Fiber optic connectors and methods of making the same

Information

  • Patent Grant
  • 11187859
  • Patent Number
    11,187,859
  • Date Filed
    Thursday, December 19, 2019
    5 years ago
  • Date Issued
    Tuesday, November 30, 2021
    3 years ago
Abstract
Fiber optic connectors (10), cable assemblies (100) and methods for making the same are disclosed. In one embodiment, the fiber optic connector (10) comprises a ferrule assembly (52), a housing (20) and a cap (60). The housing (20) comprises a longitudinal passageway (22) between a rear end (21) and a front end (23), and a ferrule assembly side-loading pocket (40) for receiving the ferrule assembly (52). The ferrule assembly (52) and housing (20) cooperate to inhibit movement of the assembly during manufacturing. Fiber optic connector 10 may include other features as desired such as keying portion (20KP) or at least one locking feature (20L) integrally formed in the housing (20).
Description
FIELD

The disclosure is directed to fiber optic connectors along with methods for making fiber optic connectors. More specifically, the disclosure is directed to fiber optic connectors having improved or simplified designs along with methods of making.


BACKGROUND

Optical fiber is increasingly being used for a variety of applications, including but not limited to broadband voice, video, and data transmission. As bandwidth demands increase optical fiber is migrating toward subscribers in outdoor communication networks such as in fiber to the premises applications such as FTTx and the like. To address this need for making optical connections in communication networks for outdoor environments hardened fiber optic connectors were developed. One of the most commercially successful hardened fiber optic connector is the OptiTap® connector sold by Corning Optical Communications LLC of Hickory, N.C., such as disclosed in U.S. Pat. Nos. 7,090,406 and 7,113,679 (the '406 and '679 patents). The OptiTap® connector is a hardened male plug connector for terminating a fiber optic cable and the assembly is configured for optical connection such as with a complementary receptacle. As used herein, the term “hardened” describes a connector or receptacle port intended for making an environmentally sealed optical connection suitable for outdoor use, and the term “non-hardened” describes a connector or receptacle port that is not intended for making an environmentally sealed optical connection such as the well-known SC connector.



FIGS. 1A-IC are prior art depictions showing various stages of mating of a preconnectorized cable 1 having a plug connector 5 such as an OptiTap® connector with a receptacle 3. Receptacle 3 mates plug connector 5 with a standard SC connector (i.e., a non-hardened connector) at a second end (not visible in these views) using an adapter sleeve for aligning ferrules when mating plug connector 5 with the a non-hardened connector. Protection of the non-hardened connector side of the receptacle is typically accomplished by mounting the receptacle 3 through a wall of an enclosure or the like so that the non-hardened end of the receptacle is disposed inside the enclosure for environmental protection of the non-hardened connector. As shown by FIGS. 1A-1C, the other end of the receptacle 3 is accessible for receiving the plug connector 5 at the wall of the enclosure. Other applications may mount the receptacle 3 inside an enclosure on a bracket or the like.


Receptacle 3 allows an optical connection between the hardened connector such as the OptiTap® male plug connector with a non-hardened connector such as the SC connector at nodes in the optical network that typically transition from an outdoor space to an enclosed and protected space. Receptacle 3 is described in further detail in U.S. Pat. No. 6,579,014. Receptacle 3 includes a receptacle housing and an adapter sleeve disposed therein. The receptacle 3 receives a non-hardened connector at a second end as represented by the arrow pointing to the left. The receptacle 3 typically requires mounting through a wall of a closure, or inside the closure, such as a closure mounted on the side of subscribers premises, disposed in an underground vault or on a pole for protecting the non-hardened connector for outside plant deployments.


Network operators face many challenges for building, deploying and connecting subscribers to outside plant communication networks such as Fiber-to-the-Home (FTTH) or Fiber-to-the-location (FTTx) networks. Besides right of way access for the communication networks, network operators may have limited space to available on existing poles or in existing vaults for mounting devices. Initially, conventional hardened fiber optic connectors were typically mounted on robust and relatively stiff fiber optic cables, and slack storage for these fiber optic cables may also consume limited space or become unsightly in aerial deployments. Further as outside plant deployments evolved many network operators desired to route the fiber optic cable assembly with the connector through an existing wall of a subscriber premises and into the building or route the fiber optic cable assembly with the connector through a buried duct. Thus, network operators because sensitive to the size of the fiber optic connector for these types of deployment applications.


Consequently, there exists an unresolved need for fiber optic connectors that allow quickly and easy deployment and connectivity in a simple and efficient manner while still being cost-effective.


SUMMARY

The disclosure is directed to fiber optic connectors and methods of making fiber optic connectors as described and recited in the claim. The concepts disclosed allow a compact form-factor for an optical fiber connector suitable for numerous applications and variations as desired.


One aspect of the disclosure is directed to a fiber optic connector comprising a ferrule assembly, a housing, and a cap. The ferrule assembly comprising a ferrule comprising at least one fiber bore, a ferrule holder and a resilient member. The housing comprises a rear end and a front end with a longitudinal passageway extending from the rear end to the front end. The housing comprises a front portion and a rear portion, where the front portion comprise a ferrule assembly side-loading pocket. The cap covers the ferrule assembly side-loading pocket when attached to the housing.


Another aspect of the disclosure is directed to a fiber optic connector comprising a ferrule assembly, a housing, and a cap. The ferrule assembly comprising a ferrule comprising at least one fiber bore, a ferrule holder and a resilient member, where the ferrule holder comprises one or more tapered surfaces. The housing comprises a rear end and a front end with a longitudinal passageway extending from the rear end to the front end. The housing comprises a front portion and a rear portion, where the front portion comprise a ferrule assembly side-loading pocket. The cap comprises at least one latch arm, and the cap covers the ferrule assembly side-loading pocket when attached to the housing.


Still another aspect of the disclosure is directed to a fiber optic connector comprising a ferrule assembly, and a cap. The ferrule assembly comprising a ferrule comprising at least one fiber bore, a ferrule holder and a resilient member, where the ferrule holder comprises asymmetric alignment features, and one or more tapered surfaces. The housing comprises a rear end and a front end with a longitudinal passageway extending from the rear end to the front end. The housing comprises a front portion and a rear portion, where the front portion comprise a ferrule assembly side-loading pocket. The cap covers the ferrule assembly side-loading pocket when attached to the housing.


Yet another aspect of the disclosure is directed to a fiber optic connector comprising a ferrule assembly, a housing, and a cap. The ferrule assembly comprising a ferrule comprising at least one fiber bore, a ferrule holder and a resilient member, where the ferrule holder comprises asymmetric alignment features. The housing comprises a rear end and a front end with a longitudinal passageway extending from the rear end to the front end. The housing comprises a front portion and a rear portion along with a transition region disposed between the front portion and the rear portion of the housing, where the front portion comprise a ferrule assembly side-loading pocket, and the rear portion of the housing comprise a keying portion that extend into a portion of the transition region, and at least one locking feature integrally formed in the rear portion of the housing, and the at least one locking feature is disposed about 180 degrees from the keying portion. The cap covers the ferrule assembly side-loading pocket when attached to the housing.


A further aspect of the disclosure is directed to a fiber optic connector comprising a ferrule assembly, a housing, and a cap. The ferrule assembly comprising a ferrule comprising at least one fiber bore, a ferrule holder and a resilient member, where the ferrule holder comprises asymmetric alignment features comprising two alignment features having respective tapered surface disposed on a first side of the ferrule holder, and a third alignment feature disposed on at second side that is opposite the first side of ferrule holder. The housing comprises a rear end and a front end with a longitudinal passageway extending from the rear end to the front end. The housing comprises a front portion and a rear portion along with a transition region disposed between the front portion and the rear portion of the housing. The front portion of the housing comprising a ferrule assembly side-loading pocket. The rear portion of the housing comprises a female key that extends into a portion of the transition region, and at least one locking feature integrally formed in the rear portion of the housing, and the at least one locking feature is disposed about 180 degrees from the keying portion. The cap covers the ferrule assembly side-loading pocket when attached to the housing.


Another aspect of the disclosure is directed to a fiber optic connector comprising a ferrule assembly, a housing, a cap, a cable adapter and a cable. The ferrule assembly comprising a ferrule comprising at least one fiber bore, a ferrule holder and a resilient member, where the ferrule holder comprises asymmetric alignment features comprising two alignment features having respective tapered surface disposed on a first side of the ferrule holder, and a third alignment feature disposed on at second side that is opposite the first side of ferrule holder. The housing comprises a rear end and a front end with a longitudinal passageway extending from the rear end to the front end. The housing comprises a front portion and a rear portion along with a transition region disposed between the front portion and the rear portion of the housing. The front portion of the housing comprising a ferrule assembly side-loading pocket. The rear portion of the housing comprises a female key that extends into a portion of the transition region, and at least one locking feature integrally formed in the rear portion of the housing, and the at least one locking feature is disposed about 180 degrees from the keying portion. The cap covers the ferrule assembly side-loading pocket when attached to the housing. A cable adapter sized for fitting into the rear opening of the housing, and a cable comprising an optical fiber. The cable being attached to the cable adapter.


Fiber optic cables disclosed may also comprise a cable adapter is sized for fitting into the rear opening of the housing, or a locking feature for securing the fiber optic connector for mating with a suitable device.


Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the same as described herein, including the detailed description that follows, the claims, as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description present embodiments that are intended to provide an overview or framework for understanding the nature and character of the claims. The accompanying drawings are included to provide a further understanding of the disclosure, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments and together with the description serve to explain the principles and operation.





BRIEF DESCRIPTION OF THE FIGURES


FIGS. 1A-1C are prior art depictions showing various stages of mating of a prior art preconnectorized cable having a conventional hardened plug connector with a receptacle;



FIG. 2 is a perspective view of a fiber optic cable assembly having a fiber optic connector with a housing according to one aspect of the disclosure;



FIG. 3 is a partially exploded view of the fiber optic cable assembly of FIG. 2 shown with the locking feature pointed upward for showing the ferrule loading pocket;



FIG. 4 is a partially assembled perspective view of the fiber optic connector of FIG. 2 with the ferrule assembly placed into the housing before installing the cap;



FIG. 5 is a detailed exploded view of the fiber optic connector of FIG. 2 showing the assembly of the ferrule assembly keying feature;



FIG. 6 is a detailed exploded view showing the alignment of the ferrule holder with the ferrule pocket for assembly and along with the alignment of the cap to the front of the housing and alignment of the cable adapter at the rear for assembly;



FIG. 7 shows the resilient member positioned on the ferrule holder before assembling the ferrule assembly into the housing;



FIGS. 8 and 9 are detailed perspective views of the ferrule assembly disposed within the housing showing the cooperation between the ferrule holder and the housing features;



FIG. 10 is a side view of the sub-assembly of FIGS. 8 and 9 showing the ferrule holder cooperation with the housing with the keying feature pointing upward and the locking feature pointed downward;



FIGS. 11-13 are longitudinal sectional views showing the fiber optic connector as a portion of the cable assembly;



FIGS. 14 and 15 are assembly views showing a heat shrink being attached over a portion of the housing and the fiber optic cable;



FIG. 16 is a longitudinal sectional view of the fiber optic cable assembly of FIG. 2 showing details of the construction;



FIG. 17 is a perspective view of the ferrule holder and ferrule of FIG. 2;



FIG. 18 is a side assembly view showing the cooperation of the ferrule holder features with the housing features when the ferrule holder is biased against the housing;



FIG. 19 is a transverse sectional views showing the cooperation of the ferrule holder features with the housing features;



FIG. 20 is a close-up top perspective view of the housing of the fiber optic connector of FIG. 2 with the cap attached;



FIGS. 21 and 22 respectively are a rear perspective view and a top view of the cap of the fiber optic connector of FIG. 2;



FIG. 23 is a close-up longitudinal sectional view of the fiber optic connector of FIG. 2 depicting the wall details of the cap for controlling the displacement of the ferrule holder;



FIGS. 24 and 25 are perspective views of alternative housings depicting other locking feature designs for use with the fiber optic connectors disclosed;



FIG. 26 is a perspective view of another cable adapter that fits into a rear opening of the housing of the fiber optic connector;



FIG. 27 is a cross-sectional view the cable adapter of FIG. 26;



FIG. 28 is a longitudinal sectional view of the rear portion of an explanatory fiber optic cable assembly showing the fiber optic cable within the cable adapter taken in a vertical direction to depict how the cable may be attached to the fiber optic connectors disclosed herein;



FIG. 29 is a sectional view of the rear portion of the cable assembly of FIG. 28 showing the fiber optic cable within the cable adapter taken in a horizontal direction;



FIGS. 30 and 31 are views of a portion of another fiber optic cable assembly having a cable adapter with flexures for cable bend-strain relief;



FIGS. 32-35 are various views of a conversion housing that may be used with the fiber optic connector concepts disclosed herein for changing the mating footprint of the fiber optic connector;



FIG. 36 is a perspective view of showing the converted fiber optic connector of FIGS. 32-35 mated to another fiber optic connector using a standard adapter;



FIG. 37 depicts a distribution cable having a fiber optic connector according to the concepts disclosed disposed on a tether;



FIG. 38 is a perspective view of the fiber optic connector of FIG. 2 shown with a conversion housing for changing the fiber optic connector from a first connector footprint to a second connector footprint using a plurality of components;



