Fiber optic equipment guides and rails configured with stopping position(s), and related equipment and methods

Information

  • Patent Grant
  • 8538226
  • Patent Number
    8,538,226
  • Date Filed
    Friday, October 9, 2009
    15 years ago
  • Date Issued
    Tuesday, September 17, 2013
    11 years ago
Abstract
Fiber optic equipment guides and rails and related methods are disclosed. In one embodiment, the fiber optic equipment guides and rails have at least one stopping member disposed therein to provide at least one stopping position during movement. The fiber optic equipment guides and rails can be included in fiber optic equipment to support movement or translation of the fiber optic equipment for access. Such fiber optic equipment can include, but is not limited to, fiber optic equipment chassis, drawers, equipment trays, and fiber optic modules. The fiber optic equipment guides and/or rails include at least one stopping member configured to provide at least one stopping position during movement. Stopping positions allow fiber optic equipment to be retained in a given position during access to the fiber optic equipment. The stopping positions are configured to be overcome with additional force to allow further movement of the fiber optic equipment.
Description
BACKGROUND

1. Field of the Disclosure


The technology of the disclosure relates to fiber optic modules provided in fiber optic equipment to support fiber optic connections.


2. Technical Background


Benefits of optical fiber include extremely wide bandwidth and low noise operation. Because of these advantages, optical fiber is increasingly being used for a variety of applications, including but not limited to broadband voice, video, and data transmission. Fiber optic networks employing optical fiber are being developed and used to deliver voice, video, and data transmissions to subscribers over both private and public networks. These fiber optic networks often include separated connection points linking optical fibers to provide “live fiber” from one connection point to another connection point. In this regard, fiber optic equipment is located in data distribution centers or central offices to support interconnections.


The fiber optic equipment is customized based on the application need. The fiber optic equipment is typically included in housings that are mounted in equipment racks to optimize use of space. One example of such fiber optic equipment is a fiber optic module. A fiber optic module is designed to provide cable-to-cable fiber optic connections and manage the polarity of fiber optic cable connections. A fiber optic module is typically mounted to a chassis or housing which is then mounted inside an equipment rack or cabinet. A technician establishes fiber optic connections to fiber optic equipment mounted in the equipment rack. A need still exists to improve access to optical components in a fiber optic equipment tray as well as provide neat routing and organization of jumper connections.


SUMMARY OF THE DETAILED DESCRIPTION

Embodiments disclosed in the detailed description include fiber optic equipment guides and/or fiber optic equipment rails and related equipment and methods. The fiber optic equipment guides and/or fiber optic equipment rails have at least one stopping member disposed therein to provide at least one stopping position during movement. The fiber optic equipment guides and/or fiber optic equipment rails can be included in fiber optic equipment to support movement or translation of the fiber optic equipment for access. Such fiber optic equipment can include, but is not limited to, fiber optic equipment chassis, drawers, equipment trays, and fiber optic modules. The fiber optic equipment guides and/or rails include at least one stopping member configured to provide at least one stopping position during movement of the fiber optic guides and/or rails. Stopping positions allow fiber optic equipment to be retained in a given position during access to the fiber optic equipment. The stopping positions are configured to be overcome with additional force to allow further movement of the fiber optic equipment.


In one embodiment, a fiber optic equipment guide is provided. The fiber optic equipment guide comprises a guide panel. At least one guide member is disposed in the guide panel and configured to receive at least one fiber optic equipment rail. At least one stopping member is disposed in the at least one guide member. The stopping member(s) is configured to provide at least one stopping position for the at least one fiber optic equipment rail during movement in the at least one guide member.


In another embodiment, a fiber optic equipment rail is provided. The fiber optic equipment rail comprises an elongated member. The elongated member is configured to be attached to fiber optic equipment. The elongated member is further configured to be received in a fiber optic equipment guide to move the fiber optic equipment about the fiber optic equipment guide. At least one stopping member is disposed in the elongated member. The stopping member(s) is configured to provide at least one stopping position for the fiber optic equipment during movement in the fiber optic equipment guide.


The fiber optic equipment guides and rails disclosed herein can be attached or disposed in any type of fiber optic equipment for movement and to provide stopping positions along the movement path. The fiber optic equipment guides can be attached or disposed, without limitation, in chassis, fiber optic equipment drawers, fiber optic equipment trays, and/or fiber optic modules. The fiber optic equipment rails can be attached or disposed, without limitation, in fiber optic equipment drawers, fiber optic equipment trays, and/or fiber optic modules.


Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description that follows, the claims, as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description present embodiments, and are intended to provide an overview or framework for understanding the nature and character of the disclosure. The accompanying drawings are included to provide a further understanding, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments, and together with the description serve to explain the principles and operation of the concepts disclosed.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a front perspective view of an exemplary fiber optic equipment drawer installed in a chassis and supporting independently moveable fiber optic equipment trays and modules, according to one embodiment;



FIG. 2A is a front perspective view of the fiber optic equipment drawer of FIG. 1 pulled fully open from the chassis and tilted downward, with one of the fiber optic equipment trays pulled out from the fiber optic equipment drawer;



FIG. 2B is a side view of the fiber optic equipment drawer in FIG. 2A;



FIG. 3 is a front perspective view of the fiber optic equipment drawer and chassis of FIG. 1 with a chassis cover removed;



FIG. 4 is a close-up view of the drawer door of the fiber optic equipment drawer of FIG. 3;



FIG. 5 is a front perspective view of the fiber optic equipment drawer and chassis of FIG. 1 with the drawer door lowered according to one embodiment;



FIG. 6 is a front perspective view of the fiber optic equipment drawer and chassis of FIG. 1 with the fiber optic equipment drawer extended out from the chassis and the drawer door lowered;



FIG. 7 is a front perspective view of the fiber optic equipment drawer of FIG. 1 without installed fiber optic equipment trays and modules;



FIG. 8A is a left side, cross-section view of an exemplary drawer retention member in the fiber optic equipment drawer of FIG. 1 retained in the chassis;



FIG. 8B is a top perspective, cross-section view of the drawer retention member illustrated in FIG. 8A;



FIG. 9A is a top perspective, close-up view of the drawer retention member of the fiber optic equipment drawer of FIG. 1 pulled out from the chassis;



FIG. 9B is a bottom perspective, close-up view of the drawer retention member illustrated in FIG. 9A;



FIG. 10A is a front perspective view of a rear panel of the fiber optic equipment drawer of FIG. 1 illustrating an exemplary drawer pull-out limiting member just prior to the fiber optic equipment drawer being fully pulled out from the chassis;



FIG. 10B is a front perspective view of a rear panel of the fiber optic equipment drawer of FIG. 1 illustrating the fiber optic equipment drawer pull-out limiting member of FIG. 10A when the fiber optic equipment drawer is fully pulled out from the chassis;



FIG. 11A is a front perspective view of the fiber optic equipment drawer of FIG. 1 fully pulled out from the chassis and tilted downward;



FIG. 11B is a side view of the fiber optic equipment drawer in FIG. 11A;



FIG. 12 is a front perspective view of the fiber optic equipment drawer of FIG. 1 without installed fiber optic equipment trays and modules and tilted downward;



FIG. 13A is a top perspective close-up view of an exemplary tilt limiting member of the fiber optic equipment drawer of FIG. 1 when the fiber optic equipment drawer is pulled out from the chassis and not tilted;



FIG. 13B is a top perspective close-up view of the tilt limiting member of FIG. 13A when the fiber optic equipment drawer is fully pulled out from the chassis and tilted downward;



FIG. 13C is a bottom perspective close-up view of FIG. 13B;



FIG. 13D is a close-up bottom perspective view of the tilt limiting member of FIG. 13A including a slot to further limit the tilt angle of the fiber optic equipment drawer;



FIG. 13E is a bottom perspective view of FIG. 13D with the fiber optic equipment drawer tilted downward;



FIG. 13F is a front, right perspective view of the fiber optic equipment drawer of FIG. 7 including the tilt limiting members of FIGS. 13D and 13E disposed between a flange of the fiber optic equipment drawer and a control plate configured to provide splay control for the fiber optic equipment drawer;



FIG. 13G is a rear, right perspective view of FIG. 13F;



FIGS. 13H and 13I are close-up, left and right perspective views, respectively, of the fiber optic equipment drawer and the tilt limiting member in FIGS. 13F and 13G illustrating an example of how a control plate can be attached to the flanges of the fiber optic equipment drawer;



FIG. 13J is a close-up side view of the fiber optic equipment drawer and the tilt limiting member in FIGS. 13F and 13G illustrating an exemplary alignment of the control plate to the tilt limiting member and a flange of the fiber optic equipment drawer;



FIG. 13K is a close-up, right perspective view of the control plate attached to the flange of the fiber optic equipment drawer of FIGS. 13E and 13F;



FIG. 13L is a close-up, left perspective view of the control plate attached to the fiber optic equipment drawer of FIGS. 13E and 13F with the fiber optic equipment drawer tilted downward;



FIG. 14A is a front perspective view of an exemplary fiber optic equipment tray supported by the fiber optic equipment drawer of FIG. 1 and pulled out from the fiber optic equipment drawer;



FIG. 14B is a close-up view of the fiber optic equipment tray of FIG. 14A;



FIG. 15 is a front perspective view of the exemplary fiber optic equipment tray of FIG. 14A removed from the fiber optic equipment drawer of FIG. 1;



FIG. 16A is a front, right perspective view of an exemplary fiber optic module that can be supported by the fiber optic equipment tray of FIG. 15;



FIG. 16B is a front, left perspective view of the fiber optic module of FIG. 16A;



FIG. 17 is a front perspective view of fiber optic modules according to the fiber optic modules of FIG. 16A installed in the fiber optic equipment tray of FIG. 15;



FIG. 18 is a rear perspective view of the fiber optic equipment drawer and chassis of FIG. 3 illustrating rear-installable fiber optic modules installed in the fiber optic equipment trays installed in the fiber optic equipment drawer;



FIGS. 19A and 19B are left and right perspective views of an exemplary tray guide disposed in the fiber optic equipment drawer of FIG. 1 configured to receive the fiber optic equipment tray of FIG. 15;



FIGS. 19C and 19D are left and right perspective views of another exemplary tray guide configured to receive tray rail(s) of the fiber optic equipment tray of FIG. 15;



FIG. 20 is a perspective, left-side cross-sectional view of the fiber optic equipment drawer and chassis of FIG. 1 illustrating the tray guide of FIGS. 19A and 19B receiving tray rails of the fiber optic equipment trays of FIG. 15;



FIGS. 21A and 21B are perspective and top views, respectively, of an exemplary tray rail for the fiber optic equipment tray of FIG. 15 configured to be received by the tray guide of FIGS. 19A and 19B;



FIG. 22 is a rear perspective view of the fiber optic equipment drawer and chassis of FIG. 1 with the rear chassis cover illustrated and removed;



FIG. 23 is a rear perspective view of the fiber optic equipment drawer and chassis of FIG. 22 with the rear chassis cover installed;



FIG. 24 is a front perspective view of another exemplary fiber optic equipment drawer installed in a chassis and supporting independently moveable fiber optic equipment trays and modules;



FIG. 25A is a front perspective view of the fiber optic equipment drawer of FIG. 24 pulled fully open from the chassis and tilted downward;



FIG. 25B is a side view of the fiber optic equipment drawer in FIG. 25A;



FIG. 26 is a front perspective view of the fiber optic equipment drawer and chassis of FIG. 24 with the drawer door lowered according to one embodiment;



FIG. 27A is a front perspective view of the fiber optic equipment drawer and chassis of FIG. 24 with the fiber optic equipment drawer extended out from the chassis and the drawer door lowered;



FIG. 27B is a top view of the fiber optic equipment drawer and chassis of FIG. 27A;



FIG. 28 is a bottom perspective, close-up view of a left end drawer retention member of the fiber optic equipment drawer of FIG. 24;



FIG. 29A is a perspective, right-side, isolated view of a right end drawer retention member of the fiber optic equipment drawer of FIG. 24;



FIG. 29B is a perspective, left-side, isolated view of the drawer retention member of FIG. 29A;



FIG. 30A is a perspective, close-up view of the front panel and rear panel of the fiber optic equipment drawer of FIG. 24 with the front panel tilted downward;



FIG. 30B is a perspective, close-up view of a drawer pull-out limiting member of the fiber optic equipment drawer of FIG. 24;



FIG. 31A is a front perspective view of the fiber optic equipment drawer of FIG. 24 fully pulled out from the chassis and tilted downward;



FIG. 31B is a rear perspective view of the fiber optic equipment drawer in FIG. 31A;



FIG. 32A is a perspective, close-up view of a drawer guide fully extended out from a drawer rail disposed in the fiber optic equipment drawer of FIG. 24;



FIG. 32B is a perspective, close-up view of the drawer guide of FIG. 32A retracted fully into the drawer rail in the fiber optic equipment drawer of FIG. 24;



FIG. 33A is a front perspective view of alternative exemplary fiber optic equipment including independently moveable fiber optic equipment trays and fiber optic modules installed therein, according to another embodiment;



FIG. 33B is a side view of the fiber optic equipment drawer of FIG. 33A;



FIG. 34 is a front perspective view of the fiber optic equipment of FIG. 33A with the chassis cover removed; and



FIG. 35 is a front perspective view of the fiber optic equipment of FIG. 33A with a fiber optic equipment tray pulled out from the chassis.





DETAILED DESCRIPTION OF THE EMBODIMENTS

Reference will now be made in detail to certain embodiments, examples of which are illustrated in the accompanying drawings, in which some, but not all features are shown. Indeed, embodiments disclosed herein may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Whenever possible, like reference numbers will be used to refer to like components or parts.


Embodiments disclosed in the detailed description include fiber optic equipment guides and/or fiber optic equipment rails and related equipment and methods. The fiber optic equipment guides and/or fiber optic equipment rails have at least one stopping member disposed therein to provide at least one stopping position during movement. The fiber optic equipment guides and/or fiber optic equipment rails can be included in fiber optic equipment to support movement or translation of the fiber optic equipment for access. Such fiber optic equipment can include, but is not limited to, fiber optic equipment chassis, drawers, equipment trays, and fiber optic modules. The fiber optic equipment guides and/or rails include at least one stopping member configured to provide at least one stopping position during movement of the fiber optic guides and/or rails. Stopping positions allow fiber optic equipment to be retained in a given position during access to the fiber optic equipment. The stopping positions are configured to be overcome with additional force to allow further movement of the fiber optic equipment.


