (74)
Entry
Brown, “What is Transmission Welding?” Laser Plasti Welding website, 6 pgs, Retrieved on Dec. 17, 2018 from: http://www.laserplasticwelding.com/what-is-transmission-welding.
Chinese Patent Application No. 201780094279.6, Office Action dated Jul. 23, 2021, 5 pages (English Translation Only), Chinese Patent Office.
Chinese Patent Application No. 201780094420.2, Office Action dated Apr. 28, 2021, 22 pages (4 pages of English Translation and 18 pages of Original Document), Chinese Patent Office.
Chinese Patent Application No. 201880056459.X, Office Action dated Apr. 14, 2021, 8 pages (4 pages of English Translation and 4 pages of Original Document), Chinese Patent Office.
Chinese Patent Application No. 201780094432.5, Office Action dated Apr. 19, 2021, 7 pages (5 pages of English Translation and 2 pages of Original Document), Chinese Patent Office.
Chinese Patent Application No. 201780094436.3, Office Action dated Apr. 6, 2021, 21 pages (5 pages of English Translation and 16 pages of Original Document), Chinese Patent Office.
Chinese Patent Application No. 201880048258.5, Office Action dated Mar. 18, 2021, 10 pages (English Translation Only); Chinese Patent Office.
Clearfield, “Fieldshield Optical Fiber Protection System: Installation Manual.” for part No. 016164. Last Updated Dec. 2014. 37 pgs.
Clearfield, “FieldShield SC and LC Pushable Connectors,” Last Updated Jun. 1, 2018, 2 pgs.
Clearfield, “FieldShield SmarTerminal: Hardened Pushable Connectors” Last Updated Jun. 29, 2018, 2 pgs.
Coaxum, L., et al., U.S. Appl. No. 62/341,947, “Fiber Optic Multiport Having Different Types of Ports for Multi-Use,” filed May 26, 2016.
Corning Cable Systems, “SST Figure-8 Drop Cables 1-12 Fibers”, Preliminary Product Specifications, 11 pgs. (2002).
Corning Cable Systems, “SST-Drop (armor) Cables 1-12 Fibers”, Product Specifications, 2 pgs. (2002).
Corning Cable Systems, “SST-Drop (Dielectric) Cables 1-12 Fibers”, Product Specifications, 2 pgs. (2002).
European Patent Application No. 17817578.2 Office Action dated Nov. 6, 2020; 6 Pages; European Patent Office.
European Patent Application No. 17817582.4 Office Action dated Nov. 30, 2020; 6 Pages; European Patent Office.
European Patent Application No. 18738183.5 Communication Pursuant to Article 94(3) EPC, dated Oct. 15, 2021; 7 pages; European Patent Office.
Faulkner et al. “Optical networks for local lopp applications, J. Lightwave Technol.0733-8724 7(11), 17411751 (1989).”
Fiber Systems International: Fiber Optic Solutions, data, “TFOCA-11 4-Channel Fiber Optic Connector” sheet. 2 pgs.
Infolite—Design and Data Specifications, 1 pg. Retrieved Feb. 21, 2019.
International Preliminary Report on Patentability of the International Searching Authority; PCT/US17/063862; dated Jan. 9, 2020; 11 Pages; European Patent Office.
International Preliminary Report on Patentability of the International Searching Authority; PCT/US17/064063; dated Jan. 9, 2020; 16 Pages; European Patent Office.
International Preliminary Report on Patentability of the International Searching Authority; PCT/US17/064072; dated Jan. 9, 2020; 16 Pages; European Patent Office.
International Preliminary Report on Patentability of the International Searching Authority; PCT/US18/039019; dated Jun. 11, 2020; 11 Pages; European Patent Office.
International Preliminary Report on Patentability of the International Searching Authority; PCT/US18/039490; dated Jan. 9, 2020; 11 Pages; European Patent Office.
International Preliminary Report on Patentability of the International Searching Authority; PCT/US18/040130; dated Jan. 9, 2020; 12 Pages; European Patent Office.
International Preliminary Report on Patentability of the International Searching Authority; PCT/US2017/063938; dated Jan. 9, 2020; 15 Pages; European Patent Office.
International Preliminary Report on Patentability of the International Searching Authority; PCT/US2017/063953; dated Jan. 9, 2020; 15 Pages; European Patent Office.
International Preliminary Report on Patentability of the International Searching Authority; PCT/US2017/063991; dated Jan. 9, 2020; 12 Pages; European Patent Office.
International Preliminary Report on Patentability of the International Searching Authority; PCT/US2017/064027; dated Jan. 9, 2020; 26 Pages; European Patent Office.
International Preliminary Report on Patentability of the International Searching Authority; PCT/US2018/039484; dated Jan. 9, 2020; 10 Pages; European Patent Office.
International Preliminary Report on Patentability of the International Searching Authority; PCT/US2018/039485; dated Jan. 9, 2020; 8 Pages; European Patent Office.
International Search Report and Writien Opinion PCT/US2017/063938 dated May 14, 2018.
International Search Report and Writien Opinion PCT/US2017/063953 dated May 14, 2018.
International Search Report and Writien Opinion PCT/US2017/063991 dated May 14, 2018.