FIG. 39 is a perspective view showing the plurality of components of the conversion housing removed from the fiber optic connector of FIG. 2;



FIG. 40 is a partially exploded view of the plurality of components for the conversion housing of FIG. 38;



FIG. 41 is a perspective view showing the assembly of the plurality of components of the conversion housing for changing the fiber optic connector of FIG. 2 to a second footprint;



FIGS. 42 and 43 are perspective views showing the construction of the retaining member, shroud and coupling nut of the conversion housing of FIG. 38 of FIGS. 40 and 41;



FIGS. 44 and 45 respectively are a cross-sectional view of the conversion housing components as assembled in FIG. 39, and a cross-sectional of the conversion housing components assembled on the fiber optic connector as shown in FIG. 38;



FIGS. 46 and 47 respectively are a perspective views of a dust cap for the fiber optic connector of FIG. 2 and dust cap installed on the fiber optic connector;



FIG. 48 is a longitudinal sectional view of the rear front portion of the fiber optic cable with dust cap attached;



FIG. 49 is a perspective view of the skeleton of the dust cap of FIGS. 46 and 47 before the second materials is added;



FIGS. 50 and 51 respectively are cross-sectional and plan views of the dust cap of the FIGS. 46 and 47 having the second material added to the skeleton of the dust cap;



FIG. 52 is a perspective view of another skeleton for a dust cap;



FIG. 53 is a perspective view of a dust cap using the skeleton of FIG. 52 installed on the fiber optic cable;



FIGS. 54 and 55 respectively are perspective views of another dust cap for the fiber optic connector and the dust cap installed on the connector;



FIG. 56 is a perspective view of a sealing member disposed over the dust cap and cable assembly of FIG. 55;



FIG. 57 is a partially exploded view of another fiber optic connector similar to the fiber optic connector of FIG. 2;



FIGS. 58-61 are various views showing details of the front end of the connector housing of the fiber optic connector depicted in FIG. 57;



FIGS. 62 and 63 depict perspective views of the ferrule assembly assembled into the housing of the fiber optic connector of FIG. 57;



FIGS. 64 and 65 are sectional views of the front end of the assembled fiber optic connector of FIG. 57;



FIG. 66 is a sectional view of the assembled cable assembly having the fiber optic connector of FIG. 57;



FIGS. 67-70 are perspective views of yet another fiber optic connector similar to the fiber optic connector of FIG. 57 using a different cap; and



FIG. 71 is a perspective view showing details of the cap for the fiber optic connector of FIGS. 67-70.





DETAILED DESCRIPTION

Reference will now be made in detail to the embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Whenever possible, like reference numbers will be used to refer to like components or parts.


The concepts disclosed advantageously provide fiber optic connectors that allow streamlined manufacture and assembly along with easy and intuitive connectivity with other devices while still having a compact footprint. The fiber optic connectors disclosed are explained and depicted with several different embodiments and various other alternative components or optional features that may be incorporated into one or more of the fiber optic connector (hereinafter “connector”) concepts as desired.


By way of explanation, several different variations of housings and other concepts are disclosed that can be modified to use with connector constructions where the ferrule assembly loads from a side-loading pocket at a front end of the housing and a cap attaches to the front end of the housing. The side-loading pocket is advantageous for providing fiber access for aligning and guiding the optical fiber into the ferrule assembly during manufacturing. Some embodiments may advantageously use fewer parts while providing robust and reliable optical performance. Other constructions may increase the part count of the connectors for various reasons.


In one aspect the fiber optic connectors (hereinafter “connector”) disclosed advantageously comprise a housing that provides a first connector footprint that interfaces with other devices for making an optical connection. The first connector footprints may be defined by housings having a rear portion (RP) and a front portion (FP). First connector footprints may also be further defined by a transition region (TR) disposed between the rear portion (RP) and the front portion (FP) of the housing.


In one explanatory example, the housing comprises a part of the rear portion (RP) having a round cross-section (RCS) and a part of the front portion having a non-round cross-section (NRCS). The front portion (FP) or the rear portion (RP) of the housing may be further defined in various configurations as disclosed herein while retaining a part of the rear portion (RP) with the round cross-section (RCS) and a part of the front portion (FP) having a non-round cross-section (NRCS). By way of explanation, the rear portion (RP) may comprise a keying portion and the front portion (FP) may have a rectangular cross-section that also provides a first orientation feature for the connectors for alignment during mating and inhibit insertion into a non-compliant device or port. The keying portion of the connector cooperates with a key on a complimentary port for protecting the mating interface from the attempted insertion of a non-compliant connector. The keying portion on the housing may also aids the user during blind insertion of the connector into a port to determine the correct rotational orientation when a line of sight is not possible or practical.


Housings disclosed herein define the mating interface for a complimentary device suitable for mating with the connector and the connector footprints disclosed are useful for inhibiting insertion into a non-compliant port or device and damaging either the connector or the device along with assuring a suitable optical operation for the optical connection since the connector and device are matched. Moreover, the housings may have features that aid in the proper alignment or orientation of the connector with the complimentary device such as markings, keys, keyways, etc. without significantly changing the primitive form-factors of the housings that are disclosed herein. By way of example, even though a round cross-section may include another feature such as a key or a keyway it is still considered to be a round cross-section. Additionally, housing may have other features such as locking features for securing the optical mating of the connector with a complimentary device. The locking feature may provide a predetermined retention force of 50 pounds or more with a complimentary device before releasing.


By way of another example, non-round cross-section (NRCS) for housings disclosed herein may comprise a part of the front portion (FP) having a rectangular cross-section having rounded corners (RC). The rectangular cross-section with rounded corners (RC) is a non-round cross-section (NRCS) due to the rectangular cross-section. The rounded corners (RC) may be sized so they have a similar outer dimension (OD) as a dimension (D) for the round cross-section (RCS) or not. The rounded corners (RC) may provide stability and snug fit for the mated connector within a port or device when side-pull forces are experienced to inhibit undue optical attenuation by having the round corners transition between the front portion (FP) to the rear portion (RP). The housing footprints disclosed herein may be still further defined by other geometry of the housing(s). For instance, the front portion (FP) of the housing may further comprise another cross-section portion (ACSP). By way of explanation, the another cross-sectional portion (ACSP) may comprise a SC footprint. The SC footprint can, in part, be similar to the inner housing of a conventional SC connector. This particular housing footprint is useful for allowing the connectors disclosed herein to be backwards compatible into existing devices or ports using established connector footprints as desired.


The concepts described herein are suitable for making both indoor and outdoor fiber optic cable assemblies using the connectors disclosed such as drop or distribution cables. Further, the fiber optic connectors disclosed may allow for the use of one or more additional components for changing the connector form-factor or footprint defined by the particular housing. By way of example, a conversion housing may cooperate with the housing of the connector for changing the fiber optic connector from the first connector footprint defined by the housing to a second connector footprint at least partially defined by the conversion housing. Consequently, the connectors disclosed herein may be converted to be compatible as other well-known commercial connectors for Fiber-to-the-Home applications such as an SC connector or an OptiTap® connector such as available from Corning Optical Communications of Hickory, N.C. Of course the concepts disclosed herein may be used with other fiber optic connector types whether hardened or not and are not limited to these particular connector conversions. Likewise, the connector designs disclosed may be hybrid designs with both optical and electrical connectivity. Electrical connectivity may be provided by contacts on or in a portion of the housing of the connector and may be useful for power or data as desired for applications such as FTTx, 5G networks, industrial applications or the like. These and other additional concepts are discussed and disclosed in illustrative detail with reference to FIGS. herein.


Several different constructions of fiber optic cable assemblies 100 (hereinafter “cable assemblies”) comprising a connector 10 and variations of connector 10 are disclosed herein. FIGS. 2-23 depict various views of a first explanatory connector 10 according to the concepts disclosed. FIGS. 24 and 25 disclose concepts related to alternative locking features 20L for use with housings 20 disclosed as appropriate. FIGS. 26-29 disclose another cable adapter that may be used with connectors 10 disclosed herein. FIGS. 32-35 depicts connector 10 having a conversion housing for changing the connector footprint of connector 10 to an SC connector footprint. FIGS. 38-45 disclose cable assemblies 100 comprising connectors 10 having a first connector footprint where the connectors 10 may be convertible to connectors 10′ having a second connector footprint using a conversion housing 80,82. FIGS. 46-56 depict dust caps for connectors 10. FIGS. 57-66 depict a design of another connector 10, and FIGS. 67-71 depict a design of yet another connector 10.


Returning to the first explanatory fiber optic connector 10, FIG. 2 is a perspective view and FIG. 3 is an exploded view of an explanatory cable assembly 100 comprising a fiber optic cable 90 (hereinafter “cable”) attached to connector 10. Connector 10 comprises housing 20, a ferrule assembly 52 and a cap 60. Ferrule assembly 52 comprises a ferrule 30, a ferrule holder 49 and a resilient member 50. Cap 60 attaches at a front side of housing 20, and aids in defining the connector footprint at the front portion (FP) of the connector 10.


Ferrule holder 49 may comprise one or more tapered surfaces 49TS for aligning the ferrule assembly 52 when biased to the forward position against housing 20 by resilient member 50. In the embodiment of FIG. 2, ferrule holder 49 comprises asymmetric alignment features for aligning and seating the ferrule holder assembly 52, thereby inhibiting the movement of the ferrule assembly 52 during manufacturing. This aligning and seating of the ferrule holder assembly 52 in housing allows the housing 20 to be used as a fixture during manufacturing and provide repeatability to the manufacturing for connector specifications such as apex offset and optical performance.


Specifically as depicted in FIG. 17, ferrule holder 49 has three alignment features as discussed below. Two alignment features 49E are disposed on a first side 49FS of ferrule holder 49 and a third alignment feature 49P that is disposed on a second side 49SS opposite side of ferrule holder 49. The two alignment features 49E disposed on the first side 49FS of ferrule holder 49 are similar. The third alignment feature 49P is disposed in the middle of the second side 49SS of ferrule holder 49 and is different than the alignment features 49E disposed on the first side. The concepts disclosed herein may be used with other ferrule holders that may or may not be asymmetric as well.


Housing 20 of connector 10 also comprises a ferrule assembly side pocket 40 for allowing the ferrule assembly 52 to be inserted into housing 20 from the side of housing 20. Using housing 20 with one or more open sides provides improved access and vision to the passageway 22 of the housing at the front portion FP for assembly. The ferrule assembly side pocket 40 of housing 20 comprises an open passageway to the longitudinal passageway or axis of housing 20 so that the ferrule 30 may be assembled from the side of the housing unobstructed. When assembled, cap 60 covers the ferrule assembly side pocket 40.


Housing 20 comprises a rear end 21 and a front end 23 with a longitudinal passageway 22 extending from the rear end 21 to the front end 23 as shown in FIG. 13. Passageway 22 allows one or more optical fibers 92 of cable 90 to pass through the housing 20 for insertion into a fiber bore 32 of ferrule 30 such as depicted in FIGS. 11-13.


Connector 10 may also comprise a cable adapter 59 inserted into an opening 21A at the rear end 21 of housing 20 as depicted in FIG. 3. Cable adapter 59 allows the connectors 10 to be adapted to different cables such as round, flat, different sizes by merely selecting the appropriate sized cable adapter 59 for the desired cable type. Cable 90 may comprise at least one optical fiber 92, one or more strength components 94 and a cable jacket 98, but other cable constructions are possible for use with the connectors disclosed.


As shown, housing 20 comprises a part of the rear portion RP of the connector 10 having a round cross-section RCS and a part of the front portion of the connector 10 having a non-round cross-section NRCS.



FIG. 2 shows the different regions of connector 10 formed by the housing 20 and cap 60. As used herein, the transition region TR is disposed between the rear end 21 and the front end 23 where the housing 20 makes a transformational shift in the primitive cross-sectional shapes from a part of a rear portion RP to a part of the front portion FP. As used herein, a primitive cross-section means the outer perimeter of the cross-section without regard for the internal features of the cross-section. Further, portions of the cross-sections may include other features that modify the shape of the primitive cross-sections as desired such as a keying feature, retention feature or a locking feature, while still practicing the concepts of the transition region TR or front/rear portions as disclosed herein. For instance, a front portion FP may have rounded corners or chamfered corners while still being a rectangular cross-section.


Transition region TR is disposed between the rear portion RP and the front portion FP of the connector 10. In this embodiment, the front portion FP of the connector 10 is formed by housing 20 and cap 60 and comprises a rectangular cross-section that provides a first orientation feature for the connectors for alignment during mating. The non-round cross-section NRCS has the rectangular cross-section with a width W1 and a height H1 as shown in FIG. 2. The rectangular cross-section provides the first orientation feature since the rectangular portion may only be inserted into a complimentary device or port in certain orientations due to its rectangular shape, thereby inhibiting incorrect insertion or insertion into non-compliant devices or ports. The geometry of housing 20 and cap 60 comprises the non-round cross-section NRCS comprising a rectangular cross-section having rounded corners.