Embodiments disclosed in the detailed description also include fiber optic apparatuses that support fiber optic equipment. In one embodiment, the fiber optic apparatus comprises a fiber optic equipment drawer. The fiber optic equipment drawer is installed in and movable about a chassis. At least one fiber optic equipment tray is received in at least one tray guide disposed in the fiber optic equipment drawer. The fiber optic equipment tray(s) is moveable about the tray guide(s) to be movable about the fiber optic equipment drawer. At least one fiber optic module is received in at least one module guide disposed in a fiber optic equipment tray. The fiber optic module(s) is movable about the module guide(s) to be movable about a fiber optic equipment tray. In this manner, enhanced access can be provided to the fiber optic module(s) disposed in the fiber optic equipment drawer and its fiber optic connections. The fiber optic equipment drawer can be moved out from the chassis to provide access to the fiber optic equipment tray(s) and fiber optic module(s) supported therein. The fiber optic equipment tray(s) can be moved out from the fiber optic equipment drawer to provide enhanced access to the fiber optic module(s) supported therein. The fiber optic module(s) can be moved out from the fiber optic equipment tray(s) to provide further enhanced access to the fiber optic module(s). Enhanced access may be useful for installing or re-installing, re-configuring, and/or removing fiber optic modules and accessing fiber optic connections made therein.


In this regard, FIG. 1 illustrates exemplary fiber optic equipment 10. The exemplary fiber optic equipment 10 may be provided at a data distribution center or central office to support cable-to-cable fiber optic connections and to manage a plurality of fiber optic cable connections. The fiber optic equipment 10 includes a fiber optic equipment chassis 12 (“chassis 12”). The chassis 12 is shown as being installed in a fiber optic equipment rack 14. The fiber optic equipment rack 14 contains two vertical rails 16A, 16B that extend vertically and include a series of apertures 18. The apertures 18 facilitate attachment of the fiber optic equipment 10 inside the fiber optic equipment rack 14. The fiber optic equipment 10 is attached and supported by the fiber optic equipment rack 14 in the form of shelves that are stacked on top of each other within the vertical rails 16A, 16B. As illustrated, the fiber optic equipment 10 is attached to the vertical rails 16A, 16B. The fiber optic equipment rack 14 may support 1U-sized shelves, any other U-size, with “U” equaling a standard 1.75 inches in height, or any other height desired.


As illustrated in FIG. 1 and discussed in greater detail below in this description, the chassis 12 includes a fiber optic equipment drawer 20 supporting one or more extendable fiber optic equipment trays 22. The fiber optic equipment trays 22 can be moved and extended from the fiber optic equipment drawer 20 and retracted back into the fiber optic equipment drawer 20. Any number of fiber optic equipment trays 22 can be provided. Each fiber optic equipment tray 22 supports one or more fiber optic modules (illustrated in FIG. 2A as element 26) that each support one or more fiber optic connections. The view of the fiber optic modules in FIG. 1 is obstructed by a front chassis cover 24 placed in front of the fiber optic equipment drawer 20 as part of the chassis 12. The front chassis cover 24 is attached to a rear chassis cover 25 to form a cover over the chassis 12. The fiber optic equipment drawer 20 is extendable out from the chassis 12 to access the fiber optic equipment trays 22 and the fiber optic modules 26 supported therein.


In the example of the fiber optic equipment 10 in FIG. 1, two fiber optic equipment trays 22 are supported by the fiber optic equipment drawer 20 with each fiber optic equipment tray 22 supporting four (4) fiber optic modules 26. Each fiber optic module 26 supports twelve (12) optical fiber connections. Thus, a total of up to ninety-six (96) optical fiber connections can be provided by the fiber optic equipment drawer 20, although the fiber optic equipment drawer 20 is not limited to this density.



FIGS. 2A and 2B are provided to summarize certain capabilities and features of the fiber optic equipment 10 and fiber optic equipment drawer 20 of FIG. 1. Embodiments of these capabilities and features will be described in more detail in this description. FIG. 2A is a front perspective view of the chassis 12 and fiber optic equipment drawer 20. FIG. 2B is a side view of the chassis 12 and fiber optic equipment drawer 20. As illustrated in FIG. 2A, the fiber optic equipment drawer 20 is pulled out from the chassis 12. The fiber optic modules 26 supported by the fiber optic equipment trays 22 inside the fiber optic equipment drawer 20 can be seen. The fiber optic equipment drawer 20 can be extended out from the chassis 12 to provide access to the fiber optic equipment trays 22. The fiber optic equipment trays 22 can be extended out from the fiber optic equipment drawer 20 to provide access to fiber optic modules 26 supported in the fiber optic equipment trays 22 and fiber optic connections supported therein. As illustrated in FIGS. 2A and 2B, the fiber optic equipment drawer 20 is pulled or extended fully from the chassis 12 and tilted downward. The fiber optic equipment drawer 20 can be tilted downward to tilt the fiber optic modules 26 installed in the fiber optic equipment drawer 20 downward if desired, as illustrated in FIGS. 2A and 2B. Tilting the fiber optic equipment drawer 20 downward for access may be particularly useful if the fiber optic equipment drawer 20 is located higher in a fiber optic equipment rack. The fiber optic modules 26 can be accessed by pulling out the fiber optic equipment tray 22 supporting the fiber optic module 26 from the fiber optic equipment drawer 20, as illustrated in FIGS. 2A and 2B. Further, the fiber optic modules 26 can be removed from the fiber optic equipment trays 22, if desired.


As will be described in more detail below, each fiber optic equipment tray 22 is also independently translatable from the fiber optic equipment drawer 20, whether or not the fiber optic equipment drawer 20 is extended out from the chassis 12 or tilted downward. This is illustrated by example in FIGS. 2A and 2B. As illustrated therein, one of the fiber optic equipment trays 22′ is pulled out from the extended fiber optic equipment drawer 20. In this manner, enhanced access can be provided to the fiber optic modules 26. Access may be used for installing, configuring, re-configuring, re-installing, and removing the fiber optic modules 26 and the fiber optic connections provided therein as an example. As will be also described in more detail below, each particular fiber optic module 26 in this embodiment can be translated or removed independent from other fiber optic modules 26 in a given fiber optic equipment tray 22 for further access, if desired.



FIGS. 3-23 will now be referenced to describe the various capabilities and features of the fiber optic equipment 10 and fiber optic equipment drawer 20 of FIG. 1 by example in more detail.



FIG. 3 is a front perspective view of the fiber optic equipment 10 and fiber optic equipment drawer 20 of FIG. 1 with the fiber optic equipment drawer 20 fully retracted into the chassis 12. The front chassis cover 24 and the rear chassis cover 25 are removed to facilitate discussion of the components of and inside the fiber optic equipment drawer 20. As illustrated in FIG. 3, the fiber optic equipment drawer 20 includes a drawer door 28 in this embodiment. When the fiber optic equipment trays 22 are fully retracted into the fiber optic equipment drawer 20, as illustrated in FIG. 3, the drawer door 28 can be closed and locked to the chassis 12 to close off access to the fiber optic equipment trays 22. In this embodiment, the drawer door 28 is hingedly attached to the front end 30 of the fiber optic equipment drawer 20. FIG. 4 is a close-up view of FIG. 3 illustrating a portion of the drawer door 28 and a hinge 32 attaching a bottom portion 34 of the drawer door 28 to the front end 30 of the fiber optic equipment drawer 20 in this embodiment. In this manner, the drawer door 28 is retained with the fiber optic equipment drawer 20 when the drawer door 28 is opened, as illustrated in FIG. 5.


To retain the drawer door 28 closed to the chassis 12 in this embodiment, a drawer door locking mechanism 40 is provided. The drawer door locking mechanism 40 is configured to releasably retain the drawer door 28 closed to the chassis 12, and more particularly to the front chassis cover 24. As illustrated in FIG. 3, two drawer door locking mechanisms 40 are provided; one for a left side end 42 and one for a right side end 44 of the drawer door 28. FIG. 4 illustrates a close-up view of the drawer door locking mechanism 40. In this embodiment, the drawer door locking mechanism 40 is comprised of a push button latch 46. The push button latch 46 is configured to engage a latch 48 with a latch orifice 51 disposed in the front chassis cover 24 to retain the drawer door 28 closed. Push button latches 46 are each disposed in the drawer door 28, one on the left side end 42 and one on the right side end 44, in this embodiment as illustrated in FIG. 5. Two latch orifices 51 are disposed in the front chassis cover 24 and configured to receive the latches 48 to lock the drawer door 28, as also illustrated in FIG. 5. The push button latches 46 in this embodiment are spring-loaded such that when a force is not applied to push buttons 50, the latches 48 are biased upward to retain the latches 48 engaged with the latch orifices 51 when the drawer door 28 is closed.


When it is desired to pull out one or more of the fiber optic equipment trays 22, the drawer door 28 can be unlocked from the front chassis cover 24 and opened. The push buttons 50 are configured to move the latches 48 downward to overcome the spring-loaded force in the push button latches 46 when a downward force is applied to the push buttons 50. When the push buttons 50 are pushed downward, the latches 48 are disengaged from the latch orifices 51 in the front chassis cover 24 to unlock the drawer door 28. The drawer door 28 can then be opened from the front chassis cover 24. When opened, the drawer door 28 can swing downward about the hinges 32.


As previously discussed, the fiber optic equipment drawer 20 in the fiber optic equipment 10 of FIG. 1 is configured to be pulled out from the chassis 12 for enhanced access to the fiber optic equipments trays 22 and/or to the fiber optic modules 26 contained therein. In this regard, FIG. 6 provides a front perspective view of the fiber optic equipment 10 and fiber optic equipment drawer 20 of FIG. 1 with the drawer door 28 opened and lowered and the fiber optic equipment drawer 20 extended out from the chassis 12.


To further illustrate the fiber optic equipment drawer 20 and its various features and components, a perspective view of the fiber optic equipment drawer 20 which has been removed from the chassis 12 and does not include fiber optic equipment trays 22 and fiber optic modules 26 is illustrated in FIG. 7. The fiber optic equipment drawer 20 is configured to provide several features, some or all which can be provided. In this embodiment, the fiber optic equipment drawer 20 includes a front panel 58 attached to a rear panel 60. The front panel 58 and rear panel 60 may be formed from sheet metal or any other form or type of material desired. The front panel 58 is configured to support one or more fiber optic equipment trays 22 and fiber optic modules 26 disposed in the fiber optic equipment trays 22, as previously discussed and illustrated in FIG. 6.


With continuing reference to FIG. 7, the fiber optic equipment drawer 20 includes two drawer retention members 62 disposed in the front panel 58. The drawer retention members 62 are configured to releasably retain the fiber optic equipment drawer 20 in the chassis 12 until a sufficient and purposeful force is applied to release the fiber optic equipment drawer 20. In this embodiment, the drawer retention members 62 are provided in the form of embosses or dimples 64 disposed in the front panel 58 adjacent the front end 30 of the fiber optic equipment drawer 20. The embosses 64 are configured to align with and interfere with protrusions provided in the form of protruding lances (illustrated in FIG. 8A as element 88) disposed in the chassis 12 when the fiber optic equipment drawer 20 is retracted into the chassis 12. To release the fiber optic equipment drawer 20 to be extended from the chassis 12, a force is applied to the fiber optic equipment drawer 20. The embosses 64 will abut against the lances 88. To clear the interference between the embosses 64 and the lances 88, a force is applied to the fiber optic equipment drawer 20 sufficient to allow the embosses 64 to be pulled up across and over the lances 88 in the chassis 12 to release the fiber optic equipment drawer 20 from the chassis 12. A force is likewise applied to the fiber optic equipment drawer 20 to push the embosses 64 across and back over the lances 88 to retain the fiber optic equipment drawer 20 retracted into the chassis 12. The embosses 64 in this embodiment are disposed in raised sections 65 in the front panel 58 extending from the front end 30 to a rear end 67 of the front panel 58. One or more than two drawer retention members 62 may also be provided. More detail regarding the drawer retention members 62 in this embodiment is described below with regard to FIGS. 8A-9B.


Also in this embodiment as illustrated in FIG. 7, two drawer pull-out limiting members 66 are disposed in the rear panel 60 of the fiber optic equipment drawer 20. The drawer pull-out limiting members 66 limit the pull out distance of the fiber optic equipment drawer 20 from the chassis 12. Flanges 69 are provided as part of the rear panel 60 to ride along the inside of the chassis 12 as the fiber optic equipment drawer 20 is pulled out from the chassis 12. The drawer pull-out limiting members 66 each include tabs 68 that are configured to also engage with lances 88 disposed in the chassis 12. Once the tabs 68 engage with the lances 88, the fiber optic equipment drawer 20 is prevented from further extending out from the chassis 12. One or more than two drawer pull-out limiting members 66 may also be provided. More detail regarding the drawer pull-out limiting members 66 in this embodiment is described below with regard to FIGS. 10A-10B.


With continuing reference to FIG. 7, the front panel 58 and rear panel 60 in this embodiment allow the fiber optic equipment drawer 20 to be tilted downward when pulled out from the chassis 12. The front panel 58 is configured to tilt about the rear panel 60 and the chassis 12 via a hinge 70 formed and disposed between the front panel 58 and the rear panel 60. Any fiber optic equipment, including fiber optic equipment trays 22 and fiber optic modules 26 disposed in the front panel 58, will also tilt downward as a result of the front panel 58 being tilted downward. The flanges 69 provided as part of the rear panel 60 each contain a tilt limiting member 72 to limit the downward tilting of the fiber optic equipment drawer 20 about the rear panel 60 and the chassis 12. One or more than two tilt drawer limiting members 72 may also be provided. More detail regarding the tilting ability of the fiber optic equipment drawer 20 and the drawer tilt limiting members 72 to limit the tilt angle of the fiber optic equipment drawer 20 is described below with regard to FIGS. 11A-14.


With continuing reference to FIG. 7, the fiber optic equipment drawer 20 in this embodiment also includes two tray guides 74 each disposed on a left side end 76 and a right side end 78 of the fiber optic equipment drawer 20. The tray guides 74 are disposed on left and right side members 79, 80 disposed generally orthogonally to a base 82 of the front panel 58. The tray guides 74 are configured to receive one or more fiber optic equipment trays 22 each supporting one or more fiber optic modules 22, as previously discussed and illustrated in FIG. 6. The tray guides 74 in this embodiment are comprised of a plurality of tray rail guides 84 each configured to receive a tray rail of a fiber optic equipment tray 22. In this manner, the fiber optic equipment trays 22 can be moved in and out of the fiber optic equipment drawer 20 by moving the tray rails about the tray rail guides 84. More detail regarding the tray guides 74 included in the fiber optic equipment drawer 20 to support fiber optic equipment trays 22 is described below with regard to FIGS. 15-20.