International Search Report and Writien Opinion PCT/US2017/064027 dated Oct. 9, 2018.
International Search Report and Writien Opinion PCT/US2017/064063 dated May 15, 2018.
International Search Report and Writien Opinion PCT/US2017/064071 dated May 14, 2018.
International Search Report and Writien Opinion PCT/US2017/064072 dated May 14, 2018.
International Search Report and Writien Opinion PCT/US2017/064077 dated Feb. 26, 2018.
International Search Report and Writien Opinion PCT/US2017/064084 dated Feb. 26, 2018.
International Search Report and Writien Opinion PCT/US2017/064087 dated Feb. 26, 2018.
International Search Report and Writien Opinion PCT/US2017/064092 dated Feb. 23, 2018.
International Search Report and Writien Opinion PCT/US2017/064093 dated Feb. 26, 2018.
International Search Report and Writien Opinion PCT/US2017/064095 dated Feb. 23, 2018.
International Search Report and Writien Opinion PCT/US2017/064096 dated Feb. 26, 2018.
International Search Report and Writien Opinion PCT/US2018/039019 dated Sep. 18, 2018.
International Search Report and Writien Opinion PCT/US2018/039490 dated Oct. 4, 2018.
International Search Report and Writien Opinion PCT/US2018/039494 dated Oct. 11, 2018.
International Search Report and Writien Opinion PCT/US2018/040011 dated Oct. 5, 2018.
International Search Report and Writien Opinion PCT/US2018/040104 dated Oct. 9, 2018.
International Search Report and Writien Opinion PCT/US2018/040126 dated Oct. 9, 2018.
International Search Report and Writien Opinion PCT/US2018/040130 dated Sep. 18, 2018.
International Search Report and Written Opinion of the International Searching Authority; PCT/US17/063938; dated May 14, 2018; 19 Pages; European Patent Office.
International Search Report and Written Opinion of the International Searching Authority; PCT/US18/039485; dated Dec. 13, 2018; 10 Pages; European Patent Office.
International Search Report and Written Opinion of the International Searching Authority; PCT/US2018/039020; dated Mar. 8, 2019; 15 Pages; European Patent Office.
International Search Report and Written Opinion of the International Searching Authority; PCT/US2018/039484; dated Oct. 5, 2018; 11 Pages; European Patent Office.
International Search Report and Written Opinion of the International Searching Authority; PCT/US2019/024929; dated Aug. 5, 2019; 12 Pages; European Patent Office.
International Search Report and Written Opinion of the International Searching Authority; PCT/US2021/032904; dated Aug. 25, 2021; 16 pages; European Patent Office.
International Search Report and Written Opinion PCT/US2018/039485 dated Dec. 13, 2018.
International Search Report received for International Patent Application Serial No. PCT/US2017/063862 dated Feb. 4, 2019.
Nawata, “Multimode and Single-Mode Fiber Connectors Technology”; IEEE Journal of Quantum Electronics, vol. QE-16, No. 6 Published Jun. 1980.
Notice of Allowance for U.S. Appl. No. 16/018,997, filed Oct. 4, 2018.
Office Action for U.S. Appl. No. 16/018,988, filed Oct. 31, 2018.
Office Action pertaining to U.S. Appl. No. 16/018,918 dated Sep. 28, 2018.
Office Action pertaining to U.S. Appl. No. 16/019,008 dated Oct. 31, 2018.
Ramanitra et al. “Optical access network using a self-latching variable splitter remotely powered through an optical fiber link,” Optical Engineering 46(4) p. 45007-1-9, Apr. 2007.
Ratnam et al. “Burst switching using variable optical splitter based switches with wavelength conversion,” ICIIS 2017—Poeceedings Jan. 2018, pp. 1-6.
Schneier, Bruce; “Applied Cryptography: Protocols, Algorithms, and Source Code in C,” Book. 1995 Sec. 10.3, 12.2, 165 Pgs.
Stratos: Lightwave., “Innovation Brought to Light”, Hybrid HMA Series, Hybrid Multi Application, 2 pgs.
Stratos: Ughtwave., “Innovation Brought to Light”, Hybrid HMA Series, Hybrid Multi Application, 2 pgs.
Wang et al. “Opto-VLSI-based dynamic optical splitter,” Electron. Lett.0013-5194 10.1049/el:20046715 40(22), 14451446 (2004).
Wang et al. “Opto-VLSI-based dynamic optical splitter,” Electron. Lett.0013-5194 10.1049/el:120046715 40(22), F14451446 (2004).
Xiao et al. “1 xN wavelength selective adaptive optical power splitter for wavelength-division-multiplexed passive optical networks,” Optics & Laser Technology 68, pp. 160-164, May 2015.
Related Publications (1)
Number Date Country
20220075127 A1 Mar 2022 US
Provisional Applications (3)
Number Date Country
62526018 Jun 2017 US
62526011 Jun 2017 US
62526195 Jun 2017 US
Continuations (2)
Number Date Country
Parent 16814461 Mar 2020 US
Child 17530749 US
Parent 16015588 Jun 2018 US
Child 16814461 US
Continuation in Parts (1)
Number Date Country
Parent PCT/US2017/064063 Nov 2017 US
Child 16015588 US