The front portion FP formed by housing 20 and cap 60 depicted has more than one primitive cross-sectional shape over its length. Specifically, the front portion FP of housing 20 also comprises another cross-section portion ACSP. By way of explanation, the another cross-sectional portion (ACSP) may comprise a SC footprint. The SC footprint can, in part, be similar to the inner housing of a conventional SC connector. This particular housing footprint at the front portion FP of the connector is useful for allowing the connectors disclosed to be backwards compatible into existing devices or ports using well-established connector footprints as desired. Other embodiments may have connectors configured for LC connector or other known connector footprints as desired.


As best shown in FIG. 2, the front portion FP of housing 20 may comprise another cross-section portion ACSP with a primitive cross-section that is different than the non-round cross-section NRCS. More specifically, the non-round cross-section NRCS changes to another cross-section portion ACSP as shown. As depicted, the another cross-section portion comprises a rectangular cross-section with a width W2 that is less than W1 and a height H2 is similar to height H1. By way of example, height H2 may be equal to height H1. In one embodiment, the another cross-section portion ACSP has a primitive cross-section that is similar to a cross-section near a front end of a SC connector.


As shown, housing 20 also comprises a keying portion 20KP disposed in the rear portion RP of housing 20. As shown, the keying portion 20KP is a subtractive keying portion from the primitive geometric round shape such as the female key or keyway shown in FIG. 2. However, the concepts for the housings 20 may be modified for using connector designs disclosed, and not all of the subtractive keying portion need to be a keyway. For instance, the keying portion 20KP may be defined as a cut section from a part of the rear portion RP of the housing 20 such as cutting a side to be flat, thereby providing a generally D-shaped cross-section to part of the rear portion RP of the housing 20 that has a primitive round cross-section. The keyway portion 20KP may extend into the transition region TR as well as depicted. Further, the keying portion 20KP may also be used with a key on the front portion FP of the housing 20 or not as desired.


Likewise, the rear portion RP of housing 20 may have more than one primitive cross-section shape over its length as desired. Moreover, rear portion RP may include one or more retention features or locking features that alter or modify the cross-section while providing retention or locking in an adapter, port or other suitable device. For instance, housing 20 may also include locking feature 20L comprise features integrated into the housing 20.



FIG. 3 depicts a locking feature 20L of housing 20 orientated to point upwards in this view. As best shown in FIG. 10, locking feature 20L is a ramp with a ledge for securing connector 10 in a complimentary port or device in this embodiment. In this case, locking feature 20L has subtractive geometry from the primitive round cross-section RCS of the rear portion RP of housing 20 as discussed herein.


Other geometries are possible for locking feature 20L. For instance, locking feature 20L may comprise features integrated into the housing such as one or more of a groove, a reverse bayonet such as depicted in FIG. 24, a scallop such as shown in the housing 20 of FIG. 25, a shoulder such as shown in FIG. 28. The shoulder comprises an enlarged annular portion with a flat surface on the rear side.


In these examples, the locking features 20L advantageously are integrated into the housing 20 and do not require extra components and may be used with any of the disclosed concepts. In some embodiments, the locking features 20L are subtractive portions from the primitive geometry of the rear portion RP such as a notch or ramp formed in the round rear portion RP. Consequently, having the locking features integrated into the housing 20 (e.g., monolithically formed as part of the housing) may allow denser arrays of connectors in complimentary devices. Moreover, these locking features integrated into the housing 20 may be forward or rearward of the sealing location of connectors 10. For example, the integrated locking features of housing 20 are disposed forward of at least one groove 20G that seats O-ring 65 in housing 20 of FIG. 2. Locking feature 20L may cooperate with features of a complimentary mating device for securing the mating of the connector 10 with the complimentary mating device.


Housing 20 may also have features that aid in the proper alignment or orientation of the connector with the complimentary device such as markings, keys, keyways, etc. without changing the primitive form-factors of the housings that are disclosed and claimed herein. Additionally, housing may have other keying features for mating with a complimentary device such as shown in connector 10 of FIG. 67.


The position of features on the housing 20 may have specific locations (i.e., clocking of the features on the housing) relative to other features. By way of example, the keying portion 20KP is disposed about 180 degrees from the at least one locking feature 20L in the embodiment of FIG. 2. In other words, keying portion 20KP is located at the 12 o'clock position and the locking feature 20L is located at the 6 o'clock position on the rear portion RP of housing 20. Other arrangements are possible where the keying portion 20KP is disposed less than 180 degrees from the at least one locking feature 20L.


Housing 20 of FIG. 2 may have other features in the rear portion RP. As shown in FIG. 3, housing 20 comprises one or more openings 27 disposed at the 3 o'clock position and the 9 o'clock position. Openings 27 are sized for receiving portions of one or more latch arms 60LA on cap 60. Latch arms 60LA may be seated generally flush on the rear portion RP of housing 20 when attached.


Cable adapter 59 may be keyed to the rear end 21 of housing 20. Illustratively, housing 20 comprise a cable adapter key 21 on the periphery of opening 21A at rear end 21. Likewise, cable adapter 59 comprises a cable adapter key 59K for cooperating with cable adapter key 21 on housing 20. In addition to the openings 27, housing 20 may include one or more mounting features 27MF as discussed in further detail with conversions and dust caps of connector 10.


Housings 20 disclosed herein have relatively compact form-factors such as having a length L of about 40 millimeters (mm) or less and a cross-section dimension of about 15 mm or less such as 12 mm or less, but other suitable dimensions are possible for the housing.



FIGS. 4-16 depict the assembly of connector 10 along with further construction details. FIG. 4 depicts a partial assembly view showing the ferrule subassembly 52 inserted into the ferrule assembly side pocket 40 of housing 20 and the cable 90 positioned in cable adapter 59 for insertion into opening 21A at the rear end 21 of housing 20. FIGS. 5 and 6 show detailed perspective views of the housing 20 and the assembly of components. Ferrule subassembly 52 is assembled by securing ferrule 30 in the front end of ferrule holder 49, and resilient member 50 is positioned over a post of the ferrule holder 49 at the rear end.


As best shown in FIG. 7, ferrule assembly 52 is assembled into the resilient member pocket 40 by inserting the assembly in the transverse direction to the ferrule carrier passageway as represented by the arrow. By way of explanation, the ferrule holder assembly 52 is rotated so that the ears 49E are aligned with the stops 20S and the protrusion 49P faces the notch 20N of housing 20 as shown in FIG. 10. Then the ferrule holder assembly is inserted into the ferrule assembly side pocket 40 of the housing 20 so it is properly seated and held in place by resilient member 50 as shown in FIGS. 8-10. Other structure on housing 20 may also be used to help keep the ferrule holder assembly 52 seated and in place such as a notch for the resilient member 50 to seat. Optical fiber 92 of cable 90 is threaded thru the housing 20, the ferrule holder 49 and into ferrule 30. Optical fiber 92 is secured to ferrule 30 in a suitable fashion such as an adhesive and the end face of ferrule 30 is polished. Cap 60 may be installed before polishing ferrule 30. Cap 60 helps secure the ferrule assembly for polishing and may also be used as datum during the manufacturing process. Other embodiments of ferrule holder 49 may have other suitable constructions as desired.


Housings 20 may also have suitable features or structures for sealing connectors 10. The sealing plane should be located at a suitable location along the housing 20 for providing suitable environmental protection as necessary for the desired environment Illustratively, housing 20 may include one or more grooves 20G for receiving an appropriately sized O-ring 65. Housings 20 may include other feature or structures for aiding in sealing. For instance, the housing 20 may have a suitable surface for receiving a portion of a heat shrink 99 or the like for sealing between a portion of the cable 90 and the connector 10. Any suitable heat shrink 99 may be used such as a glue-lined heat shrink. Moreover, other structures or features are possible for aiding in providing a robustly sealed cable assembly 100.


Ferrule subassembly 52 is configured to cooperate with the housing 20 for inhibiting the rotation of the ferrule subassembly 52 with respect to the housing 20 when biased to a forward position by resilient member 50. In this embodiment, ferrule holder 49 of the ferrule assembly 52 has alignment geometry that cooperates with alignment geometry on the housing 20 for positioning and fixing the ferrule assembly 52. This provides a fixed position when seated (Z=0) for aiding the assembly so the optical fiber 92 may be inserted into the ferrule 30 during manufacturing.



FIGS. 8-10 show the cooperating features of the ferrule holder 49 and housing 20. Specifically, ferrule holder 49 comprises ears 49E and an alignment protrusion 49A such as a pin that cooperate with features the housing 20 as shown in FIG. 17. Ears 49E and an alignment protrusion 49A such as a pin that cooperate with features the housing 20 for inhibiting the movement of the ferrule subassembly 52 with respect to housing 20 when seated by resilient member 50 against the housing 20 (Z=0). Housing 20 comprises stops 20S and a notch 20N for cooperating with the ears 49E and alignment protrusion 49A of the ferrule holder 49 as shown. More specifically, ferrule holder 49 has two ears 49E spaced apart at on a first side of the ferrule holder 49 and the alignment protrusion 49A is located on the opposite second side of the ferrule holder 49 disposed in the middle of the opposite second side. As shown in FIGS. 8 and 9, ears 49E may have a tapered surfaces 49TS for engaging cooperating tapered surfaces of stops 20S of housing 20, thereby controlling the position at Z=0 and influencing the position as the ferrule assembly 52 is translated rearward during mating and the like. FIG. 10 shows alignment protrusion 49A on the opposite side of ferrule holder 49 disposed in the notch 20N of housing 20 at Z=0. As shown, notch 20N has a generally V-shape that cooperates with the round shape of the alignment protrusion. Movement of the ferrule holder is discussed in more detail with respect to FIG. 17.



FIGS. 11-13 are longitudinal sectional views showing further details for front end of connector 10 of cable assembly 100. FIGS. 10 and 11 depicts a partially assembled connector that does not yet have cap 60 attached, and FIG. 13 is a longitudinal sectional view showing connector 10 with the cap 60 attached.



FIGS. 14 and 15 depict the cable assembly 100 with the cable adapter 59 inserted into housing 20. As shown in FIG. 14, cable adapter 59 may include one or more flexures 59F at the rear portion for providing cable bending strain-relief if desired instead of using a conventional boot. The flexures as depicted are suitable for flat cables that have a preferential bend-characteristic such as non-round cables. However, other cable adapters are suitable for use with the connectors 10 as disclosed herein. FIG. 14 represents the sealing element such as heat shrink 99 that was threaded onto the cable 90 being slid forward over a portion of the housing 20 and cable 90 in FIG. 15. Heat shrink 99 weatherproofs the interface between connector 10 and cable 90. As depicted in FIG. 14, housing 20 may have a stepped down portion at the rear end 21 for receiving a portion of heat shrink 99. FIGS. 15 and 16 show views of the connector 10 attached to cable 90 with the cap 60 installed. Details of the cable adapter 59 attachment to housing 20 are discussed below with respect to FIGS. 26-29.



FIG. 17 depicts the ferrule holder 49 and ferrule 30 along with the possible degrees of freedom. FIGS. 18 and 19 show views of the ferrule holder 49 biased forward against housing 20. As shown in FIG. 18, the taper on the tapered leading surface of ears 49E engage the tapered surfaces of stops 20S on housing 20 and alignment feature 49P engages notch 20N to inhibit the ferrule holder 49 from movement in the X- and Y-directions, and also inhibits rotation in the Z-axis when the ferrule holder 49 is seated against the housing 20, but small movements may occur. Alignment feature 49P and the notch 20N may also include a taper for inhibiting movement in Y-direction when the ferrule holder 49 is seated against the housing 20. The geometry of ferrule holder 49 and housing 20 still allows the ferrule 30 to “float” to the desired degree once the ferrule assembly 52 translates rearward in the Z-direction (i.e., translate rearward against the resilient member 50). In other words, once the ears 49E and alignment feature 49P are displaced off of the housing features, then the ferrule holder 49 can translate in the different degrees of freedom to the desired location for precise alignment during mating. However, the internal geometry of connector 10 can also inhibit the maximum displacement of the ferrule holder 49 when translated rearward in the Z-direction. This can advantageous aid in preserving optical performance such as during side pull or other events that the connector may experience.



FIG. 20 is a close-up top perspective view of the housing 20 with the cap 60 attached of connector 10 of FIG. 2. FIGS. 21 and 22 respectively are a rear perspective view and a top view showing details of the cap 60. FIG. 23 is a longitudinal sectional view of connector 10 of FIG. 2 depicting the wall details of the cap 60 for controlling the displacement of the ferrule holder 49. Specifically, when cap 60 is attached to housing 20 the internal wall of cap 60 forms a rounded cavity the limits the displacement of ferrule holder 49 as shown. Cap 60 may be attached in any suitable manner such as adhesive, friction-fit, snap-fit, welding or the like as desired. In one embodiment, the cap 60 may be formed from a translucent material. Using a translucent material for cap 60 allows the use of a UV curable epoxy for securing the cap 60 in place.


The concepts of a side-loading ferrule assemblies into a housing and cap on the front end of the housing disclosed herein may be used with other designs of connectors. Variations to the housings 20 such as changing the mating geometry is possible. By way of example, housings 20 may have different retention features or different locking features 20L.