FIGS. 8A-9B illustrate more detail regarding the drawer retention members 62 disposed in the fiber optic equipment drawer 20. The drawer retention members 62 retain the fiber optic equipment drawer 20 in the chassis 12 when retracted in the chassis 12. FIGS. 8A and 8B illustrate side and perspective cross-section views, respectively, of one drawer retention member 62 and the surrounding front panel 58 of the fiber optic equipment drawer 20 and chassis 12 when the fiber optic equipment drawer 20 is refracted and retained in the chassis 12. As illustrated, the emboss 64 is disposed on the raised section 65 of the front panel 58 on the left side end 76 of the fiber optic equipment drawer 20. Note that another emboss 64 not illustrated in FIGS. 8A and 8B is also disposed on the right side end 78 of the fiber optic equipment drawer 20, as illustrated in FIG. 6. In FIGS. 8A and 8B, the emboss 64 is located on a rearward side 86 of a lance 88 retaining the fiber optic equipment drawer 20 in the chassis 12. The lance 88 is disposed in the chassis 12 to protrude above the chassis 12 adjacent to a bottom side 89 of the front panel 58. When it is desired to pull the fiber optic equipment drawer 20 out from the chassis 12, a pulling force can be applied such that the emboss 64 will be pulled into the lance 88. With enough pulling force, the emboss 64 will drag across the lance 88 raising the front panel 58 over the lance 88 until the emboss 64 is pulled on a frontward side 90 of the lance 88, as illustrated in FIGS. 9A-9B. The fiber optic equipment drawer 20 will thereafter be released from the chassis 12. In this embodiment, optional keys 92 are cut into the emboss 64 to reduce the pulling force necessary for the emboss 64 to clear the interference with the lances 88. The keys 92 can also serve to interfere with the lances 88 to retain the fiber optic equipment drawer 20 in a closed position. Also note in this embodiment, the embosses 64 are disposed in the raised sections 65 of the front panel 58 so the front panel 58 is clear of interference with the lances 88 when the fiber optic equipment drawer 20 is pulled out from the chassis 12.



FIGS. 9A and 9B illustrate top and bottom perspective, close-up views of the drawer retention member 62 when the fiber optic equipment drawer 20 has been pulled outward from the chassis 12. After the emboss 64 is located on the frontward side 90 of the lance 88, the fiber optic equipment drawer 20 is free to be pulled out from the chassis 12. In this embodiment, the fiber optic equipment drawer 20 is limited to a certain pull out distance. In this regard, FIGS. 10A and 10B illustrate one of two drawer pull-out limiting members 66 provided in the fiber optic equipment drawer 20. The illustrated drawer pull-out limiting member 66 is disposed on the left side end 76 of the fiber optic equipment drawer 20. Note that another pull out drawer pull-out limiting member 66 not illustrated in FIGS. 10A and 10B is also disposed on the right side end 78 of the fiber optic equipment drawer 20, as illustrated in FIG. 6. FIG. 10A is a front perspective view of the drawer pull-out limiting member 66 disposed in the rear panel 60 of the fiber optic equipment drawer 20 just prior to the fiber optic equipment drawer 20 being fully extended from the chassis 12. As illustrated, the tab 68 disposed in the rear panel 60 of the fiber optic equipment drawer 20 is aligned with the lance 88 disposed in the chassis 12. The front and rear panels 58, 60 sit above the chassis 12 and are free to move about the chassis 12 once the fiber optic equipment drawer 20 is released from the drawer retention member 62. However, the lance 88 is disposed about the chassis 12 in the travel plane TP of the tab 68. When the rear panel 60 is almost fully extended as illustrated in FIG. 10A, the tab 68 is configured to enter an opening 94 disposed in the lance 88. The rear panel 60 and thus the fiber optic equipment drawer 20 is prevented from extending out further from the chassis 12 once the tab 68 is fully engaged with the opening 94 in the lance 88, as illustrated in FIG. 10B. In this manner, the tab 68 and lance 88 provide the drawer pull-out limiting member 66 to limit the pull out distance of the fiber optic equipment drawer 20.



FIGS. 11A-14 illustrate tilt and tilt limiting features of the fiber optic equipment drawer 20 according to one embodiment. FIGS. 11A and 11B illustrate the fiber optic equipment drawer 20 pulled out from the chassis 12 and tilted downward about the chassis 12. As previously discussed, tilting the fiber optic equipment drawer 20 downward can provide enhanced access to the fiber optic equipment trays 22 and the fiber optic modules 26 disposed in the fiber optic equipment trays 22 and/or their fiber optic connections. FIG. 11A illustrates a front perspective view of the fiber optic equipment drawer 20 pulled out from the chassis 12 and tilted downward. FIG. 11B is a side view of the orientation of the fiber optic equipment drawer 20 illustrated in FIG. 11A. In this embodiment, the front panel 58 can tilt downward about the rear panel 60. The rear panel 60 remains oriented in a plane parallel or substantially parallel to the chassis 12. Because the fiber optic equipment trays 22 and fiber optic modules 26 contained therein are disposed in the front panel 58, tilting of the front panel 58 also tilts the fiber optic equipment trays 22 and fiber optic modules 26 for access.


The fiber optic equipment drawer 20 is configured to tilt downward via the hinge 70 disposed between the front panel 58 and the rear panel 60 of the fiber optic equipment drawer 20 in this embodiment. The hinge 70 is formed by rolled portions 98 on a front end 100 of the rear panel 60 interleaved with rolled portions 102 on a rear end 104 of the front panel 58. When interleaved, the rolled portions 98, 102 form a passage (not shown) therebetween extending from the left side end 76 to the right side end 78 of the front and rear panels 58, 60. A rod (not shown) is extended through a passage 106 (FIG. 11B) to maintain the rolled portions 98, 102 interleaved together to provide the hinge 70. When the fiber optic equipment drawer 20 is pulled out such that the front panel 58 is pulled out beyond the chassis 12, the front panel 58 is free to tilt downward about the hinge 70. The tilt angle is controlled by drawer tilt limiting members 72 as illustrated in FIGS. 12-14 and described below.



FIG. 12 illustrates a front perspective view of the fiber optic equipment drawer 20 tilted downward without installed fiber optic equipment trays 22 and fiber optic modules 26. As illustrated therein, the tilt angle of the front panel 58 of the fiber optic equipment drawer 20 is limited by the drawer tilt limiting members 72 and the flanges 69. FIGS. 13A-13C illustrate the drawer tilting limiting members 72 in more detail. As illustrated in FIGS. 13A-13C, the illustrated drawer tilt limiting member 72 is provided on the left side end 76 of the fiber optic equipment drawer 20. Note that another drawer tilt limiting member 72 not illustrated in FIGS. 13A-13C is also disposed on the right side end 78 of the fiber optic equipment drawer 20, as illustrated in FIG. 12.



FIG. 13A is a top perspective close-up view of the drawer tilt limiting member 72 when the fiber optic equipment drawer 20 is fully pulled out from the chassis 12, but the front panel 58 is not yet tilted. The drawer tilt limiting member 72 includes a limiting member 110 fixedly attached or provided as a part of the front panel 58 as a single part and arranged orthogonal or substantially orthogonal to the base 82 (FIG. 7) of the front panel 58. The limiting member 110 contains an angle 112 disposed in a top surface 114 of the limiting member 110. A key 116 is disposed on an end section 118 of the limiting member 110 adjacent the angle 112. When the fiber optic equipment drawer 20 is pulled out fully such that the tab 68 is engaged with the lance 88 (FIG. 11A), the front panel 58 can tilt downward about the hinge 70. When the front panel 58 is tilted downward, the hinge 70 provides a fulcrum such that the limiting member 110 moves upward towards the flange 69. The tilt angle of the front panel 58 is limited by the angle 112 in the limiting member 110 and flange 69. The angle 112 in the limiting member 110 will eventually come into planar or substantially planar contact with a bottom side 120 of the flange 69, as illustrated in FIGS. 13B and 13C, to prevent further tilting of the front panel 58. FIG. 13C illustrates a bottom perspective view of the drawer tilt limiting member 72 of FIG. 13B.


To prevent the fiber optic equipment drawer 20 from inadvertently being pushed back into the chassis 12 when tilted, a notch 122 is disposed in the flange 69 as part of the drawer tilt limiting member 72. The notch 122 is configured to receive the key 116 disposed in the limiting member 110. When the key 116 is received in the notch 122, the fiber optic equipment drawer 20 cannot be pushed back into the chassis 12. When it is desired to retract the fiber optic equipment drawer 20 back into the chassis 12, a force is applied to pull up the front panel 58 to reduce the tilt angle thereby pushing the key 116 downward and out of the notch 122. While continuing to pull or hold up the front panel 58, the fiber optic equipment drawer 20 is free to be pushed back into the chassis 12. In this embodiment, the drawer tilt limiting members 72 are not provided as part of the chassis 12. The drawer tilt limiting members 72 are provided as part of the fiber optic equipment drawer 20 in both the front panel 58 and the rear panel 60. In this manner, the fiber optic equipment drawer 20 is not required to provide a fixed connection or linkage to the chassis 12. This may be advantageous to provide flexibility and reduced complexity, including in the installation of the fiber optic equipment drawers 20 in the chassis 12. The drawer tilt limiting members 72 are not required to be limited to the fiber optic equipment drawer 20.


As discussed above, the key 116 and the angle 112 disposed in the tilt limiting member 72 limits the tilting of the front panel 58 about the rear panel 60 in the embodiments of FIG. 13A-13C. It may also be desired to provide an additional tilt limiting member to provide supplemental tilt limiting of the front panel 58 about the rear panel 60. In this regard, FIGS. 13D and 13E are close-up, bottom perspective views of the tilt limiting member 72 of FIGS. 13A-13C, but further including an optional slot 91 disposed in the limiting member 110. The slot 91 is configured to further limit the tilt angle of the front panel 58. The front panel 58 illustrated in FIG. 13D is not tilted. The front panel 58 illustrated in FIG. 13E is tilted. In this regard, a pin 93 is attached to and extends outward from the flange 69 in this embodiment. The pin 93 is configured to engage with the slot 91 disposed in the limiting member 110 when the fiber optic equipment drawer 20 is assembled. The slot 91 confines the boundary of movement of the pin 93, and thus also limits tilting of the front panel 58 about the rear panel 60 since the pin 93 is attached to the flange 69, which is part of the rear panel 60.


The slot 91 is radial in shape such that the pin 93 moves along the radius of the slot thus allowing the front panel 58 to tilt. The radial length R1 of the slot 91, as illustrated in FIGS. 13D and 13E, controls the maximum tilt angle of the front panel 58 in addition to the angle 112 disposed in the limiting member 110. Note that the limiting member 110 does not require the slot 91 and pin 93 arrangement discussed herein to limit the tilt angle of the front panel 58. Further, the slot 91 and pin 93 arrangement could be provided in the fiber optic equipment drawer 20 in lieu of the key 116 and angle 112 disposed in the limiting member 110 arrangement.


As previously discussed above, the flanges 69 are provided as part of the rear panel 60 to ride along the inside of the chassis 12 as the fiber optic equipment drawer 20 is pulled out from the chassis 12. The flanges 69 provided as part of the rear panel 60 each contain the tilt limiting members 72 to limit the downward tilting of the fiber optic equipment drawer 20 about the rear panel 60 and the chassis 12. As the flanges 69 ride inside the chassis 12, the flanges 69 may move inward or outward from the rear panel 60, and splay with regard to the front panel 58. In this regard, optional control plate 95 may be provided as illustrated in FIGS. 13G-13L and discussed in more detail below.



FIGS. 13F and 13G are front and rear perspective views, respectively, of the fiber optic equipment drawer 20 of FIG. 7. The limiting members 110 of FIGS. 13D and 13E are disposed between the flange 69 and the control plate 95. The control plate 95 is configured to provide splay control for the flanges 69 as they move about the chassis 12. Thus, the control plates 95 provide splay control to prevent or reduce splaying of the rear panel 60 with regard to the front panel 58. Providing splay control may provide further stability between the fiber optic equipment drawer 20 and the chassis 12. FIGS. 13H-13L illustrate more detail regarding embodiments of the controls plates 95 and will be described below.



FIGS. 13H and 13I are close-up, left and right perspective views, respectively, of the fiber optic equipment drawer 20 and the tilt limiting member 72 in FIGS. 13F and 13G. FIGS. 13H and 13I illustrate an example of how the control plate 95 can be attached to the flanges 69 attached to the rear panel 60. FIG. 13H illustrates the control plate 95 in outline form so that the relationship of the control plate 95 to the limiting member 110 and the flange 69 can be easily viewed. FIG. 13I illustrates how the control plate 95 can be attached to the flange 69 in this embodiment. In this embodiment, the control plate 95 is attached to the flange 69 such that the limiting member 110 is disposed between the control plate 95 and the flange 69. If the limiting member 110 moves outward from the flange 69, such as when the front and rear panels 58, 60 are moving about the chassis 12, the control plate 95 will limit movement of the flange 69 in this direction. In this regard, the control plate 95 controls splaying of the rear panel 60 and thus the front panel 58. The flange 69 will limit the movement of the limiting member 110 in the inward direction.


As illustrated in FIGS. 13H and 13I, the control plate 95 contains a plurality of standoff receptacles 97 in this embodiment. The standoff receptacles 97 are configured to provide a gap G1 between the control plate 95 and the flange 69, as illustrated in FIG. 13J illustrating the control plate 95, limiting member 110, and flange 69 in a side view. The control plate 95 is secured to the flange 69 via fasteners 99 disposed through orifices 101 in the flange 69 in this embodiment. This is further illustrated in the close-up, right and left perspective views of FIGS. 13K and 13J, respectively. As illustrated therein, the control plate 95 is attached to the flange 69 such that the limiting member 110 is disposed therebetween. With reference back to FIG. 13I, the standoff provided by the standoff receptacles 97 maintains the gap G1 between the control plate 95 and the flange 69 so that the limiting member 110, and thus the front panel 58, is free to tilt downward and be returned in a non-tilting configuration. The gap G1 can be controlled to provide the desired splay control. For example, in one embodiment, the gap G1 may be 0.065 inches. As illustrated in FIG. 13J, the width W1 of the limiting member 110, may be desired to be less than the gap G1 so the limiting member 110 is free to rotate when the front panel 58 is tilted. For example, the width W1 of the limiting member 110 may be 0.060 inches. Note that the control plate 95 is not required to be provided in the fiber optic equipment drawer 20. The control plate 95 can also be provided regardless of whether the slots 91 are provided in the limiting members 110.