Features on housing of connectors 10 may be selected as desired to form other variations of connectors. FIGS. 24 and 25 are perspective views of portions of alternative housings 20 depicting other locking features 20L that may be used. Likewise, locking or retention features may be selected with other features such as different keying features 20K or keying portions 20KP. These features or portions have a predetermined location with respect to an orientation of housing 20 for aligning the connector form-factor with a respective mating device. Specifically, the housing 20 provides a proper orientation for connection in one orientation, which may be desired for angled ferrules or other reasons. Connector 10 of FIG. 2 has the at least one locking feature 20L disposed about 180 degrees apart from the keying portion 20KP disposed in the rear portion RP, but other arrangements less than 180 degrees apart. Further, housings 20 could comprises a first locking feature and a second locking feature if desired.


Besides housings 20 with different locking features 20L, connectors 10 may use different cable adapters 59, thereby allowing different cable types to be used with connector 10. As discussed earlier, using connectors with a separate cable adapter 59 allows the connector 10 to be used with different types cables by merely changing out and selecting the cable adapter that is suitable for the desired cable 90.


Details of cable adapters 59 for use with connectors 10 are discussed referring to FIGS. 26-29. FIGS. 26 and 27 respectively are a perspective view and a cross-sectional view of another cable adapter 59 for use with connector 10. Like the cable adapter 59 of FIG. 2, the cable adapter 59 of this embodiment that fits into a rear opening 21A of the housing 20. This cable adapter 59 is used with a housing 20 that has a locking feature configured as a shoulder on the rear portion RP in FIGS. 28 and 29. FIG. 28 is a vertical longitudinal sectional view and FIG. 29 is a horizontal sectional view of the rear portion RP of cable assembly 100 showing a representative cable 90 disposed within the cable adapter 59.


As depicted, cable adapters 59 may comprise an aperture 59A, a recessed surface 59R, a shoulder 59S, a passageway 59P, a cable saddle 59C and/or a cable adapter key 59K as desired for any particular embodiment of cable adapter 59. Generally speaking, cable adapter 59 comprises passageway 59P from a cable adapter front end 59F to a cable adapter rear end 59R. Passageway 59P allows the optical fiber 92 of cable 90 to pass therethrough. Shoulder 59S allows cable adapter 59 to have a snug-fit within the passageway 22 of housing 20 and inhibits adhesive from wicking or flowing forward of the shoulder 59S. Any adhesive or epoxy used for securing cable adapter 59 may wick around the recessed surface 59R for creating a sufficient bonding area and any excessive adhesive or epoxy may flow into the aperture 59A. Housings 20 may include one or more apertures 29 for injecting epoxy or adhesive. Other methods may include adding the adhesive or epoxy on the cable adapter before insertion into the housing. For instance, housing 20 may include two apertures 29 such as shown in FIG. 28 so that air may escape as adhesive or epoxy is injected. Additionally, the one or more apertures 29 may be aligned with the apertures 59A of the cable adapter so that the adhesive or epoxy also secures the strength members 94 of cable 90 to the cable adapter 59 that is secured to the housing 20, thereby forming a robust cable/connector attachment and also providing sealing at the rear end. Cable saddle 59C is sized and shaped for the particular cable 90 that is intended to be secured using the cable adapter 59 along with the appropriate components as appropriate such as depicted in FIG. 27. The rear portion of the cable adapter 59 may have a cable bend relief area such as a reverse funnel at entrance to the passageway, flexures or other suitable structure for inhibiting sharp bending of the cable near the rear of the cable adapter 59. Further, cable adapters 59 may or may not include keys 59K as desired for cooperating with features of the housing 20. The rear portion 59R of the cable adapter 59 may also comprises one or more ribs (not shown) suitable for receiving a boot or overmold on the rear portion 59R The ribs aid in the retention of the boot or overmold.



FIGS. 30 and 31 show cable assemblies may also comprises a boot or overmold 259 disposed on the rear portion 59R of cable adapter 59 and a portion of the cable 90 if desired. Further, when assembled a sealing element such a heat shrink 99 may be disposed over the boot or overmold 259 if used. Placing the sealing element over boot or overmold 259 and a portion of the housing 20 allows for further sealing of the cable jacket to the rear of the connector. This may also improve the bending strain-relief for the cable assembly.


Connector 10 is advantageous since it can be easily and quickly converted into several different second or alternate connector footprints as needed. As an overview, FIG. 32 shows connector 10 used with conversion housing 80 attached to the housing 20 at the front portion FP of connector 10 for converting to an SC connector. Likewise, connector 10 may be converted to a hardened connector as depicted in FIGS. 38-45.



FIGS. 32-35 are various views of a conversion housing that may be used with the fiber optic connector concepts disclosed herein for changing the footprint of the fiber optic connector. By way of example, connectors disclosed herein may be converted from a first connector footprint to a second connector footprint. FIG. 32 is a perspective view of an explanatory connector 10′ that further comprises a conversion housing 80 attached about the housing 20 and cap 60 at the front end of the connector for changing the connector 10 from a first connector footprint to a second connector footprint 10′ as shown in FIG. 33. FIGS. 34 and 35 are a sectional view of the connector 10′. By way of example, the connector 10′ may have a first connector footprint such as shown in FIG. 2 and be changed to a second connector footprint such as a SC connector by adding conversion housing 80. Any of the suitable connectors 10 disclosed herein may be converted in a similar manner as described herein. In this embodiment, the changing of the first connector footprint to the second connector footprint comprises the use of a single component for the conversion. This embodiment changes the connector 10 into a connector 10′ having a SC footprint by using conversion housing 80 having the footprint of an outer housing of a SC connector. Consequently, connector 10 may be backwards compatible into existing optical networks using SC footprints. FIG. 36 is a perspective view of showing connector 10′ mated to another converted connector 10′ using a standard adapter


Connectors disclosed herein may be portions of other cable assemblies as desired. For instance, FIG. 37 depicts a distribution cable 100′ having one or more connectors 10 on tether cables 90′ that extend from a mid-span access 93 of a distribution cable. Of course, other suitable assemblies may use the connectors according to the concepts disclosed herein.


In still other embodiments, the changing of the first connector footprint to the second connector footprint such as a hardened connector footprint may comprise the use of a plurality of components. By way of example, FIGS. 38-43 show details for the conversion of connector 10 into connector 10″ that has a hardened connector footprint. Illustratively, FIG. 38 shows connector 10 converted to connector 10″ comprising a second connector footprint, and FIG. 39 is a partially exploded view showing the assembly of a plurality of components used for converting to another connector 10″ removed from connector 10.


This embodiment of the second connector footprint 10″ comprises a hardened connector footprint. Hardened connector footprint means that the connector is suitable for outdoor environments without the need for protection within a closure. Any suitable connector 10 disclosed herein may be used for such a conversion from the first footprint to the second footprint. In this particular embodiment, the plurality of components are suitable for converting connector 10 to a hardened OptiTap® compatible connector; however, the plurality of components may be configured for converting connector 10 into other hardened connectors as desired.



FIGS. 40 and 41 depict cable assembly 100 with connector 10 along with the plurality of components for the conversion to the second footprint 10″ along with depicting the assembly of the components. In this embodiment, the plurality of components for the conversion to the hardened connector comprise a conversion housing 82 configured as a shroud, a retaining member 84 configured as a retaining clip and a coupling nut 85. One or more O-rings 65 may be used with the conversion housing as desired. Boots, heat shrinks or other components may also be used with the conversion housing if desired.


To make the conversion of connector 10 to the hardened connector 10″, the coupling nut 85 and conversion housing or shroud 82 are threaded onto the cable assembly along with any other desired components. Retaining member 84 is aligned with connector 10 from the side and attached to housing 20 as shown in FIG. 41. Specifically, retaining member 84 is aligned and attached to housing by aligning the mounting rim 84R with the mounting features 27MF of housing 20 and seating the retaining member arm 84A in keying portion 20KP of housing 20. Coupling nut 85 may be slid onto shroud 82, and a shroud notch 82N is aligned with the retaining member arm 84 protruding from keying portion 20KP of housing 20 for guiding the shroud 82 onto the retaining structure of retaining member 84 in the correct orientation. Specifically, a protruding tail 84T is formed near the end of retaining member arm 84 for cooperating with the shroud notch 82N. Windows 82W disposed on opposite sides of shroud 82 engage with the forward facing latching arms 84L of retaining member 84 to secure the shroud 82 to connector 10 when slid forward as represented by the arrow shown in FIG. 41. Any other components such as any outer boot of the like can be slid-up into position from the rear as well. Shroud 82 may include an O-ring 65 for sealing during mating.



FIGS. 40 and 43 show detailed perspective views of retaining member 84. As depicted, retaining member 84 comprises mounting rim 84R to aid in seating and securing the retaining member 84 to housing 20 of connector 10. As best shown in FIG. 43, mounting rim 84R comprises an opening on one side for sliding the retaining member 84 onto the mounting features 27MF of housing 20 from the side and seating the retaining member 84 on housing 20. Additionally, retaining member 84 also has a forward and rear catches on latching arm 84L that are sized and shaped for cooperating with the windows 82W disposed on opposite sides of shroud 82. Once assembled, retainer member 84 inhibits the shroud 82 from rotating and coming off connector 10. FIGS. 44 and 45 respectively are a cross-sectional view of the conversion housing components assembled, and a cross-sectional view of the conversion housing components assembled on connector 10 showing further details. Connector 100″ may also include a dust cap like the OptiTap connector as known in the art.


Connectors 10 may also have any suitable dust cap 88 for protecting the mating portion from dust, dirt, debris and the like. FIGS. 46-51 depict a first dust cap 88 comprising a skeleton 88a and a skin 88b disposed about a portion of the skeleton 88a. Dust caps 88 comprising a skeleton 88a and a skin 88b allow the use of two different materials for the construction of the dust cap 88. Dust caps 88 may also comprise a pulling eye 88P. FIGS. 46 and 47 show the dust cap 88 being aligned with keying portion 20KP of connector 10 and attached. FIG. 48 is a horizontal sectional view of dust cap 88 disposed on connector 10 and extending past O-ring 65 to seal the mating interface of connector 10.



FIG. 49 is a rear perspective view of the skeleton 88a of dust cap 88 for showing details of the design. FIGS. 50 and 51 respectively are a cross-sectional and a top view of the dust cap 88 with the skin 88b applied to the skeleton 88a. As shown, skeleton 88a comprises an alignment tongue 88T that cooperates with the keying portion 20KP of housing 20, and one or more latches 88L for engaging mounting features 27MF on housing 20. Skeleton 88a also comprises openings 88a that are forward and aligned with latches 88L. Generally speaking, skeleton 88a is formed from a relatively hard material that may flex and provides a frame for skin 88b is formed from a softer material. The dust cap 88 may be aligned and will deform slightly so that latches capture the mounting features 27MF of housing 20 to attach to connector 10. To remove the dust cap 88, the user can squeeze near the openings 88o to slightly deform and allow release of the latches 88L from the housing 20. Dust caps 88 may be formed using a two-shot mold or by other methods.



FIGS. 52 and 53 depict another dust cap 88 comprising a skeleton 88a and a skin 88b that is similar to the dust cap of FIGS. 46-51. In this embodiment, the skeleton 88a of dust cap 88 comprises a ring 88R disposed at the end of alignment tongue 88T as shown in FIG. 52. Ring 88R provides further support for the skin 88b at the rear of the dust cap. FIG. 53 shows dust cap 88 attached to connector 10.



FIGS. 54-56 depict yet another dust cap 88 comprising a skeleton 88a and a skin 88b. In this embodiment, the skin 88b is not formed over the skeleton 88a until the skeleton 88a is attached to connector 10 as shown by FIG. 55. In this embodiment, skin 88b is a heat shrink that is threaded onto the cable 90 before skeleton 88a is attached to connector 10. Then, the skin 88B may be slid over a portion of the skeleton 88a from the rear and then heated to complete the dust cap 88 as shown in FIG. 56. Other dust caps may be used with the concepts disclosed herein.



FIGS. 57-66 depict another connector 10 that is similar to connector 10 of FIG. 2 and may use similar connector conversion components, dust caps or other features. Housing 20 of connector 10 shown in FIGS. 57-66 is similar to housing 20 of the fiber optic connector of FIG. 2 but it supports a different ferrule holder 49 as discussed herein, and differences with be described while other details will not be repeated for the sake of brevity. The construction of connector 10 of FIG. 57-66 is similar to that of FIG. 2 where ferrule 30 disposed within a ferrule holder 49 and inserted into a ferrule assembly side pocket 40 of the housing 20; however, the ferrule holder 49 has an alignment feature 49AF configured as a tapered periphery at the front end for cooperating with the features of housing 20. Likewise, housing 20 has a complimentary tapered surface in stop 20S that cooperates with the tapered surface 49TS on the front periphery of ferrule holder 49. Otherwise, connector 10 of FIGS. 57-66 comprises housing 20, ferrule assembly 52 and cap 60 as shown in FIG. 57 similar to connector 10 of FIG. 2.



FIGS. 58-61 are various views showing details of the front end of the housing 20 for connector 10 depicted in FIG. 57. FIGS. 62 and 63 are perspective views of the ferrule assembly 52 assembled into the housing 20 of connector 10 of FIG. 57. FIGS. 64 and 65 are sectional views of the front end of the assembled connector 10 of FIG. 57 showing the cooperation of tapered surface 49TS configured at the front periphery of ferrule holder 49 cooperating with the tapered stop surface 20S of housing 20 at Z=0 for aligning and seating the ferrule assembly 52 during manufacturing. FIG. 66 is a sectional view of the assembled cable assembly 100 comprising the connector 10 of FIG. 57.


In this embodiment, connector 10 comprising a keying feature 20K disposed on a front portion FP of housing 20 as shown in FIG. 63. Unlike keying portion 20KP on the rear portion RP of housing 20, keying feature 20K of housing 20 has a predetermined location on the front portion FP housing 20 for aligning the form-factor of the housing with a respective mating device. For instance, the housing 20 or keying feature 20K provides a proper orientation for connection in one orientation, which may be desired for connectors having angled ferrules. In this embodiment, keying feature 20K ensures correct rotational orientation of the connector 10 during insertion and mating with another device. Keying features 20K may be used with a keying portion 20KP or not as desired.


Still other variations of the concept are possible. FIGS. 67-70 are perspective views of yet another connector 10 similar to the connector 10 of FIG. 57, except it uses a a different cap 60. FIG. 71 is a perspective view showing details of cap 60 for connector 10 of FIGS. 67-70. In this embodiment, cap 60 only covers one side of the front portion FP of housing 20. As best shown in FIG. 71, cap 60 only has one latch arm 60LA that comprises tabs 60T on opposite sides for securing the cap 60 to housing 20 for covering the ferrule assembly side pocket 40.


Although the disclosure has been illustrated and described herein with reference to explanatory embodiments and specific examples thereof, it will be readily apparent to those of ordinary skill in the art that other embodiments and examples can perform similar functions and/or achieve like results. All such equivalent embodiments and examples are within the spirit and scope of the disclosure and are intended to be covered by the appended claims. It will also be apparent to those skilled in the art that various modifications and variations can be made to the concepts disclosed without departing from the spirit and scope of the same. Thus, it is intended that the present application cover the modifications and variations provided they come within the scope of the appended claims and their equivalents.

Claims
  • 1. A fiber optic connector, comprising: a ferrule assembly comprising a ferrule comprising at least one fiber bore, a ferrule holder and a resilient member, wherein the ferrule holder comprises two alignment features disposed on a first side of ferrule holder, and a third alignment feature configured as an alignment protrusion disposed on a second side that is opposite the first side of ferrule holder;a housing comprising a rear end and a front end with a longitudinal passageway extending from the rear end to the front end, the housing comprising a front portion and a rear portion, wherein the front portion comprises a ferrule assembly side-loading pocket; anda cap, wherein the cap covers the ferrule assembly side-loading pocket when attached to the housing.
  • 2. The fiber optic connector of claim 1, wherein the two alignment features comprises one or more tapered surfaces.
  • 3. A fiber optic connector, comprising: a ferrule assembly comprising a ferrule comprising at least one fiber bore, a ferrule holder and a resilient member, wherein the ferrule holder comprises two alignment features disposed on a first side of ferrule holder, and a third alignment feature configured as an alignment protrusion disposed on a second side that is opposite the first side of ferrule holder;a housing comprising a rear end and a front end with a longitudinal passageway extending from the rear end to the front end, the housing comprising a front portion and a rear portion, wherein the front portion comprises a ferrule assembly side-loading pocket; anda cap, wherein the cap comprises at least one latch arm, and the cap covers the ferrule assembly side-loading pocket when attached to the housing.
  • 4. The fiber optic connector of claim 3, wherein the third alignment feature is disposed in the middle of the second side of ferrule holder and is different than the alignment features disposed on the first side.
  • 5. A fiber optic connector, comprising: a ferrule assembly comprising a ferrule comprising at least one fiber bore, a ferrule holder and a resilient member, wherein the ferrule holder comprises two alignment features disposed on a first side of ferrule holder, and a third alignment feature configured as an alignment protrusion disposed on a second side that is opposite the first side of ferrule holder;a housing comprising a rear end and a front end with a longitudinal passageway extending from the rear end to the front end, the housing comprising a front portion and a rear portion, wherein the front portion comprises a ferrule assembly side-loading pocket; anda cap, wherein the cap covers the ferrule assembly side-loading pocket when attached to the housing.
  • 6. The fiber optic connector of claim 5, wherein the housing further comprises a transition region disposed between the front portion and the rear portion of the housing.
  • 7. The fiber optic connector of claim 5, wherein housing further comprises a keying portion comprising a female key.
  • 8. The fiber optic connector of claim 7, wherein the keying portion extends into the transition region.
  • 9. The fiber optic connector of claim 5, wherein housing further comprises at least one locking feature.
  • 10. The fiber optic connector of claim 5, wherein housing further comprises at least one locking feature, and a keying portion comprising a female key.
  • 11. The fiber optic connector of claim 10, wherein the at least one locking feature is disposed about 180 degrees from the keying portion.
  • 12. The fiber optic connector of claim 10, wherein the at least one locking feature is disposed less than 180 degrees from the keying portion.
  • 13. The fiber optic connector of claim 5, wherein the rear portion of the housing further comprises a keying portion and at least one locking feature integrally formed in the rear portion of the housing.
  • 14. A fiber optic connector, comprising: a ferrule assembly comprising a ferrule comprising at least one fiber bore, a ferrule holder and a resilient member, wherein the ferrule holder comprises asymmetric alignment features comprising two alignment features disposed on a first side of ferrule holder, and a third alignment feature configured as an alignment protrusion disposed on a second side that is opposite the first side of ferrule holder;a housing comprising a rear end and a front end with a longitudinal passageway extending from the rear end to the front end, the housing comprising a front portion, a rear portion and a transition region disposed between the front portion and the rear portion of the housing, wherein the front portion comprises a ferrule assembly side-loading pocket, and the rear portion of the housing comprises a keying portion that extends into a portion of the transition region, and at least one locking feature integrally formed in the rear portion of the housing, and the at least one locking feature is disposed about 180 degrees from the keying portion; anda cap, wherein the cap covers the ferrule assembly side-loading pocket when attached to the housing.
  • 15. A fiber optic connector, comprising: a ferrule assembly comprising a ferrule comprising at least one fiber bore, a ferrule holder and a resilient member, wherein the ferrule holder comprises asymmetric alignment features, wherein the asymmetric alignment features comprise two alignment features having respective tapered surfaces disposed on a first side of ferrule holder, and a third alignment feature configured as an alignment protrusion disposed on a second side that is opposite the first side of ferrule holder;a housing comprising a rear end and a front end with a longitudinal passageway extending from the rear end to the front end, the housing comprising a front portion, a rear portion and transition region disposed between the front portion and the rear portion of the housing, the front portion of the housing comprising a ferrule assembly side-loading pocket, and wherein the rear portion of the housing comprises a female key that extends into a portion of the transition region, and at least one locking feature integrally formed in the rear portion of the housing, and wherein the at least one locking feature is disposed about 180 degrees from the female key; anda cap, wherein the cap covers the ferrule assembly side-loading pocket when attached to the housing.
  • 16. The fiber optic connector of claim 15, wherein the third alignment feature is disposed in the middle of the second side of ferrule holder and is different than the alignment features disposed on the first side.
  • 17. The fiber optic connector of claim 15, wherein the ferrule assembly is configured to cooperate with the housing for inhibiting the rotation of the ferrule subassembly with respect to the housing at Z=0.
  • 18. The fiber optic connector of claim 15, wherein housing comprises an open passageway to the longitudinal passageway of the housing.
  • 19. The fiber optic connector of claim 15, wherein the housing comprises one or more apertures.
  • 20. The fiber optic connector of claim 15, wherein the at least one locking feature is a ramp comprising a ledge.
  • 21. The fiber optic connector of claim 15, wherein the at least one locking feature is a notch, a groove, a shoulder or a scallop.
  • 22. The fiber optic connector of claim 20, wherein the at least one locking feature provides a predetermined retention force of 50 pounds or more.
  • 23. The fiber optic connector of claim 15, wherein a part of the rear portion of the housing comprises a round cross-section and a part of the front portion of the housing comprises a non-round cross-section.
  • 24. The fiber optic connector of claim 15, further comprising a male key.
  • 25. The fiber optic connector of claim 15, wherein the front portion of housing comprises another cross-section portion.
  • 26. The fiber optic connector of claim 25, wherein the another cross-section portion comprises a SC footprint or a SC compatible footprint.
  • 27. The fiber optic connector of claim 15, further comprising a cable adapter.
  • 28. The fiber optic connector of claim 27, wherein an opening at the rear end of the housing is sized for receiving a portion of a cable assembly.
  • 29. The fiber optic connector of claim 15, further comprising an O-ring.
  • 30. The fiber optic connector of claim 29, wherein the O-ring is disposed rearward of the at least one locking feature.
  • 31. The fiber optic connector of claim 15, further comprising a dust cap.
  • 32. The fiber optic connector of claim 15, further comprising a conversion housing, wherein the conversion housing cooperates with the housing for changing the fiber optic connector from the first connector footprint to a second connector footprint.
  • 33. The fiber optic connector of claim 32, wherein the second footprint comprises a hardened connector footprint.
  • 34. The fiber optic connector of claim 32, wherein the changing from the first connector footprint to the second connector footprint comprises a single component.
  • 35. The fiber optic connector of claim 32, wherein the changing from the first connector footprint to the second connector footprint comprises a plurality of components.
  • 36. The fiber optic connector of claim 32, wherein the second connector footprint is a SC connector footprint or a SC compatible connector footprint.
  • 37. The fiber optic connector of claim 32, wherein the changing from the first connector footprint to the second connector footprint comprises a shroud, a retaining member, and a coupling nut.
  • 38. The fiber optic connector of claim 32, the second connector footprint is an OptiTap® compatible footprint.
  • 39. The fiber optic connector of claim 27, wherein the retaining member is a retaining clip.
  • 40. The fiber optic connector of claim 15 being a portion of a cable assembly.
  • 41. The fiber optic connector of claim 15 being a portion of a distribution cable.
  • 42. The fiber optic connector of claim 15, further comprising a fiber optic cable comprising at least one strength element, the at least one strength element of the fiber optic cable being attached to a portion of the fiber optic connector.
  • 43. A fiber optic cable assembly, comprising: a ferrule assembly comprising a ferrule comprising at least one fiber bore, a ferrule holder and a resilient member, wherein the ferrule holder comprises asymmetric alignment features, wherein the asymmetric alignment features comprise two alignment features having respective tapered surfaces disposed on a first side of ferrule holder, and a third alignment feature configured as an alignment protrusion disposed on a second side that is opposite the first side of ferrule holder;a housing comprising a rear end and a front end with a longitudinal passageway extending from the rear end to the front end, the housing comprising a front portion, a rear portion and transition region disposed between the front portion and the rear portion of the housing, wherein the front portion of the housing comprising a ferrule assembly side-loading pocket, and wherein the rear portion of the housing comprises a female key that extends into a portion of the transition region, and at least one locking feature integrally formed in the rear portion of the housing, and the at least one locking feature is disposed about 180 degrees from the female key;a cap covers the ferrule assembly side-loading pocket when attached to the housing;a cable adapter sized for fitting into the rear opening of the housing; anda cable comprising an optical fiber, and the cable being attached to the cable adapter.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of International Application No. PCT/US2018/040130, filed Jun. 28, 2018 which claims the benefit of priority to U.S. Application Nos. 62/526,011 filed on Jun. 28, 2017; 62/526,018 filed on Jun. 28, 2017; 62/526,195, filed on Jun. 28, 2017; Ser. No. 16/018,918 filed on Jun. 26, 2018; U.S. patent application Ser. No. 16/018,988 filed on Jun. 26, 2018; U.S. application Ser. No. 16/018,997 filed on Jun. 26, 2018; U.S. application Ser. No. 16/019,008 filed Jun. 26, 2018; U.S. application Ser. No. 16/015,583 filed Jun. 22, 2018; and U.S. application Ser. No. 16/015,588 filed on Jun. 22, 2018, the content of which is relied upon and incorporated herein by reference in entirety. This applications also claims the benefit of priority under 35 USC § 365 of International Patent Application Serial Nos. PCT/US2017/063862 filed on Nov. 30, 2017; PCT/US2017/063938 filed on Nov. 30, 2017; PCT/US2017/063953 filed on Nov. 30, 2017; PCT/US2017/063991 filed on Nov. 30, 2017; PCT/US2017/064027 filed on Nov. 30, 2017; PCT/US2017/064071 filed on Nov. 30, 2017; PCT/US2017/064063 filed on Nov. 30, 2017; PCT/US2017/064072 filed on Nov. 30, 2017; PCT/US2017/064092 filed on Nov. 30, 2017; PCT/US2017/064095 filed on Nov. 30, 2017; PCT/US2018/039484 filed on Jun. 26, 2018; PCT/US2018/039485 filed on Jun. 26, 2018; PCT/US2018/039490 filed on Jun. 26, 2018; PCT/US2018/039494 filed on Jun. 26, 2018; PCT/US2018/039019 filed on Jun. 22, 2018; PCT/US2018/039020 filed on Jun. 22, 2018; all designating the United States of America, and the content of which is relied upon and incorporated herein by reference in its entirety.