Another feature of the fiber optic equipment drawer 20 is support of one or more fiber optic equipment trays 22 which are each configured to support one or more fiber optic modules 26. In this embodiment, the front panel 58 of the fiber optic equipment drawer 20 supports the fiber optic equipment trays 22. As illustrated in FIGS. 14A and 14B, the fiber optic equipment drawer 20 is configured so that each fiber optic equipment tray 22 can be independently moved about the fiber optic equipment drawer 20 to provide enhanced access to the fiber optic modules 26 supported therein. FIG. 14A illustrates a perspective view of the fiber optic equipment drawer 20 with one fiber optic equipment tray 22 pulled out from the fiber optic equipment drawer 20 to provide access to the fiber optic modules 26 contained therein. FIG. 14B illustrates a close-up view of FIG. 14A. More detail regarding the fiber optic equipment trays 22 and their retention in and pull out features from the fiber optic equipment drawer 20 are described below and illustrated in more detail in FIGS. 15-20.



FIG. 15 is a front perspective view of the fiber optic equipment tray 22 removed from the fiber optic equipment drawer 20 and without installed fiber optic modules 26. As illustrated therein, the fiber optic equipment tray 22 contains a plurality of module guides 124 in the form of module rail guides 126 that support fiber optic modules 26 (not shown). As illustrated in right and left side perspective views in FIGS. 16A and 16B, the fiber optic modules 26 contain module rails 128A, 128B on each side 129A, 129B in this embodiment. The module rails 128A, 128B are configured to be inserted into tray channels 130 (FIG. 15) disposed within the module rail guides 126, as illustrated in FIG. 17. As illustrated in FIG. 15, the module rail guides 126 are disposed in a row arrangement if at least one intermediate module rail guide 126′ is disposed in the fiber optic equipment tray 22. Fiber optic modules 26 can be independently moved within the module rail guides 126, 126′ in the fiber optic equipment tray 22 either towards a front end 132 or a rear end 134 of the fiber optic equipment tray 22. Support members 135 may also be disposed in the fiber optic equipment trays 22 to support the weight of fiber optic modules 26 disposed in and between the module rail guides 126, 126′. The module rail guides 126, 126′ will be referred to collectively hereinafter as element 126.


Note that in the fiber optic equipment tray 22 of FIG. 15, five (5) module rail guides 126 are provided to support up to four (4) fiber optic modules 26 therebetween. The module rail guides 126 are configured such that the tray channels 130 are open on both the front end 132 and the rear end 134 of the fiber optic equipment trays 22 as illustrated in FIG. 18. This allows the fiber optic modules 26 to be either front-installable from the front end 132 or rear-installable from the rear end 134 into the fiber optic equipment trays 22, and thus installable from either the front or the rear of the fiber optic equipment drawer 20 and the chassis 12. Providing the capability of either front-installable or rear-installable fiber optic modules 26 may be advantageous in allowing a technician to more easily install fiber optic modules 26 in the fiber optic equipment drawer 20 and establish fiber optic connections therewith more efficiently and conveniently. For example, fiber optic modules 26 can be inserted into the rear end 134 of the fiber optic equipment tray 22 in the module rail guides 126 and pushed forward within the module rail guides 126 until the fiber optic modules 26 reach a front end 132 of each fiber optic equipment tray 22. A locking feature can be provided to prevent the fiber optic module 26 from extending beyond the front end 132 of the fiber optic equipment trays 22 unless a release is engaged. In this manner, the fiber optic modules 26 can be installed from the rear of the fiber optic equipment drawer 20 and chassis 12, but can also be extended and removed from the front end 132 of the fiber optic equipment tray 22.


As illustrated in FIGS. 15 and 17, the fiber optic equipment tray 22 also contains tray rails 136. The tray rails 136 are configured to be received in the tray guides 74 disposed in the fiber optic equipment drawer 20 (FIG. 6) to retain and allow the fiber optic equipment trays 22 to move about the fiber optic equipment drawer 20. The fiber optic equipment trays 22 can be moved in and out of the fiber optic equipment drawer 20 by their tray rails 136 moving within the tray guides 74. In this manner, the fiber optic equipment trays 22 can be independently movable about the tray guides 74 in the fiber optic equipment drawer 20. More detail regarding the tray rails 136 and their coupling to the tray guides 74 in the fiber optic equipment drawer 20 is discussed below with regard to FIGS. 19A-21.


With continuing reference to FIGS. 15 and 17, the fiber optic equipment tray 22 may also contain extension members 138. Routing guides 150 may be conveniently disposed on the extension members 138 to provide routing for optical fibers or fiber optic cables connected to fiber optic adapters 152 in the fiber optic modules 26 (FIG. 17). The routing guides 150′ on the ends of the fiber optic equipment tray 22 may be angled with respect to the tray rails 136 to route optical fibers or fiber optic cables at an angle to the sides of the fiber optic equipment tray 22. Pull tabs 154 may also be connected to the extension members 138 to provide a means to allow the fiber optic equipment tray 22 to easily be pulled out from and pushed into the fiber optic equipment drawer 20.



FIGS. 16A and 16B illustrate an example of a fiber optic module 26 that can supported in the fiber optic equipment tray 22 to provide fiber optic connections in the fiber optic equipment drawer 20. FIG. 16A illustrates a right perspective view of the fiber optic module 26. FIG. 16B illustrates a left perspective view of the fiber optic module 26. As illustrated therein, the fiber optic module 26 is comprised of a number of fiber optic adapters 152 disposed on a front end 156 of the fiber optic module 26. In this example, the fiber optic adapters 152 accept duplex LC fiber optic connectors. However, any fiber optic connection type desired can be provided in the fiber optic modules 26. Another fiber optic adapter 158 is disposed on a rear end 160 of the fiber optic module 26. In this example, the fiber optic adapter 158 is a multi-fiber MTP fiber optic adapter equipped to establish connections to multiple optical fibers (e.g., twelve (12) optical fibers). The fiber optic module 26 may also manage polarity between the fiber optic adapters 152 disposed on the front end 156 of the fiber optic module 26 and the fiber optic adapter 158 disposed on the rear end 160 of the fiber optic module 26.


Module rails 128A, 128B are disposed on each side 129A, 129B of the fiber optic module 26. The module rails 128A, 128B are configured to be inserted within the module rail guides 126 in the fiber optic equipment tray 22, as previously discussed and illustrated in FIG. 17. In this manner, when it is desired to install a fiber optic module 26 in the fiber optic equipment tray 22, the front end 156 of the fiber optic module 26 can be inserted from either the front end 132 or the rear end 134 of the fiber optic equipment tray 22. For example, the front end 156 of module rails 128A, 128B of the fiber optic module 26 can be inserted into module rail guides 126 starting from the rear end 134 of the fiber optic equipment trays 22. In this manner, the fiber optic module 26 can be rear-installed in the fiber optic equipment tray 22 and the fiber optic equipment drawer 20. The fiber optic module 26 can then be pushed forward within the module rail guides 126 until the fiber optic module 26 reaches the front end 132 of the fiber optic equipment trays 22. In this manner, a technician can install a fiber optic connection to the fiber optic adapter 158 disposed on the rear end 160 of the fiber optic module 26 and can then install the fiber optic module 26 from the rear of the fiber optic equipment drawer 20 into the fiber optic equipment tray 22.



FIG. 18 illustrates a rear perspective view of the fiber optic modules 26 installed in fiber optic equipment trays 22 and the module rail guides 126 disposed therein. As illustrated therein, when the fiber optic module 26 is installed in the tray channel 130 of the module rail guides 126 from the rear end 134 of the fiber optic equipment tray 22, the module rails 128A, 128B of the fiber optic module 26 can then be moved towards the front end 132 until the fiber optic module 26 reaches a stop or locking feature disposed in the front end 132. A locking feature in the form of a latch 166 (FIGS. 16A and 16B) engages a complementary detent disposed in the tray channel 130 of the module rail guides 126. The latch 166 is inwardly biased such that the fiber optic module 26 can be installed in the module rail guides 126, but cannot be pulled back towards the rear section 134 until the latch 166 is disengaged.


If it is desired to remove the fiber optic module 26 from the fiber optic equipment tray 22, the fiber optic module 26 can be removed from either the front end 132 or the rear end 134 of the fiber optic equipment tray 22. To remove the fiber optic module 26 from the rear end 132 of the fiber optic equipment tray 22, the latch 166 is disengaged by pushing a lever 168 (FIGS. 16A and 16B) inward towards the fiber optic module 26 to release the latch 166 from the module rail guide 126. To facilitate pushing the lever 168 inward towards the fiber optic module 26, a finger hook 170 is provided adjacent to the lever 168 so the lever 168 can easily be squeezed into the finger hook 170.


The fiber optic module 26 can be locked into place in the fiber optic equipment tray 22 by pushing the fiber optic module 26 forward to the front end 132 of the fiber optic equipment tray 22. As illustrated in FIG. 17, a locking feature in the form of a front stop 171 disposed in the module rail guides 126. The front stop 171 prevents the fiber optic module 26 from extending beyond the front end 132. When it is desired to remove a fiber optic module 26 from the fiber optic equipment tray 22, a front module tab 173 also disposed in the module rail guides 126 and coupled to the front stop 171 can be pushed downward to engage the front stop 171. As a result, the front stop 171 will move outward away from the fiber optic module 26 such that the fiber optic modules 22 are not obstructed from being pulled forward. The fiber optic module 26, and in particular its module rails 128A, 128B (FIGS. 16A and 16B), can be pulled forward along the module rail guides 126 to remove the fiber optic module 26 from the fiber optic equipment tray 22.


As previously discussed and illustrated in FIG. 7, the tray guides 74 are disposed in the fiber optic equipment drawer 20 to allow fiber optic equipment trays 22 to be supported in the fiber optic equipment drawer 20. More specifically, as illustrated in FIG. 15, the tray rails 136 attached or provided as part of the fiber optic equipment tray 22 are configured to be received by the tray guides 74 to allow the fiber optic equipment drawer 20 to support fiber optic equipment trays 22. The tray guides 74 allow the fiber optic equipment trays 22 to be moved in and out of the fiber optic equipment drawer 20 for enhanced access to fiber optic modules 26 supported by the fiber optic equipment trays 22. FIGS. 19A and 19B illustrate more detail regarding the exemplary tray guides 74 disposed in the fiber optic equipment drawer 20.



FIGS. 19A and 19B illustrate left and right perspective views of the tray guide 74 disposed in the fiber optic equipment drawer 20 to support up to two (2) tray rails 136 in a 1-U space. FIGS. 19C and 19D illustrate left and right perspective views of another embodiment of a tray guide 74′ that may be employed to support up to three (3) tray rails 136 per 1-U space, as will be later described and illustrated with regard to FIGS. 33A-35. The tray guides 74, 74′ contain like features and thus the description below with regard to tray guide 74 in FIGS. 19A and 19B is equally applicable to the tray guide 74′ of FIGS. 19C and 19D. Like features or elements between tray guides 74, 74′ are illustrated with common element numbers, except that such features in tray guide 74′ will be appended with an apostrophe (').


As discussed above, the tray guides 74 are configured to receive fiber optic equipment trays 22 supporting one or more fiber optic modules 26 in the fiber optic equipment drawer 20. The tray guides 74 allow the fiber optic equipment trays 22 to be pulled out from the chassis 12, as illustrated in FIG. 14B. With continuing reference to FIGS. 19A and 19B, the tray guide 74 in this embodiment is comprised of a guide panel 180. The guide panel 180 is comprised of an elongated member 181. The guide panel 180 may be constructed out of any material desired, including but not limited to a polymer or metal. The guide panel 180 contains a series of apertures 182 to facilitate attachment of the guide panel 180 to the fiber optic equipment drawer 20, as illustrated in FIG. 12. Guide members 184 are disposed in the guide panel 180 and configured to receive the tray rail 136 of the fiber optic equipment tray 22, as illustrated in the cross-section diagram in FIG. 20. Three (3) guide members 184 are disposed in the guide panel 180 in the embodiment of FIGS. 19A and 19B to be capable of receiving up to three (3) tray rails 136 of three (3) fiber optic equipment trays 22. However, any number of guide members 184 desired may be provided. In this embodiment, the guide members 184 each include guide channels 186 configured to receive and allow tray rails 136 to move along the guide channels 186 for translation of the fiber optic equipment trays 22 about the fiber optic equipment drawer 20.


Leaf springs 188 are disposed in each of the guide members 184 of the tray guide 74 and are each configured to provide stopping positions for the tray rails 136 during movement of the fiber optic equipment tray 22 in the guide members 184. The leaf springs 188 are disposed between ends 189 disposed in the guide member 184 to give the leaf springs 188 spring action. The leaf springs 188 each contain protrusions 190 that are configured to be received in detents 192 (FIGS. 21A and 21B) disposed in the tray rails 136 to provide stopping or resting positions. The tray rails 136 contain mounting platforms 194 that are used to attach the tray rails 136 to the fiber optic equipment trays 22. It may be desirable to provide stopping positions in the tray guide 74 to allow the fiber optic equipment trays 22 to have stopping positions when moved in and out of the fiber optic equipment drawer 20. Stopping positions allow the requirement of a technician to impart a certain force to pull or push the fiber optic equipment tray 22 about the guide panel 180 so that the fiber optic equipment tray 22 is retained in place when not pulled or pushed. However, the force can also be designed to allow a technician to easily push in or pull out the fiber optic equipment tray 22 into and from the guide panel 180 when desired, especially when the fiber optic equipment tray 22 is located above the technician. In this regard and by example, two (2) detents 192 in the tray rail 136 receive two (2) protrusions 190 in the tray guide 74 at any given time. When the fiber optic equipment tray 22 is fully retracted into the fiber optic equipment drawer 20 in a first stopping position, the two (2) detents 192 of the tray rail 136 are received in the one protrusion 190 adjacent a rear end 196 of the guide channel 186 and the middle protrusion 190 disposed between the rear end 196 and a front end 198 of the guide channel 186. When the fiber optic equipment tray 22 is pulled out from the fiber optic equipment drawer 20, the two (2) detents 192 of the tray rail 136 are received in the one protrusion 190 adjacent the front end 198 of the guide channel 186 and the middle protrusion 190 disposed between the rear end 196 and the front end 198 of the guide channel 186. Thus, the stopping or resting positions provided by the engagement of the protrusions 190 of the leaf springs 188 with the detents 192 of the tray rail 136 in this embodiment are provided to require force on the guide panel 180 to overcome the stopping position to translate the tray rail 136 of a fiber optic equipment tray 22 disposed within the guide member 184.


In this embodiment, each leaf spring 188 is designed to require approximately two (2) pounds (lbs.) of pulling force to allow the protrusion 190 in the leaf spring 188 to overcome the detent 192 disposed in the tray rail 136 for a total of four (4) lbs. pulling force (i.e., two (2) detents 192 in the tray rail 136 are engaged with two (2) protrusions 190 disposed in two (2) leaf springs 188). The pulling force required to overcome the engagement of the protrusion 190 in the detents 192 could be designed to be any pulling force desired. For example, the pulling force required to overcome the engagement of the protrusion 190 in the detents 192 could be designed to be greater than the pulling force required to engage or disengage a fiber optic connector from a fiber optic module 26 supported by the fiber optic equipment tray 22. However, the pulling force required to overcome the engagement of the protrusion 190 in the detents 192 could be designed to be less than the pulling force required to clear interference with the lances 88 when the fiber optic equipment drawer 20 is pulled out from the chassis 12 (FIGS. 8A and 8B). The leaf springs 188 in this embodiment are designed to each provide the same force, but such does not have to be the case. Further, the guide panel 180 and tray rail 136 could be designed to provide fewer stopping positions or only provide that one protrusion 190 is engaged with one detent 192 in each stopping or resting position.


When the tray rail 136 is in a stopped position, two (2) protrusions 190 disposed in two (2) leaf springs 188 are engaged with two (2) protrusions in the tray rail 136, as previously discussed. In this embodiment, when the tray rail 136 is in a stopping position, the leaf springs 188 and their protrusions 190 and the complimentary detents 192 in the tray rail 136 are designed cooperatively such that the detents 192 do not impart a force on the protrusions 190. Thus, the leaf springs 188 are in an unstressed state when the tray rail 136 is in a stopped position. This may be advantageous if the leaf springs 188 are made out of a material, such as a polymer material for example, where creep can occur over time, thus reducing the effectiveness of the leaf spring 188 over time. However, this feature is not a requirement for the design.


As the tray rail 136 is pulled within the guide channel 186, a protrusion 200 disposed in the tray rail 136 and illustrated in FIGS. 21A and 21B is biased to pass over transition members 202 disposed between the leaf springs 188, as illustrated in FIG. 19A. The protrusion 200 is provided in a leaf spring 204 disposed in the tray rail 136, as illustrated in FIGS. 21A and 21B. The transition members 202 have inclined surfaces 205 that allow the protrusion 200 to pass over the transition members 202 as the fiber optic equipment tray 22 is being translated within the guide channel 186. As the protrusion 200 contains the transition members 202, the force imparted onto the protrusion 200 causes the leaf spring 204 to bend inward to allow the protrusion 200 to pass over the transition member 202. To prevent the tray rail 136 and thus the fiber optic equipment tray 22 from being extended beyond the front end 198 and rear end 196 of the guide channel 186, stopping members 206 are disposed at the front end 198 and rear end 196 of the guide channel 186. The stopping members 206 do not have an inclined surface; thus, the protrusion 200 in the tray rail 136 abuts against the stopping member 206 and is prevented from extending over the stopping member 206 and outside of the front end 198 of the guide channel 186.


Now that the fiber optic equipment drawer 20, fiber optic equipment trays 22 and fiber optic modules 26 have been described, other features that may be included in the fiber optic equipment 10 are now described. For example, FIG. 22 illustrates a rear perspective view of the fiber optic equipment 10 and chassis 12 of FIG. 1 configured to receive an optional rear cover 220. The rear cover 220 can be employed to protect furcated cables (not shown) disposed in a rear area 222 of the chassis 12. As illustrated in FIG. 22, a number of apertures 224 may be disposed in a raised area 226 in the rear area 222 of the chassis 12 to support securing furcations of trunk cables (not shown) coming into the chassis 12. Trunk cables are run to the chassis 12 to establish fiber optic connection with fiber optic modules 26 disposed in the fiber optic equipment drawer 20. The rear cover 220 contains overlapping members 228 that are configured to be received into a rear end 230 of the front chassis cover 24 to be secured to the chassis 12, as illustrated in FIG. 23. The rear cover 220 can protect furcations connected to the raised area 226. To secure the rear cover 230 to the front chassis cover 24, the rear cover 230 may also include plungers 232 or other fastener devices in a rear panel 234 of the rear cover 230. The plungers 232 engage with plunger receivers 236 disposed in flaps 238 in the rear area 222 of the chassis 12 to secure the rear cover 220 to the front chassis cover 24 and chassis 12.


The embodiments described herein are not limited to the fiber optic equipment drawer 20 described above. Some or all of the features in the fiber optic equipment drawer 20 may be provided in other drawers, chassis, or other fiber optic equipment to support fiber optic modules and access thereto. For example, FIGS. 24-32B illustrate an alternate embodiment of fiber optic equipment that includes a fiber optic equipment drawer configured to support one or more fiber optic equipment trays each configured to support one or more fiber optic modules. In this regard, FIG. 24 illustrates alternative exemplary fiber optic equipment 310 in this regard. The exemplary fiber optic equipment 310 may be provided at a data distribution center or central office to support cable-to-cable fiber optic connections and to manage a plurality of fiber optic cable connections. The fiber optic equipment 310 includes a fiber optic equipment chassis 312 (“chassis 312”). The chassis 312 is configured to be installed in a fiber optic equipment rack if desired, such as the fiber optic equipment rack 14 previously discussed and illustrated in FIG. 1. The chassis 312 illustrated in FIG. 24 is 1U-size, but could be designed to be any other U-size desired, with “U” equaling a standard 1.75 inches in height, or any other height desired.


As illustrated in FIG. 24 and discussed in greater detail below in this description, the chassis 312 includes a fiber optic equipment drawer 320 supporting one or more extendable fiber optic equipment trays 322. The fiber optic equipment trays 322 are configured to support one or more fiber optic modules (not shown). The fiber optic equipment trays 322 in this embodiment are the same or essentially the same as the fiber optic equipment trays 22 previously discussed and illustrated in FIGS. 14A-15 and 17. The fiber optic modules supported by the fiber optic equipment trays 322 can be the same or essentially the same as the fiber optic modules 26 previously discussed and illustrated in FIGS. 16A and 16B. The fiber optic equipment trays 322 can be moved and extended from the fiber optic equipment drawer 320 and retracted back into the fiber optic equipment drawer 320. Any number of fiber optic equipment trays 322 can be provided. Any number of fiber optic modules can be supported by the fiber optic equipment trays 322. The view of the fiber optic equipment trays 322 in FIG. 24 is obstructed by a front chassis cover 324 placed in front of the fiber optic equipment drawer 320 as part of the chassis 312. The front chassis cover 324 is attached to a rear chassis cover 325 to form a cover over the chassis 312. Latch orifices 351 are disposed in the front chassis cover 324 to support a drawer door locking mechanism employing push buttons 350 in this embodiment to lock a drawer door 328 to the front chassis cover 324, as will be described in more detail below. The fiber optic equipment drawer 320 is extendable out from the chassis 312 to access the fiber optic equipment trays 322 and the fiber optic modules supported therein.


In the example of the fiber optic equipment 310 in FIG. 24, two fiber optic equipment trays 322 are supported by the fiber optic equipment drawer 320 with each fiber optic equipment tray 322 supporting four (4) fiber optic modules. Each fiber optic module can support any number of optical fiber connections. If the fiber optic modules included in the fiber optic equipment trays 322 support twelve (12) optical fiber connections, a total of up to ninety-six (96) optical fiber connections can be provided by the fiber optic equipment drawer 320, although the fiber optic equipment drawer 320 is not limited to this density.



FIGS. 25A and 25B are provided to summarize certain capabilities and features of the fiber optic equipment 310 and fiber optic equipment drawer 320 of FIG. 24. Embodiments of these capabilities and features will be described in more detail in this description. FIG. 25A is a front perspective view of the chassis 312 and fiber optic equipment drawer 320. FIG. 25B is a side view of the chassis 312 and fiber optic equipment drawer 320. As illustrated in FIG. 25A, the front chassis cover 324 and the rear chassis cover 325 (FIG. 24) are removed from the chassis 312 so that fiber optic modules supported by the fiber optic equipment trays 322 inside the fiber optic equipment drawer 320 can be seen. The fiber optic equipment drawer 320 can be extended out from the chassis 312 to extend fiber optic modules installed in the fiber optic equipment trays 322 out from the chassis 312 to gain access to the fiber optic modules and the fiber optic connections therein. As illustrated in FIGS. 25A and 25B, the fiber optic equipment drawer 320 is pulled or extended fully from the chassis 312 and tilted downward. The fiber optic equipment drawer 320 can be tilted downward to tilt the fiber optic modules installed in the fiber optic equipment trays 322 downward if desired, as illustrated in FIGS. 25A and 25B. Tilting the fiber optic equipment drawer 320 downward may be particularly useful if the fiber optic equipment drawer 320 is located at taller heights in a fiber optic equipment rack. The desired fiber optic module to be accessed can be further separated for enhanced access, if desired, by pulling out the fiber optic equipment tray 322 supporting the fiber optic module from the fiber optic equipment drawer 320.


As will be described in more detail below, each fiber optic equipment tray 322 is also independently translatable from the fiber optic equipment drawer 320, whether or not the fiber optic equipment drawer 320 is extended out from the chassis 312 or tilted downward, similar to that provided in FIGS. 2A and 2B as an example. In this manner, enhanced access can be provided to the fiber optic modules provided in the fiber optic equipment trays 322. Access includes installing, configuring, re-configuring, re-installing, and removing the fiber optic modules and the fiber optic connections provided therein as an example. Further, each fiber optic module installed in a fiber optic equipment tray 322 in this embodiment can be translated or removed independent from other fiber optic modules in a given fiber optic equipment tray 322 for further access, if desired.



FIGS. 26-32B will now be referenced to describe the various capabilities and features of the fiber optic equipment 310 and fiber optic equipment drawer 320 of FIG. 24 by example in more detail.



FIG. 26 is a front perspective view of the fiber optic equipment 310 and fiber optic equipment drawer 320 of FIG. 24 with the fiber optic equipment drawer 320 fully retracted into the chassis 312. The front chassis cover 324 and rear chassis cover 325 are removed to facilitate discussion of the components of and inside the fiber optic equipment drawer 320. The fiber optic equipment drawer 320 includes a drawer door 328 in this embodiment. The drawer door 328 controls access to the fiber optic equipment trays 322. The drawer door 328 may also contain labeling that, for example, can be provided in a label holder 329 to identify optical fiber connections made in the fiber optic equipment drawer 320. The drawer door 328 is illustrated as being opened in FIG. 26. When the fiber optic equipment trays 322 are fully retracted into the fiber optic equipment drawer 320, as illustrated in FIG. 26, the drawer door 328 can be closed and locked to the chassis 312 to close off access to the fiber optic equipment trays 322. In this embodiment, the drawer door 328 is hingedly attached to a front end 330 of the fiber optic equipment drawer 320. In this manner, the drawer door 328 is retained with the fiber optic equipment drawer 320 when the drawer door 328 is opened, as illustrated in FIG. 26.


To retain the drawer door 328 closed to the chassis 312 in this embodiment, a drawer door locking mechanism 340 is provided. The drawer door locking mechanism 340 is similar to the drawer door locking mechanism 40 previously discussed and illustrated in FIGS. 3-5. The drawer door locking mechanism 340 is configured to releasably retain the drawer door 328 closed to the chassis 312, and more particularly to the front chassis cover 324. As illustrated in FIG. 26, two drawer door locking mechanisms 340 are provided; one for a left side end 342 and one for a right side end 344 of the drawer door 328. In this embodiment, the drawer door locking mechanism 340 is comprised of a push button latch 346 like or similar to the push button latch 46 previously discussed and illustrated in FIG. 5. The push button latch 346 is configured to engage a latch 348 with the latch orifice 351 (FIG. 24) disposed in the front chassis cover 324 to retain the drawer door 328 closed. Push button latches 346 are each disposed in the drawer door 328, one on the left side end 342 and one on the right side end 344, in this embodiment as illustrated in FIG. 26. Two latch orifices 351 (FIG. 24) are disposed in the front chassis cover 324 and configured to receive the latches 348 to lock the drawer door 328. The push button latches 346 in this embodiment are spring-loaded such that when a force is not applied to the push buttons 350, the latches 348 are biased upward to retain the latches 348 engaged with the latch orifices 351 when the drawer door 328 is closed.


When it is desired to pull out one or more of the fiber optic equipment trays 322, the drawer door 328 can be unlocked from the front chassis cover 324 and opened. The push buttons 350 are configured to move the latches 348 downward to overcome the spring-loaded force in the push button latch 346 when a downward force is applied to the push buttons 350, like the push buttons 50 previously described and illustrated in FIGS. 3-5. When the push buttons 350 are pushed downward, the latches 348 are disengaged from the latch orifices 351 in the front chassis cover 324 to unlock the drawer door 328. The drawer door 328 can then be opened from the front chassis cover 324. When opened, the drawer door 328 can swing downward about hinges 332.


As previously discussed, the fiber optic equipment drawer 320 in the fiber optic equipment 310 is configured to be pulled out from the chassis 312 for enhanced access to the fiber optic equipments trays 322 and/or to the fiber optic modules contained therein. In this regard, FIG. 27A provides a front perspective view of the fiber optic equipment 310 and fiber optic equipment drawer 320 of FIG. 24 with the drawer door 328 opened and lowered and the fiber optic equipment drawer 320 extended out from the chassis 312. To further illustrate the fiber optic equipment drawer 320 and its various features and components, a top view of the fiber optic equipment drawer 320 is illustrated in FIG. 27B. The fiber optic equipment drawer 320 is configured to provide several features, some or all which can be provided. In this embodiment, the fiber optic equipment drawer 320 includes a front panel 358 attached to a rear panel 360. The front panel 358 and rear panel 360 may be formed from sheet metal or any other form or type of material desired. The front panel 358 is configured to support one or more fiber optic equipment trays 322 and fiber optic modules disposed in the fiber optic equipment trays 322, as previously discussed and also illustrated in FIG. 27A.


With continuing reference to FIG. 27B, the fiber optic equipment drawer 320 includes two drawer retention members 362 disposed in the front panel 358. The two drawer retention members 362 are disposed on a bottom side 363 of the front panel 358 as illustrated in FIG. 28. The drawer retention members 362 are configured to releasably retain the fiber optic equipment drawer 320 in the chassis 312 until released to release the fiber optic equipment drawer 320 from the chassis 312. The fiber optic equipment drawer 320 can be pulled out from the chassis 312 when the drawer retention members 362 are released.