US Referenced Citations (522)
Number Name Date Kind
3074107 Mase et al. Jan 1963 A
3532783 Pusey et al. Oct 1970 A
3792284 Kaelin Feb 1974 A
3912362 Hudson Oct 1975 A
4003297 Mott Jan 1977 A
4077567 Ginn et al. Mar 1978 A
4148557 Garvey Apr 1979 A
4167303 Bowen et al. Sep 1979 A
4168109 Dumire Sep 1979 A
4188088 Andersen et al. Feb 1980 A
4336977 Monaghan et al. Jun 1982 A
4354731 Mouissie Oct 1982 A
4373777 Borsuk et al. Feb 1983 A
4413880 Forrest et al. Nov 1983 A
4423922 Porter Jan 1984 A
4440471 Knowles Apr 1984 A
4461537 Raymer et al. Jul 1984 A
4515434 Margolin et al. May 1985 A
4560232 O'Hara Dec 1985 A
4615581 Morimoto Oct 1986 A
4634214 Cannon et al. Jan 1987 A
4634858 Gerdt et al. Jan 1987 A
4684205 Margolin et al. Aug 1987 A
4688200 Poorman et al. Aug 1987 A
4690563 Barton et al. Sep 1987 A
4699458 Ohtsuki et al. Oct 1987 A
4705352 Margolin et al. Nov 1987 A
4711752 Deacon et al. Dec 1987 A
4715675 Kevern et al. Dec 1987 A
4723827 Shaw et al. Feb 1988 A
4741590 Caron May 1988 A
4763983 Keith Aug 1988 A
4783137 Kosman et al. Nov 1988 A
4842363 Margolin et al. Jun 1989 A
4844570 Tanabe Jul 1989 A
4854664 McCartney Aug 1989 A
4856867 Gaylin Aug 1989 A
4902238 Iacobucci Feb 1990 A
4913514 Then Apr 1990 A
4921413 Blew May 1990 A
4944568 Danbach et al. Jul 1990 A
4960318 Nilsson et al. Oct 1990 A
4961623 Midkiff et al. Oct 1990 A
4964688 Caldwell et al. Oct 1990 A
4979792 Weber et al. Dec 1990 A
4994134 Knecht et al. Feb 1991 A
4995836 Toramoto Feb 1991 A
5007860 Robinson et al. Apr 1991 A
5016968 Hammond et al. May 1991 A
5028114 Krausse et al. Jul 1991 A
5058984 Bulman et al. Oct 1991 A
5067783 Lampert Nov 1991 A
5073042 Mulholland et al. Dec 1991 A
5076656 Briggs et al. Dec 1991 A
5085492 Kelsoe et al. Feb 1992 A
5088804 Grinderslev Feb 1992 A
5095176 Harbrecht et al. Mar 1992 A
5129023 Anderson et al. Jul 1992 A
5131735 Berkey et al. Jul 1992 A
5134677 Leung et al. Jul 1992 A
5136683 Aoki et al. Aug 1992 A
5142602 Cabato et al. Aug 1992 A
5146519 Miller et al. Sep 1992 A
5155900 Grois et al. Oct 1992 A
5180890 Pendergrass et al. Jan 1993 A
5189718 Barrett et al. Feb 1993 A
5210810 Darden et al. May 1993 A
5212752 Stephenson et al. May 1993 A
5214732 Beard et al. May 1993 A
5224187 Davisdon Jun 1993 A
5231685 Hanzawa et al. Jul 1993 A
5245683 Belenkiy et al. Sep 1993 A
5263105 Johnson et al. Nov 1993 A
5276750 Manning Jan 1994 A
5313540 Ueda et al. May 1994 A
5317663 Beard et al. May 1994 A
5321917 Franklin et al. Jun 1994 A
5367594 Essert et al. Nov 1994 A
5371823 Barrett et al. Dec 1994 A
5375183 Edwards et al. Dec 1994 A
5381494 O'Donnell et al. Jan 1995 A
5390269 Palecek et al. Feb 1995 A
5394494 Jennings et al. Feb 1995 A
5394497 Erdman et al. Feb 1995 A
5408570 Cook et al. Apr 1995 A
5416874 Giebel et al. May 1995 A
5452388 Rittle et al. Sep 1995 A
5519799 Murakami et al. May 1996 A
5553186 Allen Sep 1996 A
5557696 Stein Sep 1996 A
5569050 Lloyd Oct 1996 A
5588077 Woodside Dec 1996 A
5600747 Yamakawa et al. Feb 1997 A
5603631 Kawahara et al. Feb 1997 A
5608828 Coutts et al. Mar 1997 A
5631993 Cloud et al. May 1997 A
5647045 Robinson et al. Jul 1997 A
5682451 Lee et al. Oct 1997 A
5694507 Walles Dec 1997 A
5748821 Schempp et al. May 1998 A
5761359 Chudoba et al. Jun 1998 A
5781686 Robinson et al. Jul 1998 A
5782892 Castle et al. Jul 1998 A
5789701 Wettengel et al. Aug 1998 A
5791918 Pierce Aug 1998 A
5796895 Jennings et al. Aug 1998 A
RE35935 Cabato et al. Oct 1998 E
5818993 Chudoba et al. Oct 1998 A
5857050 Jiang et al. Jan 1999 A
5862290 Burek et al. Jan 1999 A
5867621 Luther et al. Feb 1999 A
5887099 Csipkes et al. Mar 1999 A
5913001 Nakajima et al. Jun 1999 A
5920669 Knecht et al. Jul 1999 A
5923804 Rosson Jul 1999 A
5925191 Stein et al. Jul 1999 A
5926596 Edwards et al. Jul 1999 A
5960141 Sasaki et al. Sep 1999 A
5961344 Rosales et al. Oct 1999 A
5971626 Knodell et al. Oct 1999 A
5993070 Tamekuni et al. Nov 1999 A
6035084 Haake et al. Mar 2000 A
6045270 Weiss et al. Apr 2000 A
6079881 Roth Jun 2000 A
6094517 Yuuki Jul 2000 A
6108482 Roth Aug 2000 A
6112006 Foss Aug 2000 A
6149313 Giebel et al. Nov 2000 A
6151432 Nakajima et al. Nov 2000 A
RE37028 Cooke et al. Jan 2001 E
6173097 Throckmorton et al. Jan 2001 B1
6179482 Takizawa et al. Jan 2001 B1
6188822 McAlpine et al. Feb 2001 B1
6200040 Edwards et al. Mar 2001 B1
6206579 Selfridge et al. Mar 2001 B1
6206581 Driscoll et al. Mar 2001 B1
6224268 Manning et al. May 2001 B1
6229944 Yokokawa et al. May 2001 B1
6234683 Waldron et al. May 2001 B1
6234685 Carlisle et al. May 2001 B1
6249628 Rutterman et al. Jun 2001 B1
6256438 Gimblet Jul 2001 B1
6261006 Selfridge Jul 2001 B1
6264374 Selfridge et al. Jul 2001 B1
6287016 Weigel Sep 2001 B1
6305849 Roehrs et al. Oct 2001 B1
6356390 Hall Mar 2002 B1
6356690 McAlpine et al. Mar 2002 B1
6357929 Roehrs et al. Mar 2002 B1
6371660 Roehrs et al. Apr 2002 B1
6375363 Harrison et al. Apr 2002 B1
6379054 Throckmorton et al. Apr 2002 B2
6386891 Howard et al. May 2002 B1
6409391 Chang Jun 2002 B1
6422764 Marrs Jul 2002 B1
6427035 Mahony Jul 2002 B1
6439780 Mudd et al. Aug 2002 B1
6466725 Battey et al. Oct 2002 B2
6496641 Mahony Dec 2002 B1
6501888 Gimblet et al. Dec 2002 B2
6522804 Mahony Feb 2003 B1
6529663 Parris et al. Mar 2003 B1
6536956 Luther et al. Mar 2003 B2
6539147 Mahony Mar 2003 B1
6540410 Childers et al. Apr 2003 B2
6542674 Gimblet Apr 2003 B1
6546175 Wagman et al. Apr 2003 B1
6554489 Kent et al. Apr 2003 B2
6579014 Melton et al. Jun 2003 B2
6599026 Fahrnbauer et al. Jul 2003 B1
6599027 Miyake et al. Jul 2003 B2
6614980 Mahony Sep 2003 B1
6618526 Jackman et al. Sep 2003 B2
6619697 Griffioen et al. Sep 2003 B2
6621964 Quinn et al. Sep 2003 B2
6625375 Mahony Sep 2003 B1
6644862 Berto et al. Nov 2003 B1
6648520 McDonald et al. Nov 2003 B2
6668127 Mahony Dec 2003 B1
6672774 Theuerkorn et al. Jan 2004 B2
6678442 Gall et al. Jan 2004 B2
6678448 Moisel et al. Jan 2004 B2
6685361 Rubino et al. Feb 2004 B1
6702475 Giobbio et al. Mar 2004 B1
6714708 McAlpine et al. Mar 2004 B2
6714710 Gimblet Mar 2004 B2
6729773 Finona et al. May 2004 B1
6738555 Cooke et al. May 2004 B1
6748147 Quinn et al. Jun 2004 B2
6771861 Wagner et al. Aug 2004 B2
6785450 Wagman et al. Aug 2004 B2
6789950 Loder et al. Sep 2004 B1
6809265 Gladd et al. Oct 2004 B1
6848838 Doss et al. Feb 2005 B2
6856748 Elkins et al. Feb 2005 B1
6899467 McDonald et al. May 2005 B2
6909821 Ravasio et al. Jun 2005 B2
6944387 Howell et al. Sep 2005 B2
7011454 Caveney et al. Mar 2006 B2
7025507 De Marchi Apr 2006 B2
7033191 Cao Apr 2006 B1
7079734 Seddon et al. Jul 2006 B2
7090406 Melton et al. Aug 2006 B2
7090407 Melton et al. Aug 2006 B2
7090409 Nakajima et al. Aug 2006 B2
7104702 Barnes et al. Sep 2006 B2
7111990 Melton et al. Sep 2006 B2
7113679 Melton et al. Sep 2006 B2
7120347 Blackwell, Jr. et al. Oct 2006 B2
7137742 Theuerkorn et al. Nov 2006 B2
7146090 Vo et al. Dec 2006 B2
7150567 Luther et al. Dec 2006 B1
7165893 Schmitz Jan 2007 B2
7178990 Caveney et al. Feb 2007 B2
7184634 Hurley et al. Feb 2007 B2
7201518 Holmquist Apr 2007 B2
7204644 Barnes et al. Apr 2007 B2
7213975 Khemakhem et al. May 2007 B2
7228047 Szilagyi et al. Jun 2007 B1
7241056 Kuffel et al. Jul 2007 B1
7266265 Gall et al. Sep 2007 B2
7270487 Billman et al. Sep 2007 B2
7277614 Cody et al. Oct 2007 B2
7302152 Luther et al. Nov 2007 B2
7330629 Cooke et al. Feb 2008 B2
7333708 Blackwell, Jr. et al. Feb 2008 B2
7341382 Dye Mar 2008 B2
7366416 Ramachandran et al. Apr 2008 B2
7444056 Allen et al. Oct 2008 B2
7463803 Cody et al. Dec 2008 B2
7467896 Melton et al. Dec 2008 B2
7489849 Reagan et al. Feb 2009 B2
7497896 Bromet et al. Mar 2009 B2
7542645 Hua et al. Jun 2009 B1
7565055 Lu et al. Jul 2009 B2
7621675 Bradley Nov 2009 B1
7627222 Reagan et al. Dec 2009 B2
7628545 Cody et al. Dec 2009 B2
7628548 Benjamin et al. Dec 2009 B2
7653282 Blackwell, Jr. et al. Jan 2010 B2
7654747 Theuerkorn et al. Feb 2010 B2
7680388 Reagan et al. Mar 2010 B2
7708476 Liu May 2010 B2
7709733 Plankell May 2010 B1
7712971 Lee et al. May 2010 B2
7713679 Ishiduka et al. May 2010 B2
7740409 Bolton et al. Jun 2010 B2
7742670 Benjamin et al. Jun 2010 B2
7753596 Cox Jul 2010 B2
7762726 Lu Jul 2010 B2
7785015 Melton et al. Aug 2010 B2
7802926 Leeman et al. Sep 2010 B2
7806599 Margolin et al. Oct 2010 B2
7844148 Jenkins et al. Nov 2010 B2
7844160 Reagan et al. Nov 2010 B2
RE42094 Barnes et al. Feb 2011 E
7903923 Gronvall et al. Mar 2011 B2
7903925 Cooke et al. Mar 2011 B2
7918609 Melton et al. Apr 2011 B2
7933517 Ye et al. Apr 2011 B2
7942590 Lu et al. May 2011 B2
8025445 Rambow et al. Sep 2011 B2
8213761 Gronvall et al. Jul 2012 B2
8218935 Reagan et al. Jul 2012 B2
8267596 Theuerkorn Sep 2012 B2
8272792 Coleman et al. Sep 2012 B2
RE43762 Smith et al. Oct 2012 E
8301003 De et al. Oct 2012 B2
8301004 Cooke et al. Oct 2012 B2
8376629 Cline et al. Feb 2013 B2
8408811 De et al. Apr 2013 B2
8439577 Jenkins May 2013 B2
8465235 Jenkins et al. Jun 2013 B2
8466262 Siadak et al. Jun 2013 B2
8472773 De Jong Jun 2013 B2
8480312 Smith et al. Jul 2013 B2
8520996 Cowen et al. Aug 2013 B2
8534928 Cooke et al. Sep 2013 B2
8556522 Cunningham Oct 2013 B2
8622634 Arnold et al. Jan 2014 B2
8635733 Bardzilowski Jan 2014 B2
8662760 Cline et al. Mar 2014 B2
8678668 Cooke et al. Mar 2014 B2