In this embodiment, the drawer retention members 362 are provided in the form of elbow latches 364. The elbow latch 364 contains two elbow sections 364A, 364B in this embodiment. One elbow latch 364 is illustrated in FIG. 28, because only the left side end 342 of the fiber optic equipment drawer 320 is illustrated. However, note that another drawer retention member 362 and elbow latch 364 are also disposed on the bottom side 363 of the front panel 358 on the right side end 344 of the fiber optic equipment drawer 320. The elbow latches 364 are configured to align with and interfere with rearward biased latch engagement members 368 (FIG. 27B) disposed in the chassis 312 to retain the fiber optic equipment drawer 320 when retracted into the chassis 312. In this regard, the elbow sections 364A on each elbow latch 364 will be disposed on rearward sides 386 of the latch engagement members 368 (FIG. 27A) and configured to interfere with the latch engagement members 368 to retain the fiber optic equipment drawer 320 in the chassis 312. When the drawer retention members 362 are released, the elbow latches 364 are pulled inward to clear interference of the latch engagement members 368 with the elbow sections 364A to allow the elbow sections 364A on each elbow latch 364 to pass unimpeded past the latch engagement members 368 and into a forward side 390 of the latch engagement members 368 (FIG. 27A) to allow the fiber optic equipment drawer 320 to be pulled out from the chassis 312.



FIGS. 28-29B illustrate more detail regarding the drawer retention members 362. FIG. 28 illustrates a drawer retention member 362 disposed on the left side end 342 on the bottom side 363 of the front panel 358 of the fiber optic equipment drawer 320. FIGS. 29A and 29B are perspective, isolated views of a drawer retention member 362 designed to be disposed on the right side end 344 of the bottom side 363 of the front panel 358 of the fiber optic equipment drawer 320. As illustrated in FIG. 28, the drawer retention member 362 includes a drawer pull release 369. The drawer pull release 369 is mechanically coupled to the elbow latch 364. When the drawer pull release 369 is pulled, the elbow sections 364A, 364B collapse inward toward outside edges 371 of two parallel or substantially parallel plate members 373 of the drawer retention members 362. A pin 375 connected to the elbow latch 364 and disposed in a slot 377 in a plate member 373 limits the pulling distance of the drawer pull release 369 and thus the distance of collapse to the elbow latch 364. The elbow latch 364 in this embodiment is disposed between the plate members 373 so that the elbow latch 364 is free to expand and retract outside and inside, respectively, from the plate members 373. When the elbow latch 364 is collapsed, the elbow sections 364A of each elbow latch 364 will be able to clear the interference with the latch engagement member 362 thereby allowing the fiber optic equipment drawer 320 to be released from the chassis 312. In this embodiment, because two drawer retention members 362 are included in the fiber optic equipment drawer 320, both drawer pull releases 369 of the drawer retention members 362 are pulled to release the fiber optic equipment drawer 320. However, one drawer retention member 362 could be provided so only one drawer pull release 369 would need to be pulled to release the fiber optic equipment drawer 320 from the chassis 312.


A spring 379 can also be included in the elbow latch 364, as illustrated in FIGS. 28-29B. Providing the spring 379 in the elbow latch 364 causes the elbow latch 364 to be biased outward in an expanded position. In this embodiment, the spring 379 is coupled inline to the elbow section 364B, but could also be coupled inline to the elbow section 364A, if desired. In this embodiment, the spring 379 is coupled between the elbow section 364B and an orifice 381 disposed in a plate member 373. Another spring 383 may also be coupled between the drawer pull release 369 and the fiber optic equipment drawer 320 as illustrated in FIG. 28. The spring 383 biases the drawer pull release 369 inward so the drawer pull release 369 retracts back towards the fiber optic equipment drawer 320 when a pulling force applied to the drawer pull release 369 is released.


After the fiber optic equipment drawer 320 is released from the chassis 312 via release of the drawer retention member 362, the fiber optic equipment drawer 320 is free to be pulled out from the chassis 312. The fiber optic equipment drawer 320 can be retracted in the chassis 312 to lock the fiber optic equipment drawer 320 in the chassis 312. When the fiber optic equipment drawer 320 is retracted, the elbow sections 364A of each elbow latch 364 will eventually come into contact with the latch engagement members 368 (FIG. 27B). Because the latch engagement members 368 are rearward biased, the contact between the latch engagement members 368 with the elbow sections 364A as the fiber optic equipment drawer 320 is pushed into the chassis 312 will cause the elbow latch 364 to collapse inward. The elbow section 364A will thereafter be disposed on the rearward side 386 of the latch engagement members 368 to retain the fiber optic equipment drawer 320 in the chassis 312.


Another feature that may be provided in the fiber optic equipment drawer 320 is a drawer pull-out limiting member to limiting the pull out distance of the fiber optic equipment drawer 320. FIGS. 30A and 30B illustrate this feature. FIG. 30A is a close-up perspective view of the fiber optic equipment drawer 320 and the front panel 358 and rear panel 360 in particular. The rear panel 360 is configured to travel back into the chassis 312 along travel path TP′ when the front panel 358 is brought planar to the rear panel 360 and pushed back along travel path TP′ via linkage members 359 as will be described in more detail below. The front panel 358 is obscuring the view of a drawer pull-out limiting member 366. FIG. 30B illustrates the perspective view of the fiber optic equipment drawer 320 of FIG. 30A, but with the rear panel 360 removed for illustration purposes. As illustrated in FIG. 30B, the drawer pull-out limiting member 366 is provided in the form of a plate member 367 attached to a base 391 of the chassis 312. A tab member 361, which is fixedly attached to the bottom side of the rear panel 360, travels along the travel path TP′ as the rear panel 360 moves along the travel path TP′. When the rear panel 360 is pulled out such that the tab member 361 enters a keyed section 365 of the plate member 367, the tab member 361 will abut the plate member 367 and prevent the rear panel 360 from extending beyond the keyed section 365, thus preventing the front panel 358 from further extending out from the chassis 312.



FIG. 30B and FIGS. 31A-32B illustrate the movement and tilt mechanism of fiber optic equipment drawer 320. Thus, the tilt mechanism of the fiber optic equipment drawer 320 will be described in detail. As illustrated in FIGS. 30B and 31A-32B, the fiber optic equipment tray 320 is configured to move in and out of the chassis 312 to provide enhanced access to the fiber optic equipment trays 322 and any fiber optic modules (not shown) supported therein. FIGS. 31A and 31B illustrate front and rear perspective views of the fiber optic equipment drawer 320 extended out from the chassis 312 with the front panel 358 tilted. In this embodiment, the fiber optic equipment drawer 320 moves in and out of the chassis 312 about outer guide members 389 disposed in two drawer rail guides 398 disposed in the base 391 of the chassis 312 as illustrated in FIGS. 31A and 31B. Two complimentary drawer rails 392 are fixedly connected to hinges 393 which are connected to linkage members 394, as illustrated in FIGS. 32A and 32B. The linkage members 394 are fixedly attached to a bottom side 395 of the fiber optic equipment drawer 320. Movement of the fiber optic equipment drawer 320 applies force to the linkage members 394 which in turn apply force on the drawer rails 392 causing them to move inside the drawer rail guides 398, as illustrated in FIG. 30B. The linkage members 394 includes a lower inner section 396 that travels along an inner section 397 of the drawer rail guide 398, as illustrated in FIG. 32A, when the fiber optic equipment drawer 320 is retracted.


The linkage members 394 also contain outer raised portions 399 so that the linkage members 394 do not interfere with the outer guide members 389 of the drawer rail guides 398 when the fiber optic equipment drawer 320 is retracted into the chassis 312. The drawer rail guides 398 may be made of sheet metal or other material, such as plastic, or may be a hybrid between a metal and a plastic. For example, the outer guide members 389 may be made of plastic with the other portions of the drawer rail guides 398 made of sheet metal.



FIGS. 31A-31B also illustrate tilt and tilt limiting features of the fiber optic equipment drawer 320 according to one embodiment. As previously discussed, tilting the fiber optic equipment drawer 320 downward can provide enhanced access to the fiber optic modules disposed in the fiber optic equipment drawer 320 and/or their fiber optic connections. As illustrated in FIG. 31A, the front panel 358 can tilt downward about the rear panel 360. The rear panel 360 remains oriented in a plane parallel or substantially parallel to the chassis 312. Because the fiber optic equipment trays 322 are disposed in the front panel 358, tilting of the front panel 358 also tilts the fiber optic equipment trays 322 for access.


The fiber optic equipment drawer 320 is configured to tilt downward via the hinges 393 and a hinge 400 disposed between the front panel 358 and the rear panel 360 of the fiber optic equipment drawer 320 in this embodiment. The hinge 400 is formed by rolled portions 401 on a front end 402 of the rear panel 360 interleaved with rolled portions 403 on a rear end 404 of the front panel 358. When interleaved, the rolled portions 401, 403 form the hinge 400 extending from a left side end 376 to a right side end 378 of the front and rear panels 358, 360. When the fiber optic equipment drawer 320 is pulled out such that the front panel 358 is pulled out beyond the chassis 312, the front panel 358 is free to tilt downward about the hinge 400. The tilt angle of the fiber optic equipment drawer 320 is controlled by the interference between the rear end 404 of the front panel 358 with a front end 405 of the chassis 312, as illustrated in FIG. 30A.



FIGS. 33A-35 illustrate another embodiment of fiber optic equipment 410 that can include the same or essentially the same fiber optic equipment trays 22 previously described above and illustrated to support fiber optic modules 26. The fiber optic equipment 410 in this embodiment includes a 4-U sized chassis 412 configured to hold fiber optic equipment trays 22 each supporting one or more fiber optic modules 26. The fiber optic equipment trays 22 and fiber optic modules 26 supported by the chassis 412 are the same or essentially the same as those previously described above. Thus, the fiber optic equipment trays 22 disposed in the chassis 412 and fiber optic modules 26 disposed in the fiber optic equipment trays 22 do not need to be described again. FIG. 34A illustrates a front perspective view of the fiber optic equipment 410 with a front cover 414 lowered to show the fiber optic equipment trays 22 disposed inside the chassis 412. A chassis cover 416 (FIGS. 33A and 33B) is attached to the chassis 412 to secure the fiber optic equipment trays 22 and fiber optic modules contained therein (not illustrated). FIG. 33B illustrates a side view of the fiber optic equipment 410 illustrated in FIG. 33A. FIG. 34 illustrates the fiber optic equipment 410 as illustrated in FIG. 33A, but with the chassis cover 416 removed to show the fiber optic equipment trays 22 disposed inside the chassis 412.


The fiber optic modules 26 can be supported in the fiber optic equipment trays 22 previously described and illustrated in FIG. 15-18 as an example. The fiber optic equipment trays 22 can support one or more fiber optic modules like or similar to the fiber optic modules 26 previously described and illustrated in FIGS. 16A and 16B as an example. The fiber optic equipment 410 in this embodiment does not include a fiber optic equipment drawer. The fiber optic equipment trays 22 in this embodiment are supported directly by the chassis 412 as opposed to an intermediate fiber optic equipment drawer. The tray guides 74, 74′ and tray rails 136 previously described in FIGS. 19A-21B can be used in the chassis 412 to support the fiber optic equipment trays 22 therein and to allow each fiber optic equipment tray 22 to be independently extended out from and retracted back into the chassis 412. However, in the chassis 412, up to twelve (12) fiber optic equipment trays 22 can be provided for a total of up to five hundred seventy-six (576) fiber optic connections (i.e., twelve (12) fiber optic equipment trays 22×four (4) fiber optic modules 26 per fiber optic equipment tray 22×twelve (12) fiber optic connections per fiber optic module 26). Thus, tray guides 418 disposed in the chassis 412, as illustrated in FIG. 34, can support up to twelve (12) fiber optic equipment trays 22. Otherwise, the tray guides 418 contain the same guide members and other features to support the fiber optic equipment trays 22 disposed therein as the tray guides 74 illustrated in FIGS. 19A and 19B and previously discussed.



FIG. 35 illustrates the fiber optic equipment 410 with one fiber optic equipment tray 22′ extended out from the chassis 412. The fiber optic equipment tray 22′ contains tray rails 136 just as illustrated in FIGS. 21A and 21B and previously described above to move about tray guides 74, just as illustrated in FIGS. 19A and 19B and previously described above. The fiber optic equipment tray 22′ can be extended from the chassis 412 to provide enhanced access to fiber optic modules 26 contained therein and their fiber optic connections. When access is complete, the retracted fiber optic equipment tray 22′ can be pushed back into the chassis 412 about the tray guides 418 just as previously described and illustrated for the fiber optic equipment trays 22 with regard to the chassis 12 and fiber optic equipment drawer 20.


Note that although the fiber optic equipment 410 illustrated in FIGS. 33A-35 does not include a fiber optic equipment drawer to allow the fiber optic equipment trays 22 to be pulled in and out of the chassis 412 collectively, a fiber optic equipment drawer could be provided. The fiber optic equipment drawer could be provided like or similar to the fiber optic equipment drawer 20 previously described and illustrated. The fiber optic equipment drawer could be designed to be retained and move in and out of the chassis 412, like the fiber optic equipment drawer 20 is retained and moved in and out of the chassis 12 previously described and illustrated. The fiber optic equipment tray 22 supported in the fiber optic equipment 410 would be inserted and supported in tray guides, like or similar to the tray guides 74 installed inside a fiber optic equipment drawer previously described and illustrated. Movement of the fiber optic equipment drawer would collectively move each of the fiber optic equipment trays 22. Providing a fiber optic equipment drawer, including like or similar to the fiber optic equipment drawer 20 previously described and illustrated, is not limited to any particular size, arrangement, or number of fiber optic equipment trays or fiber optic modules.


Many modifications and other embodiments of the invention set forth herein will come to mind to one skilled in the art to which the invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. These modifications include, but are not limited to, number or type of fiber optic equipment, fiber optic equipment drawer, features included in the fiber optic equipment drawer, including but not limited to retention features, pull out distance features, tilt features, and/or tilt limiting features. Any size equipment, including but not limited to 1-U, 2-U and 4-U sizes may include some or all of the aforementioned features, including but not limited to fiber optic equipment drawer(s), both tiltable and non-tiltable, fiber optic equipment tray(s), and fiber optic modules disclosed herein and some or all of their features. Further, the modifications are not limited to the type of fiber optic equipment tray or the means or device to support fiber optic modules installed in the fiber optic equipment trays. The fiber optic modules can include any fiber optic connection type, including but not limited to fiber optic connectors and adapters, and number of fiber optic connections, density, etc.


The terms “fiber optic cables” and/or “optical fibers” include all types of single mode and multi-mode light waveguides, including one or more optical fibers that may be upcoated, colored, buffered, ribbonized and/or have other organizing or protective structure in a cable such as one or more tubes, strength members, jackets or the like. Likewise, other types of suitable optical fibers include bend-insensitive optical fibers, or any other expedient of a medium for transmitting light signals. An example of a bend-insensitive optical fiber is ClearCurve® Multimode fiber commercially available from Corning Incorporated.