8727638 Lee et al. May 2014 B2
8737837 Conner et al. May 2014 B2
8755654 Danley et al. Jun 2014 B1
8755663 Makrides-Saravanos et al. Jun 2014 B2
8758046 Pezzetti et al. Jun 2014 B2
8764316 Barnette et al. Jul 2014 B1
8770861 Smith et al. Jul 2014 B2
8821036 Shigehara Sep 2014 B2
8998502 Benjamin et al. Apr 2015 B2
9158074 Anderson et al. Oct 2015 B2
9158075 Benjamin et al. Oct 2015 B2
9182567 Mullaney Nov 2015 B2
9207410 Lee et al. Dec 2015 B2
9285550 Nhep et al. Mar 2016 B2
9297974 Valderrabano et al. Mar 2016 B2
9322998 Miller Apr 2016 B2
9383539 Power et al. Jul 2016 B2
9405068 Graham et al. Aug 2016 B2
9482819 Li et al. Nov 2016 B2
9513444 Barnette, Jr. et al. Dec 2016 B2
9551842 Theuerkorn Jan 2017 B2
9684138 Lu Jan 2017 B2
9618718 Islam Apr 2017 B2
9638871 Bund et al. May 2017 B2
9645331 Kim May 2017 B1
9651741 Isenhour et al. May 2017 B2
9664862 Lu et al. May 2017 B2
9684136 Cline et al. Jun 2017 B2
9696500 Barnette et al. Jul 2017 B2
9762322 Amundson Sep 2017 B1
9766416 Kim Sep 2017 B1
9772457 Hill et al. Sep 2017 B2
9810855 Cox et al. Nov 2017 B2
9810856 Graham et al. Nov 2017 B2
9829668 Claessens et al. Nov 2017 B2
9857540 Ahmed et al. Jan 2018 B2
D810029 Robert et al. Feb 2018 S
9891391 Watanabe Feb 2018 B2
9933582 Lin Apr 2018 B1
9983374 Li et al. May 2018 B2
10038946 Smolorz Jul 2018 B2
10061090 Coenegracht Aug 2018 B2
10114176 Gimblet et al. Oct 2018 B2
10180541 Coenegracht et al. Jan 2019 B2
10209454 Isenhour et al. Feb 2019 B2
10235184 Walker Mar 2019 B2
10261268 Theuerkorn Apr 2019 B2
10268011 Courchaine et al. Apr 2019 B2
10353156 Hill et al. Jul 2019 B2
10401575 Daily et al. Sep 2019 B2
10401578 Coenegracht Sep 2019 B2
10409007 Kadar-Kallen et al. Sep 2019 B2
10444442 Takano et al. Oct 2019 B2
10451811 Coenegracht et al. Oct 2019 B2
10451830 Szumacher et al. Oct 2019 B2
10488597 Parikh et al. Nov 2019 B2
10520683 Nhep Dec 2019 B2
10656347 Kato May 2020 B2
10802236 Kowalczyk et al. Oct 2020 B2
10830967 Pimentel et al. Nov 2020 B2
20010019654 Waldron et al. Sep 2001 A1
20010036342 Knecht et al. Nov 2001 A1
20010036345 Gimblet et al. Nov 2001 A1
20020012502 Farrar et al. Jan 2002 A1
20020062978 Sakabe et al. May 2002 A1
20020064364 Battey et al. May 2002 A1
20020081077 Nault Jun 2002 A1
20020122653 Donaldson et al. Sep 2002 A1
20030063866 Melton et al. Apr 2003 A1
20030063867 McDonald et al. Apr 2003 A1
20030063868 Fentress Apr 2003 A1
20030063897 Heo Apr 2003 A1
20030094298 Morrow et al. May 2003 A1
20030099448 Gimblet May 2003 A1
20030103733 Fleenor et al. Jun 2003 A1
20030123813 Ravasio et al. Jul 2003 A1
20040047566 McDonald et al. Mar 2004 A1
20040072454 Nakajima et al. Apr 2004 A1
20040076377 Mizukami et al. Apr 2004 A1
20040096162 Kocher et al. May 2004 A1
20040120662 Lail et al. Jun 2004 A1
20040120663 Lail et al. Jun 2004 A1
20040157449 Hidaka et al. Aug 2004 A1
20040157499 Nania et al. Aug 2004 A1
20040223699 Melton et al. Nov 2004 A1
20040223720 Melton et al. Nov 2004 A1
20040228589 Melton et al. Nov 2004 A1
20050019031 Ye et al. Jan 2005 A1
20050036786 Ramachandran et al. Feb 2005 A1
20050054237 Gladd et al. Mar 2005 A1
20050084215 Grzegorzewska et al. Apr 2005 A1
20050123422 Lilie Jun 2005 A1
20050129379 Reagan et al. Jun 2005 A1
20050175307 Battey et al. Aug 2005 A1
20050232552 Takahashi et al. Oct 2005 A1
20050281510 Vo et al. Dec 2005 A1
20050281514 Oki et al. Dec 2005 A1
20060045430 Theuerkorn et al. Mar 2006 A1
20060088247 Tran et al. Apr 2006 A1
20060093278 Elkins et al. May 2006 A1
20060120672 Cody et al. Jun 2006 A1
20060133758 Mullaney et al. Jun 2006 A1
20060133759 Mullaney et al. Jun 2006 A1
20060147172 Luther et al. Jul 2006 A1
20060153503 Suzuki et al. Jul 2006 A1
20060153517 Reagan et al. Jul 2006 A1
20060171638 Dye Aug 2006 A1
20060269204 Barth et al. Nov 2006 A1
20060269208 Allen et al. Nov 2006 A1
20060280420 Blackwell et al. Dec 2006 A1
20060283619 Kowalczyk et al. Dec 2006 A1
20060291787 Seddon Dec 2006 A1
20070031100 Garcia et al. Feb 2007 A1
20070031103 Tinucci et al. Feb 2007 A1
20070036483 Shin et al. Feb 2007 A1
20070077010 Melton et al. Apr 2007 A1
20070098343 Miller et al. May 2007 A1
20080080817 Melton et al. Apr 2008 A1
20080138016 Katagiyama et al. Jun 2008 A1
20080175542 Lu et al. Jul 2008 A1
20080175544 Fujiwara et al. Jul 2008 A1
20080175548 Knecht et al. Jul 2008 A1
20080232743 Gronvall et al. Sep 2008 A1
20080240658 Leeman et al. Oct 2008 A1
20080264664 Dinh et al. Oct 2008 A1
20080273837 Margolin et al. Nov 2008 A1
20090041412 Danley et al. Feb 2009 A1
20090060421 Parikh et al. Mar 2009 A1
20090148101 Lu et al. Jun 2009 A1
20090148104 Lu et al. Jun 2009 A1
20090185835 Park et al. Jul 2009 A1
20090245743 Cote et al. Oct 2009 A1
20090263097 Solheid et al. Oct 2009 A1
20100008909 Siadak et al. Jan 2010 A1
20100014813 Ito et al. Jan 2010 A1
20100014867 Ramanitra et al. Jan 2010 A1
20100015834 Siebens Jan 2010 A1
20100054680 Lochkovic et al. Mar 2010 A1
20100092136 Nhep Apr 2010 A1
20100172616 Lu et al. Jul 2010 A1
20100197222 Scheucher Aug 2010 A1
20100247053 Cowen et al. Sep 2010 A1
20100272399 Griffiths et al. Oct 2010 A1
20100303426 Davis Dec 2010 A1
20100303427 Rambow et al. Dec 2010 A1
20100310213 Lewallen et al. Dec 2010 A1
20110019964 Nhep et al. Jan 2011 A1
20110047731 Sugita et al. Mar 2011 A1
20110108719 Ford et al. May 2011 A1
20110129186 Lewallen et al. Jun 2011 A1
20110164854 Desard et al. Jul 2011 A1
20110222826 Blackburn et al. Sep 2011 A1
20110262099 Castonguay et al. Oct 2011 A1
20110299814 Nakagawa Dec 2011 A1
20120002925 Nakagawa Jan 2012 A1
20120008909 Mertesdorf et al. Jan 2012 A1
20120106912 McGranahan et al. May 2012 A1
20120183268 De et al. Jul 2012 A1
20120251063 Reagan et al. Oct 2012 A1
20120252244 Elkins, II et al. Oct 2012 A1
20130004122 Kingsbury Jan 2013 A1
20130034333 Holmberg et al. Feb 2013 A1
20130064506 Eberle et al. Mar 2013 A1
20130109213 Chang May 2013 A1
20130170834 Cho et al. Jul 2013 A1
20130236139 Chen et al. Sep 2013 A1
20140016902 Pepe et al. Jan 2014 A1
20140050446 Chang Feb 2014 A1
20140079356 Pepin et al. Mar 2014 A1
20140133806 Hill et al. May 2014 A1
20140133807 Katoh May 2014 A1
20140153876 Dendas et al. Jun 2014 A1
20140161397 Gallegos et al. Jun 2014 A1
20140205257 Durrant et al. Jul 2014 A1
20140219609 Nielson et al. Aug 2014 A1
20140219622 Coan et al. Aug 2014 A1
20140233896 Ishigami et al. Aug 2014 A1
20140241671 Koreeda et al. Aug 2014 A1
20140294395 Waldron et al. Oct 2014 A1
20140328559 Kobayashi et al. Nov 2014 A1
20140355936 Bund et al. Dec 2014 A1
20150003788 Chen et al. Jan 2015 A1
20150036982 Nhep et al. Feb 2015 A1
20150144883 Sendelweck May 2015 A1
20150185423 Matsui et al. Jul 2015 A1
20150253528 Corbille et al. Sep 2015 A1
20150268423 Burkholder et al. Sep 2015 A1
20150268434 Barnette, Jr. et al. Sep 2015 A1
20150293310 Kanno Oct 2015 A1
20150316727 Kondo Nov 2015 A1
20150346436 Pepe et al. Dec 2015 A1
20160015885 Pananen et al. Jan 2016 A1
20160131851 Theuerkorn May 2016 A1
20160131857 Pimentel et al. May 2016 A1
20160139346 Bund et al. May 2016 A1
20160154186 Gimblet et al. Jun 2016 A1
20160161688 Nishimura Jun 2016 A1
20160161689 Nishimura Jun 2016 A1
20160209599 Van Baelen et al. Jul 2016 A1
20160238810 Hubbard et al. Aug 2016 A1
20160246019 Ishii et al. Aug 2016 A1
20160249019 Westwick et al. Aug 2016 A1
20160259133 Kobayashi et al. Sep 2016 A1
20160306122 Tong et al. Oct 2016 A1
20170038538 Isenhour et al. Feb 2017 A1
20170131509 Xiao et al. May 2017 A1
20170139158 Coenegracht May 2017 A1
20170160492 Lin et al. Jun 2017 A1
20170168248 Hayauchi et al. Jun 2017 A1
20170176252 Marple et al. Jun 2017 A1
20170176690 Bretz et al. Jun 2017 A1
20170219782 Nishimura Aug 2017 A1
20170238822 Young et al. Aug 2017 A1
20170254961 Kamada et al. Sep 2017 A1
20170254962 Mueller-Schlomka et al. Sep 2017 A1
20170261699 Compton et al. Sep 2017 A1
20170285279 Daems et al. Oct 2017 A1
20170343741 Coenegracht et al. Nov 2017 A1
20170343745 Rosson Nov 2017 A1
20170351037 Watanabe et al. Dec 2017 A1
20180081127 Coenegracht Mar 2018 A1
20180267265 Zhang et al. Sep 2018 A1
20190004251 Dannoux et al. Jan 2019 A1
20190004252 Rosson Jan 2019 A1
20190004256 Rosson Jan 2019 A1
20190004258 Dannoux et al. Jan 2019 A1
20190107677 Coenegracht et al. Apr 2019 A1
20190147202 Harney May 2019 A1
20190162910 Gurreri May 2019 A1
20190187396 Finnegan et al. Jun 2019 A1
20200012051 Coenegracht et al. Jan 2020 A1
20200049922 Rosson Feb 2020 A1
20200057222 Dannoux et al. Feb 2020 A1
20200057723 Chirca et al. Feb 2020 A1
20200116952 Rosson Apr 2020 A1
20200116953 Rosson Apr 2020 A1
20200241211 Shonkwiler et al. Jul 2020 A1
20200371306 Mosier et al. Nov 2020 A1
20200393629 Hill et al. Dec 2020 A1
Foreign Referenced Citations (199)
Number Date Country
1213783 Apr 1999 CN
1231430 Oct 1999 CN
1646962 Jul 2005 CN
1922523 Feb 2007 CN
101195453 Jun 2008 CN
201704194 Feb 2010 CN
201704194 Jan 2011 CN
203224645 Oct 2013 CN
203396982 Jan 2014 CN
104064903 Sep 2014 CN
03537684 Apr 1987 DE
3737842 Sep 1988 DE
19805554 Aug 1998 DE
0012566 Jun 1980 EP
122566 Oct 1984 EP
130513 Jan 1985 EP
462362 Dec 1991 EP
0469671 Feb 1992 EP
547778 Jun 1993 EP
0547788 Jun 1993 EP
468671 Jan 1996 EP
762171 Mar 1997 EP
855610 Jul 1998 EP
0856751 Aug 1998 EP
856761 Aug 1998 EP
940700 Sep 1999 EP
949522 Oct 1999 EP
957381 Nov 1999 EP
997757 May 2000 EP
1065542 Jan 2001 EP
1258758 Nov 2002 EP
1391762 Feb 2004 EP
1431786 Jun 2004 EP
1438622 Jul 2004 EP
1122566 Jul 2005 EP
1678537 Jul 2006 EP
1759231 Mar 2007 EP
1810062 Jul 2007 EP
2069845 Jun 2009 EP
2149063 Feb 2010 EP
2150847 Feb 2010 EP
2193395 Jun 2010 EP
2255233 Dec 2010 EP
2333597 Jun 2011 EP
2362253 Aug 2011 EP
2401641 Jan 2012 EP
2609458 Jul 2013 EP
2622395 Aug 2013 EP
2734879 May 2014 EP
2815259 Dec 2014 EP
2817667 Dec 2014 EP
2992372 Mar 2016 EP
3064973 Sep 2016 EP
3101740 Dec 2016 EP
3207223 Aug 2017 EP
3245545 Nov 2017 EP
3265859 Jan 2018 EP
3362830 Aug 2018 EP
3427096 Jan 2019 EP
3443395 Feb 2019 EP
3535614 Sep 2019 EP
3537197 Sep 2019 EP
3646074 May 2020 EP
3646079 May 2020 EP
1184287 May 2017 ES
2022284 Dec 1979 GB
2154333 Sep 1985 GB
2169094 Jul 1986 GB
52030447 Mar 1977 JP
58142308 Aug 1983 JP
61-145509 Jul 1986 JP
62054204 Mar 1987 JP
6320111 Feb 1988 JP
63089421 Apr 1988 JP
63078908 May 1988 JP
03-063615 Mar 1991 JP
03207223 Sep 1991 JP
05106765 Apr 1993 JP
05142439 Jun 1993 JP
05297246 Nov 1993 JP
06-320111 Nov 1994 JP
07318758 Dec 1995 JP
08050211 Feb 1996 JP
08054522 Feb 1996 JP
08062432 Mar 1996 JP
08292331 Nov 1996 JP
09135526 May 1997 JP
09159867 Jun 1997 JP
09203831 Aug 1997 JP
09325223 Dec 1997 JP
09325249 Dec 1997 JP
10170781 Jun 1998 JP
10332953 Dec 1998 JP
11064682 Mar 1999 JP
11271582 Oct 1999 JP
11281861 Oct 1999 JP
11326693 Nov 1999 JP
11352368 Dec 1999 JP
2000002828 Jan 2000 JP
2001116968 Apr 2001 JP
2001290051 Oct 2001 JP
2002520987 Jul 2002 JP
2002-250987 Sep 2002 JP
2003009331 Jan 2003 JP
2003070143 Mar 2003 JP
2003121699 Apr 2003 JP
2003177279 Jun 2003 JP
2003302561 Oct 2003 JP
2004361521 Dec 2004 JP
2005024789 Jan 2005 JP
2005031544 Feb 2005 JP
2005077591 Mar 2005 JP
2005114860 Apr 2005 JP
2005520987 Jul 2005 JP
2006023502 Jan 2006 JP
2006146084 Jun 2006 JP
2006259631 Sep 2006 JP
2006337637 Dec 2006 JP
2007078740 Mar 2007 JP
2007121859 May 2007 JP
2009265208 Nov 2009 JP
2010152084 Jul 2010 JP
2011033698 Feb 2011 JP
2013041089 Feb 2013 JP
2013156580 Aug 2013 JP
2014085474 May 2014 JP
05537852 Jul 2014 JP
05538328 Jul 2014 JP
2014134746 Jul 2014 JP
3207223 Nov 2016 JP
10-2013-0081087 Jul 2013 KR
1994025885 Nov 1994 WO
1998036304 Aug 1998 WO
2001027660 Apr 2001 WO
0192927 Dec 2001 WO
2001092937 Dec 2001 WO
0225340 Mar 2002 WO
0336358 May 2003 WO
2004061509 Jul 2004 WO
2005045494 May 2005 WO
2006009597 Jan 2006 WO
2006052420 May 2006 WO
2006113726 Oct 2006 WO
2008027201 Mar 2008 WO
2008150408 Dec 2008 WO
2008150423 Dec 2008 WO
2009042066 Apr 2009 WO
2009117060 Sep 2009 WO
2010092009 Aug 2010 WO
2010099141 Sep 2010 WO
2011044090 Apr 2011 WO
2011047111 Apr 2011 WO
2012027313 Mar 2012 WO
2012037727 Mar 2012 WO
WO-2012037727 Mar 2012 WO
2012044741 Apr 2012 WO
2012163052 Dec 2012 WO
2013016042 Jan 2013 WO
2013122752 Aug 2013 WO
2013126488 Aug 2013 WO
2013177016 Nov 2013 WO
2014151259 Sep 2014 WO
2014167447 Oct 2014 WO
2014179411 Nov 2014 WO
2014197894 Dec 2014 WO
2015144883 Oct 2015 WO
2015197588 Dec 2015 WO
2016059320 Apr 2016 WO
2016100078 Jun 2016 WO
2016095213 Jun 2016 WO
2016115288 Jul 2016 WO
2016156610 Oct 2016 WO
2016168389 Oct 2016 WO
2017063107 Apr 2017 WO
2017146722 Aug 2017 WO
2017155754 Sep 2017 WO
2017178920 Oct 2017 WO
2018083561 May 2018 WO
2018175123 Sep 2018 WO
2018204864 Nov 2018 WO
2019006176 Jan 2019 WO
2019005190 Jan 2019 WO
2019005191 Jan 2019 WO
2019005192 Jan 2019 WO
2019005193 Jan 2019 WO
2019005194 Jan 2019 WO
2019005195 Jan 2019 WO
2019005196 Jan 2019 WO
2019005197 Jan 2019 WO
2019005198 Jan 2019 WO
2019005199 Jan 2019 WO
2019005200 Jan 2019 WO
2019005201 Jan 2019 WO
2019005202 Jan 2019 WO
2019005203 Jan 2019 WO
2019005204 Jan 2019 WO
2019126333 Jun 2019 WO
2019195652 Oct 2019 WO
2020101850 May 2020 WO
Non-Patent Literature Citations (38)
Entry
Nawata, “Multimode and Single-Mode Fiber Connectors Technology”; IEEE Journal of Quantum Electronics, vol. QE-16, No. 6 Published Jun. 1980.
Clearfield, “Fieldshield Optical Fiber Protection System: Installation Manual.” for part No. 016164. Last Updated Dec. 2014. 37 pgs.
Clearfield, “FieldShield® SC and LC Pushable Connectors,” Last Updated Jun. 1, 2018, 2 pgs.
Clearfield, “FieldShield® SmarTerminal: Hardened Pushable Connectors” Last Updated Jun. 29, 2018, 2 pgs.
International Search Report and Written Opinion PCT/US2017/063938 dated May 14, 2018.
International Search Report and Written Opinion PCT/US2017/063953 dated May 14, 2018.
International Search Report and Written Opinion PCT/US2017/063991 dated May 14, 2018.
International Search Report and Written Opinion PCT/US2017/064027 dated Oct. 9, 2018.
International Search Report and Written Opinion PCT/US2017/064063 dated May 15, 2018.
International Search Report and Written Opinion PCT/US2017/064071 dated May 14, 2018.
International Search Report and Written Opinion PCT/US2017/064072 dated May 14, 2018.
International Search Report and Written Opinion PCT/US2017/064077 dated Feb. 26, 2018.
International Search Report and Written Opinion PCT/US2017/064084 dated Feb. 26, 2018.
International Search Report and Written Opinion PCT/US2017/064087 dated Feb. 26, 2018.
International Search Report and Written Opinion PCT/US2017/064092 dated Feb. 23, 2018.
International Search Report and Written Opinion PCT/US2017/064093 dated Feb. 26, 2018.
International Search Report and Written Opinion PCT/US2017/064095 dated Feb. 23, 2018.
International Search Report and Written Opinion PCT/US2017/064096 dated Feb. 26, 2018.
International Search Report and Written Opinion PCT/US2018/039019 dated Sep. 18, 2018.
International Search Report and Written Opinion PCT/US2018/039020 dated May 8, 2019.
International Search Report and Written Opinion PCT/US2018/039490 dated Oct. 4, 2018.
International Search Report and Written Opinion PCT/US2018/039494 dated Oct. 11, 2018.
International Search Report and Written Opinion PCT/US2018/040011 dated Oct. 5, 2018.
International Search Report and Written Opinion PCT/US2018/040104 dated Oct. 9, 2018.
International Search Report and Written Opinion PCT/US2018/040126 dated Oct. 9, 2018.
International Search Report and Written Opinion PCT/US2018/040130 dated Sep. 18, 2018.
Brown, “What is Transmission Welding?” Laser Plastic Welding website, 6 pgs, Retrieved on Dec. 7, 2018 from: http://www.laserplasticwelding.com/what-is-transmission-welding.
Infolite—Design and Data Specifications, 1 pg. Retrieved Feb. 21, 2019.
Notice of Allowance Received for U.S. Appl. No. 16/018,997 dated Oct. 4, 2018.
Office Action Pertaining to U.S. Appl. No. 16/018,918 dated Sep. 28, 2018.
Office Action Pertaining to U.S. Appl. No. 16/018,988 dated Oct. 31, 2018.
Office Action Pertaining to U.S. Appl. No. 16/109,008 dated Oct. 31, 2018.
Schneier, Bruce; “Applied Cryptography: Protocols, Algorithms, and Source Code in C,” Book. 1995 Sec. 10.3, 12.2, 165 Pgs.
Coaxum, L., et al., U.S. Appl. No. 62/341,947, “Fiber Optic Multiport Having Different Types of Ports for Multi-Use,” filed May 26, 2016.
Faulkner et al. “Optical networks for local lopp applications,” J. Lightwave Technol.0733-8724 7(11), 17411751 (1989).
Ramanitra et al. “Optical access network using a self-latching variable splitter remotely powered through an optical fiber link,” Optical Engineering 46(4) p. 45007-1-9, Apr. 2007.
Ratnam et al. “Burst switching using variable optical splitter based switches with wavelength conversion,” ICIIS 2017—Poeceedings Jan. 2018, pp. 1-6.
Wang et al. “Opto-VLSI-based dynamic optical splitter,” Electron. Lett.0013-5194 10.1049/el:20046715 40(22), 14451446 (2004).
Related Publications (1)
Number Date Country
20200124805 A1 Apr 2020 US
Provisional Applications (3)
Number Date Country
62526011 Jun 2017 US
62526018 Jun 2017 US
62526195 Jun 2017 US
Continuations (1)
Number Date Country
Parent PCT/US2018/040130 Jun 2018 US
Child 16721851 US
Continuation in Parts (22)
Number Date Country
Parent 16018918 Jun 2018 US
Child PCT/US2018/040130 US
Parent 16018988 Jun 2018 US
Child 16018918 US
Parent 16018997 Jun 2018 US
Child 16018988 US
Parent 16019008 Jun 2018 US
Child 16018997 US
Parent 16015583 Jun 2018 US
Child 16019008 US
Parent 16015588 Jun 2018 US
Child 16015583 US
Parent PCT/US2017/064027 Nov 2017 US
Child 16015588 US
Parent PCT/US2017/064071 Nov 2017 US
Child PCT/US2017/064027 US
Parent PCT/US2017/064063 Nov 2017 US
Child PCT/US2017/064071 US
Parent PCT/US2017/064072 Nov 2017 US
Child PCT/US2017/064063 US
Parent PCT/US2017/064092 Nov 2017 US
Child PCT/US2017/064072 US
Parent PCT/US2017/064095 Nov 2017 US
Child PCT/US2017/064092 US
Parent PCT/US2018/039484 Jun 2018 US
Child PCT/US2017/064095 US
Parent PCT/US2018/039485 Jun 2018 US
Child PCT/US2018/039484 US
Parent PCT/US2018/039490 Jun 2018 US
Child PCT/US2018/039485 US
Parent PCT/US2018/039494 Jun 2018 US
Child PCT/US2018/039490 US
Parent PCT/US2018/039019 Jun 2018 US
Child PCT/US2018/039494 US
Parent PCT/US2018/039020 Jun 2018 US
Child PCT/US2018/039019 US
Parent PCT/US2017/063862 Nov 2017 US
Child PCT/US2018/039020 US
Parent PCT/US2017/063938 Nov 2017 US
Child PCT/US2017/063862 US
Parent PCT/US2017/063953 Nov 2017 US
Child PCT/US2017/063938 US
Parent PCT/US2017/063991 Nov 2017 US
Child PCT/US2017/063953 US