Therefore, it is to be understood that the embodiments are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. It is intended that the embodiments cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims
  • 1. A fiber optic equipment guide panel, comprising: an elongated member; andat least one guide member disposed in the elongated member and configured to receive fiber optic equipment;wherein the elongated member is configured to be attached to a chassis; andfurther comprising at least one stopping member disposed within the at least one guide member, wherein the at least one stopping member is configured to receive at least one complementary member in the fiber optic equipment.
  • 2. The fiber optic equipment guide panel of claim 1, wherein the fiber optic equipment includes at least one fiber optic equipment rail configured to be received within the at least one guide member.
  • 3. The fiber optic equipment guide panel of claim 1, further comprising at least one aperture disposed in the elongated member to support attachment of the elongated member to the chassis.
  • 4. The fiber optic equipment guide panel of claim 1, further comprising a pull-out limiting member disposed on an end of the at least one guide member.
  • 5. The fiber optic equipment guide panel of claim 1, further comprising: a front pull-out limiting member disposed on a front end of the at least one guide member; anda rear pull-out limiting member disposed on a rear end of the at least one guide member.
  • 6. The fiber optic equipment guide panel of claim 1, wherein the at least one stopping member is comprised of at least one detent or at least one protrusion.
  • 7. The fiber optic equipment guide panel of claim 1, wherein the at least one stopping member is comprised of at least one leaf spring disposed in the at least one guide member.
  • 8. The fiber optic equipment guide panel of claim 7, wherein the at least one leaf spring is provided in the form of at least one curly bracket.
  • 9. The fiber optic equipment guide panel of claim 7, wherein the at least one leaf spring provides a force between two (2) and four (4) pounds (lbs).
  • 10. The fiber optic equipment guide panel of claim 1, wherein the at least one stopping member is comprised of a plurality of stopping members disposed in the at least one guide member configured to provide a plurality of stopping positions for the fiber optic equipment during movement along the at least one guide member.
  • 11. The fiber optic equipment guide of claim 1, wherein the chassis is comprised of a drawer.
  • 12. The fiber optic equipment guide panel of claim 1, wherein the fiber optic equipment is comprised of a fiber optic module or a fiber optic equipment tray.
  • 13. The fiber optic equipment guide panel of claim 1, comprising two of the fiber optic equipment guide panels disposed opposing each other in the chassis each configured to receive opposing ends of the fiber optic equipment.
  • 14. A fiber optic equipment guide, comprising: a guide panel;at least one guide member disposed in the guide panel and configured to receive fiber optic equipment; andat least three stopping members disposed in the at least one guide member configured to provide one or more less stopping positions than the number of stopping members for the fiber optic equipment during movement in the at least one guide member.
  • 15. The fiber optic equipment guide of claim 14, wherein the fiber optic equipment includes at least one fiber optic equipment rail configured to be received within the at least one guide member.
  • 16. The fiber optic equipment guide of claim 14, wherein the fiber optic equipment is configured to engage at least two of the at least three stopping members to provide a stopping position for the fiber optic equipment.
  • 17. The fiber optic equipment guide of claim 14, wherein the at least three stopping members are each configured to receive a complementary member in the fiber optic equipment.
  • 18. The fiber optic equipment guide of claim 14, wherein the at least three stopping members are each comprised of either a detent or a protrusion.
  • 19. The fiber optic equipment guide of claim 14, wherein at least one of the at least three stopping members is engaged by the fiber optic equipment for each of the stopping positions.
  • 20. A fiber optic equipment guide, comprising: a guide panel;at least one guide member disposed in the guide panel and configured to receive fiber optic equipment;at least one stopping member disposed in the at least one guide member configured to provide at least one stopping position for the fiber optic equipment during movement in the at least one guide member; andat least one transition member disposed in the at least one guide member configured to allow a protrusion disposed in the fiber optic equipment to pass as a fiber optic equipment tray is translated within the at least one guide member.
  • 21. The fiber optic equipment guide of claim 20, wherein the fiber optic equipment includes at least one fiber optic equipment rail configured to be received within the at least one guide member.
  • 22. The fiber optic equipment guide of claim 20, wherein the at least one transition member includes at least one included surface.
  • 23. The fiber optic equipment guide of claim 20, wherein the at least one transition member is disposed between a front end and a rear end of the at least one guide member.
  • 24. The fiber optic equipment guide of claim 20, further comprising a pull-out limiting member disposed on an end of the at least one guide member.
  • 25. The fiber optic equipment guide of claim 20, further comprising: a front pull-out limiting member disposed on a front end of the at least one guide member; anda rear pull-out limiting member disposed on a rear end of the at least one guide member.
  • 26. A fiber optic equipment rail, comprising: an elongated member configured to be attached to fiber optic equipment and received in a fiber optic equipment guide to move the fiber optic equipment about the fiber optic equipment guide; andat least one detent disposed in the elongated member and configured to engage with the at least one stopping member disposed in the fiber optic equipment guide to provide at least one stopping position for the fiber optic equipment during movement about the fiber optic equipment guide; andat least one protrusion disposed in the elongated member wherein the at least one protrusion is configured to engage with at least one transition member disposed in the fiber optic equipment guide.
  • 27. The fiber optic equipment rail of claim 26, wherein the at least one stopping member is comprised of at least one detent or at least one protrusion.
  • 28. The fiber optic equipment rail of claim 27, wherein the at least one stopping member is comprised of at least one leaf spring.
  • 29. The fiber optic equipment rail of claim 26, wherein the at least one protrusion is configured is engage with at least one pull-out limiting member disposed on an end of the fiber optic equipment guide.
  • 30. The fiber optic equipment rail of claim 26 attached to a fiber optic equipment tray or a fiber optic equipment module.
  • 31. The fiber optic equipment rail of claim 26, wherein the at least one detent is configured to not impose a force on the at least one stopping member when the at least one detent is engaged with the at least one stopping member.
  • 32. A method of providing access to a fiber optic module in fiber optic equipment, comprising: imparting a force on a fiber optic equipment tray supporting one or more fiber optic modules to move at least one fiber optic equipment rail attached to the fiber optic equipment tray about a fiber optic equipment guide disposed in the fiber optic equipment; andreleasing at least one detent disposed in the fiber optic equipment rail from a first stopping member disposed in the fiber optic equipment guide to allow the fiber optic equipment tray to move;engaging a second stopping member disposed in the fiber optic equipment guide with the at least one detent disposed in the fiber optic equipment rail to stop movement of the fiber optic equipment tray.
  • 33. The method of claim 32, wherein the at least one stopping member is comprised of at least one detent or at least one protrusion.
  • 34. The method of claim 32, wherein the first and second stopping members are each comprised of a leaf spring.
  • 35. The method of claim 32, further comprising limiting the pull out distance of the fiber optic equipment tray when the at least one detent engages a pull-out limiting member disposed on an end of the fiber optic equipment guide.
  • 36. The method of claim 32, wherein the at least one detent is configured to not impose a force on the at least one stopping member when the at least one detent is engaged with the at least one stopping member.
  • 37. A fiber optic equipment guide panel, comprising: an elongated member; andat least one guide member disposed in the elongated member and configured to receive fiber optic equipment;wherein the elongated member is configured to be attached to a chassis; anda front pull-out limiting member disposed on a front end of the at least one guide member; anda rear pull-out limiting member disposed on a rear end of the at least one guide member.
  • 38. The fiber optic equipment guide panel of claim 37, wherein the front pull-out limiting member and the rear pull-out limiting member are each configured to receive at least one complementary member in the fiber optic equipment.
  • 39. The fiber optic equipment guide panel of claim 37, wherein the front pull-out limiting member is configured to provide a front of stopping position for the fiber optic equipment during movement along the at least one guide member, and the rear pull-out limiting member is configured to provide a rear of stopping position for the fiber optic equipment during movement along the at least one guide member.
  • 40. The fiber optic equipment guide of claim 37, wherein the chassis is comprised of a drawer.
  • 41. The fiber optic equipment guide panel of claim 37, comprising two of the fiber optic equipment guide panels disposed opposing each other in the chassis each configured to receive opposing ends of the fiber optic equipment.
  • 42. A fiber optic equipment guide panel, comprising: an elongated member; andat least one guide member disposed in the elongated member and configured to receive fiber optic equipment;wherein the elongated member is configured to be attached to a chassis; andwherein the at least one stopping member is comprised of at least one leaf spring disposed in the at least one guide member.
  • 43. The fiber optic equipment guide panel of claim 42, wherein the at least one leaf spring is provided in the form of at least one curly bracket.
  • 44. The fiber optic equipment guide panel of claim 42, wherein the at least one leaf spring provides a force between two (2) and four (4) pounds (lbs).
  • 45. A fiber optic equipment rail, comprising: an elongated member configured to be attached to fiber optic equipment and received in a fiber optic equipment guide to move the fiber optic equipment about the fiber optic equipment guide; andat least one detent disposed in the elongated member and configured to engage with at least one stopping member disposed in the fiber optic equipment guide to provide at least one stopping position for the fiber optic equipment during movement about the fiber optic equipment guide;wherein the at least one stopping member is comprised of at least one leaf spring.
  • 46. The fiber optic equipment rail of claim 45, wherein the at least one stopping member is comprised of at least one detent or at least one protrusion.
  • 47. The fiber optic equipment rail of claim 45 attached to a fiber optic equipment tray or a fiber optic equipment module.
  • 48. The fiber optic equipment rail of claim 45, wherein the at least one detent is configured to not impose a force on the at least one stopping member when the at least one detent is engaged with the at least one stopping member.
RELATED APPLICATIONS

The present application claims priority to U.S. Provisional Patent Application Ser. No. 61/180,331, filed May 21, 2009, entitled “Fiber Optic Equipment Guides and Rails Configured With Stopping Position(s), and Related Equipment,” which is incorporated herein by reference in its entirety. The present application also claims priority to U.S. Provisional Patent Application Ser. No. 61/219,233, filed Jun. 22, 2009, entitled “Fiber Optic Equipment Guides and Rails Configured With Stopping Position(s), and Related Equipment,” which is incorporated herein by reference in its entirety. The present application is related to U.S. Provisional Patent Application Ser. No. 61/180,334, filed May 21, 2009, entitled “Fiber Optic Equipment Supporting Moveable Fiber Optic Equipment Tray(s) and Module(s), and Related Equipment,” which is incorporated herein by reference in its entirety. The present application is also related to U.S. Provisional Patent Application Ser. No. 61/219,241, filed Jun. 22, 2009, entitled “Fiber Optic Equipment Supporting Moveable Fiber Optic Equipment Tray(s) and Module(s), and Related Equipment,” which is incorporated herein by reference in its entirety. The present application is related to co-pending U.S. patent application Ser. No. 12/323,423, filed Nov. 25, 2008, entitled “Rear-Installable Fiber Optic Modules and Equipment,” which is incorporated herein by reference in its entirety. The present application is also related to co-pending U.S. patent application Ser. No. 12/323,415, filed Nov. 25, 2008, entitled “Independently Translatable Modules and Fiber Optic Equipment Trays In Fiber Optic Equipment,” which is incorporated herein by reference in its entirety. The present application is also related to co-pending U.S. patent application Ser. No. 12/394,483, filed Feb. 27, 2009, entitled “Rear-Slidable Extension in a Fiber Optic Equipment Tray,” which is incorporated herein by reference in its entirety.

US Referenced Citations (733)
Number Name Date Kind
620013 Barnes Feb 1899 A
2614685 Miller Oct 1952 A
3175873 Blomquist et al. Mar 1965 A
3433886 Myers Mar 1969 A
3568263 Meehan Mar 1971 A
3646244 Cole Feb 1972 A
3880396 Freiberger et al. Apr 1975 A
3906592 Sakasegawa et al. Sep 1975 A
4047797 Arnold et al. Sep 1977 A
4059872 Delesandri Nov 1977 A
4119285 Bisping et al. Oct 1978 A
4239316 Spaulding Dec 1980 A
4285486 Von Osten et al. Aug 1981 A
4354731 Mouissie Oct 1982 A
4457482 Kitagawa Jul 1984 A
4525012 Dunner Jun 1985 A
4597173 Chino et al. Jul 1986 A
4611875 Clarke et al. Sep 1986 A
4645292 Sammueller Feb 1987 A
4657340 Tanaka et al. Apr 1987 A
4702551 Coulombe Oct 1987 A
4736100 Vastagh Apr 1988 A
4744629 Bertoglio et al. May 1988 A
4747020 Brickley et al. May 1988 A
4752110 Blanchet et al. Jun 1988 A
4787706 Cannon, Jr. et al. Nov 1988 A
4792203 Nelson et al. Dec 1988 A
4798432 Becker et al. Jan 1989 A
4808774 Crane Feb 1989 A
4824193 Maeda et al. Apr 1989 A
4824196 Bylander Apr 1989 A
4826277 Weber et al. May 1989 A
4838643 Hodges et al. Jun 1989 A
4865280 Wollar Sep 1989 A
4898448 Cooper Feb 1990 A
4900123 Barlow Feb 1990 A
4911662 Debortoli et al. Mar 1990 A
4948220 Violo et al. Aug 1990 A
4949376 Nieves et al. Aug 1990 A
4971421 Ori Nov 1990 A
4991928 Zimmer Feb 1991 A
4995688 Anton et al. Feb 1991 A
5001602 Suffi et al. Mar 1991 A
5005941 Barlow et al. Apr 1991 A
5017211 Wenger et al. May 1991 A
5023646 Ishida et al. Jun 1991 A
5024498 Becker et al. Jun 1991 A
5028114 Krausse et al. Jul 1991 A
5037175 Weber Aug 1991 A
5048918 Daems et al. Sep 1991 A
5066149 Wheeler et al. Nov 1991 A
5067784 Debortoli et al. Nov 1991 A
5071211 Debortoli et al. Dec 1991 A
5071220 Ruello et al. Dec 1991 A
5073042 Mulholland et al. Dec 1991 A
5074635 Justice et al. Dec 1991 A
5076688 Bowen et al. Dec 1991 A
5080459 Wettengel et al. Jan 1992 A
5100221 Carney et al. Mar 1992 A
5125060 Edmundson Jun 1992 A
5127082 Below et al. Jun 1992 A
5129030 Petrunia Jul 1992 A
5133039 Dixit Jul 1992 A
5138688 Debortoli Aug 1992 A
5142598 Tabone Aug 1992 A
5142607 Petrotta et al. Aug 1992 A
5150277 Bainbridge et al. Sep 1992 A
D330368 Bourgeois et al. Oct 1992 S
5152760 Latina Oct 1992 A
5153910 Mickelson et al. Oct 1992 A
5157749 Briggs et al. Oct 1992 A
5167001 Debortoli et al. Nov 1992 A
5189723 Johnson et al. Feb 1993 A
5204929 Machall et al. Apr 1993 A
5209572 Jordan May 1993 A
5214735 Henneberger et al. May 1993 A
5224186 Kishimoto et al. Jun 1993 A
5231687 Handley Jul 1993 A
5231688 Zimmer Jul 1993 A
5233674 Vladic Aug 1993 A
5239609 Auteri Aug 1993 A
5243679 Sharrow et al. Sep 1993 A
5253320 Takahashi et al. Oct 1993 A
5260957 Hakimi et al. Nov 1993 A
5261633 Mastro Nov 1993 A
5265187 Morin et al. Nov 1993 A
5274731 White Dec 1993 A
5280138 Preston et al. Jan 1994 A
5285515 Milanowski et al. Feb 1994 A
5315679 Baldwin et al. May 1994 A
5317663 Beard et al. May 1994 A
5323478 Milanowski et al. Jun 1994 A
5323480 Mullaney et al. Jun 1994 A
5333193 Cote et al. Jul 1994 A
5333221 Briggs et al. Jul 1994 A
5333222 Belenkiy et al. Jul 1994 A
5337400 Morin et al. Aug 1994 A
5339379 Kutsch et al. Aug 1994 A
5347603 Belenkiy et al. Sep 1994 A
5353367 Czosnowski et al. Oct 1994 A
5359688 Underwood Oct 1994 A
5363466 Milanowski et al. Nov 1994 A
5366388 Freeman et al. Nov 1994 A
5367598 Devenish, III et al. Nov 1994 A
5373421 Detsikas et al. Dec 1994 A
5383051 Delrosso et al. Jan 1995 A
5398295 Chang et al. Mar 1995 A
5398820 Kiss Mar 1995 A
5399814 Staber et al. Mar 1995 A
5401193 Lo Cicero et al. Mar 1995 A
5402515 Vidacovich et al. Mar 1995 A
5408557 Hsu Apr 1995 A
RE34955 Anton et al. May 1995 E
5412751 Siemon et al. May 1995 A
5416837 Cote et al. May 1995 A
5418874 Carlisle et al. May 1995 A
5420956 Grugel et al. May 1995 A
5420958 Henson et al. May 1995 A
5438641 Malacarne Aug 1995 A
5442725 Peng Aug 1995 A
5442726 Howard et al. Aug 1995 A
5443232 Kesinger et al. Aug 1995 A
5448015 Jamet et al. Sep 1995 A
5450518 Burek et al. Sep 1995 A
5458019 Trevino Oct 1995 A
5471555 Braga et al. Nov 1995 A
5479505 Butler et al. Dec 1995 A
5481634 Anderson et al. Jan 1996 A
5481939 Bernardini Jan 1996 A
5490229 Ghandeharizadeh et al. Feb 1996 A
5497416 Butler, III et al. Mar 1996 A
5497444 Wheeler Mar 1996 A
5511144 Hawkins et al. Apr 1996 A
5511798 Kawamoto et al. Apr 1996 A
5519804 Burek et al. May 1996 A
5542015 Hultermans Jul 1996 A
5546495 Bruckner et al. Aug 1996 A
5548641 Butler et al. Aug 1996 A
5553183 Bechamps Sep 1996 A
5553186 Allen Sep 1996 A
5572617 Bernhardt et al. Nov 1996 A
5575680 Suffi Nov 1996 A
5577151 Hoffer Nov 1996 A
5590234 Pulido Dec 1996 A
5595507 Braun et al. Jan 1997 A
5600020 Wehle et al. Feb 1997 A
5602954 Nolf et al. Feb 1997 A
5608606 Blaney Mar 1997 A
5613030 Hoffer et al. Mar 1997 A
5617501 Miller et al. Apr 1997 A
5638474 Lampert et al. Jun 1997 A
5640476 Womack et al. Jun 1997 A
5640482 Barry et al. Jun 1997 A
5647043 Anderson et al. Jul 1997 A
5647045 Robinson et al. Jul 1997 A
5650334 Zuk et al. Jul 1997 A
5668911 Debortoli Sep 1997 A
5671273 Lanquist Sep 1997 A
5689605 Cobb et al. Nov 1997 A
5689607 Vincent et al. Nov 1997 A
5694511 Pimpinella et al. Dec 1997 A
5701380 Larson et al. Dec 1997 A
5708742 Beun et al. Jan 1998 A
5708751 Mattei Jan 1998 A
5710851 Walter et al. Jan 1998 A
5717810 Wheeler Feb 1998 A
5734776 Puetz Mar 1998 A
5740300 Hodge Apr 1998 A
5742982 Dodd et al. Apr 1998 A
5751874 Chudoba et al. May 1998 A
5751882 Daems et al. May 1998 A
5758003 Wheeler et al. May 1998 A
5758004 Alarcon et al. May 1998 A
5761026 Robinson et al. Jun 1998 A
5769908 Koppelman Jun 1998 A
5774612 Belenkiy et al. Jun 1998 A
5778122 Giebel et al. Jul 1998 A
5778130 Walters et al. Jul 1998 A
5781686 Robinson et al. Jul 1998 A
5790741 Vincent et al. Aug 1998 A
5793920 Wilkins et al. Aug 1998 A
5793921 Wilkins et al. Aug 1998 A
5796908 Vicory Aug 1998 A
5823646 Arizpe et al. Oct 1998 A
5825955 Ernst et al. Oct 1998 A
5825961 Wilkins et al. Oct 1998 A
5828807 Tucker et al. Oct 1998 A
5832162 Sarbell Nov 1998 A
5835657 Suarez et al. Nov 1998 A
5835658 Smith Nov 1998 A
5862290 Burek et al. Jan 1999 A
5870519 Jenkins et al. Feb 1999 A
5877565 Hollenbach et al. Mar 1999 A
5880864 Williams et al. Mar 1999 A
5881200 Burt Mar 1999 A
5883995 Lu et al. Mar 1999 A
5884003 Cloud et al. Mar 1999 A
5887095 Nagase et al. Mar 1999 A
5887106 Cheeseman et al. Mar 1999 A
5892877 Meyerhoefer Apr 1999 A
5894540 Drewing Apr 1999 A
5901220 Garver et al. May 1999 A
5903693 Brown May 1999 A
5913006 Summach Jun 1999 A
5914976 Jayaraman et al. Jun 1999 A
5915055 Bennett et al. Jun 1999 A
5923804 Rosson Jul 1999 A
5930425 Abel et al. Jul 1999 A
5933557 Ott Aug 1999 A
5945633 Ott et al. Aug 1999 A
5946440 Puetz Aug 1999 A
5949946 Debortoli et al. Sep 1999 A
5956439 Pimpinella Sep 1999 A
5956444 Duda et al. Sep 1999 A
5966492 Bechamps et al. Oct 1999 A
5969294 Eberle et al. Oct 1999 A
5975769 Larson et al. Nov 1999 A
5978540 Bechamps et al. Nov 1999 A
5980303 Lee et al. Nov 1999 A
5993071 Hultermans Nov 1999 A
5995700 Burek et al. Nov 1999 A
5999393 Brower Dec 1999 A
6001831 Papenfuhs et al. Dec 1999 A
6009224 Allen Dec 1999 A
6009225 Ray et al. Dec 1999 A
6011831 Nieves et al. Jan 2000 A
6027252 Erdman et al. Feb 2000 A
6044193 Szentesi et al. Mar 2000 A
6058235 Hiramatsu et al. May 2000 A
6061492 Strause et al. May 2000 A
6078661 Arnett et al. Jun 2000 A
6079881 Roth Jun 2000 A
6127627 Daoud Oct 2000 A
6134370 Childers et al. Oct 2000 A
6149313 Giebel et al. Nov 2000 A
6149315 Stephenson Nov 2000 A
6151432 Nakajima et al. Nov 2000 A
6160946 Thompson et al. Dec 2000 A
6181861 Wenski et al. Jan 2001 B1
6188687 Mussman et al. Feb 2001 B1
6188825 Bandy et al. Feb 2001 B1
6192180 Kim et al. Feb 2001 B1
6201920 Noble et al. Mar 2001 B1
6208796 Williams Mar 2001 B1
6212324 Lin et al. Apr 2001 B1
6215938 Reitmeier et al. Apr 2001 B1
6227717 Ott et al. May 2001 B1
6234683 Waldron et al. May 2001 B1
6234685 Carlisle et al. May 2001 B1
6236795 Rodgers May 2001 B1
6240229 Roth May 2001 B1
6243522 Allan et al. Jun 2001 B1
6245998 Curry et al. Jun 2001 B1
6263141 Smith Jul 2001 B1
6265680 Robertson Jul 2001 B1
6269212 Schiattone Jul 2001 B1
6275641 Daoud Aug 2001 B1
6278829 BuAbbud et al. Aug 2001 B1
6278831 Henderson et al. Aug 2001 B1
D448005 Klein, Jr. et al. Sep 2001 S
6292614 Smith et al. Sep 2001 B1
6301424 Hwang Oct 2001 B1
6307997 Walters et al. Oct 2001 B1
6318824 LaGrotta et al. Nov 2001 B1
6321017 Janus et al. Nov 2001 B1
6322279 Yamamoto et al. Nov 2001 B1
6325549 Shevchuk Dec 2001 B1
RE37489 Anton et al. Jan 2002 E
6343313 Salesky et al. Jan 2002 B1
6347888 Puetz Feb 2002 B1
6353696 Gordon et al. Mar 2002 B1
6353697 Daoud Mar 2002 B1
6359228 Strause et al. Mar 2002 B1
6363200 Thompson et al. Mar 2002 B1
6370309 Daoud Apr 2002 B1
6377218 Nelson et al. Apr 2002 B1
6379052 De Jong et al. Apr 2002 B1
6385381 Janus et al. May 2002 B1
6389214 Smith et al. May 2002 B1
6397166 Leung et al. May 2002 B1
6411767 Burrous et al. Jun 2002 B1
6418262 Puetz et al. Jul 2002 B1
6424781 Puetz et al. Jul 2002 B1
6425694 Szilagyi et al. Jul 2002 B1
6427045 Matthes et al. Jul 2002 B1
6431762 Taira et al. Aug 2002 B1
6434313 Clapp, Jr. et al. Aug 2002 B1
6438310 Lance et al. Aug 2002 B1
6452925 Sistanizadeh et al. Sep 2002 B1
6456773 Keys Sep 2002 B1
6464402 Andrews et al. Oct 2002 B1
6466724 Glover et al. Oct 2002 B1
6469905 Hwang Oct 2002 B1
D466087 Cuny et al. Nov 2002 S
6478472 Anderson et al. Nov 2002 B1
6480487 Wegleitner et al. Nov 2002 B1
6480660 Reitmeier et al. Nov 2002 B1
6483977 Battey et al. Nov 2002 B2
6484958 Xue et al. Nov 2002 B1
6496640 Harvey et al. Dec 2002 B1
6504988 Trebesch et al. Jan 2003 B1
6507980 Bremicker Jan 2003 B2
6510274 Wu et al. Jan 2003 B1
6532332 Solheid et al. Mar 2003 B2
6533472 Dinh et al. Mar 2003 B1
6535397 Clark et al. Mar 2003 B2
6539147 Mahony Mar 2003 B1
6539160 Battey et al. Mar 2003 B2
6542688 Battey et al. Apr 2003 B1
6554485 Beatty et al. Apr 2003 B1
6560334 Mullaney et al. May 2003 B1
6567601 Daoud et al. May 2003 B2
6571048 Bechamps et al. May 2003 B1
6577595 Counterman Jun 2003 B1
6577801 Broderick et al. Jun 2003 B2
6579014 Melton et al. Jun 2003 B2
6584267 Caveney et al. Jun 2003 B1
6587630 Spence et al. Jul 2003 B2
6588938 Lampert et al. Jul 2003 B1
6591051 Solheid et al. Jul 2003 B2
6597670 Tweedy et al. Jul 2003 B1
6600866 Gatica et al. Jul 2003 B2
6612515 Tinucci et al. Sep 2003 B1
6614978 Caveney Sep 2003 B1
6614980 Mahony Sep 2003 B1
6621975 Laporte et al. Sep 2003 B2
6625374 Holman et al. Sep 2003 B2
6625375 Mahony Sep 2003 B1
6631237 Knudsen et al. Oct 2003 B2
6640042 Araki et al. Oct 2003 B2
RE38311 Wheeler Nov 2003 E
6647197 Marrs et al. Nov 2003 B1
6648520 McDonald et al. Nov 2003 B2
6654536 Battey et al. Nov 2003 B2
6668127 Mahony Dec 2003 B1
6677520 Kim et al. Jan 2004 B1
6687450 Kempeneers et al. Feb 2004 B1
6710366 Lee et al. Mar 2004 B1
6715619 Kim et al. Apr 2004 B2
6719149 Tomino Apr 2004 B2
6741784 Guan May 2004 B1
6741785 Barthel et al. May 2004 B2
6748154 O'Leary et al. Jun 2004 B2
6748155 Kim et al. Jun 2004 B2
6758600 Del Grosso et al. Jul 2004 B2
6768860 Liberty Jul 2004 B2
6771861 Wagner et al. Aug 2004 B2
6778525 Baum et al. Aug 2004 B1
6778752 Laporte et al. Aug 2004 B2
6788871 Taylor Sep 2004 B2
6792190 Xin et al. Sep 2004 B2
6798751 Voit et al. Sep 2004 B1
6804447 Smith et al. Oct 2004 B2
6819856 Dagley et al. Nov 2004 B2
6819857 Douglas et al. Nov 2004 B2
6826174 Erekson et al. Nov 2004 B1
6839428 Brower et al. Jan 2005 B2
6839438 Riegelsberger et al. Jan 2005 B1
6840815 Musolf et al. Jan 2005 B2
6845207 Schray Jan 2005 B2
6848862 Schlig Feb 2005 B1
6850685 Tinucci et al. Feb 2005 B2
6853637 Norrell et al. Feb 2005 B1
6854894 Yunker et al. Feb 2005 B1
6856334 Fukui Feb 2005 B1
6865331 Mertesdorf Mar 2005 B2
6865334 Cooke et al. Mar 2005 B2
6866541 Barker et al. Mar 2005 B2
6868216 Gehrke Mar 2005 B1
6869227 Del Grosso et al. Mar 2005 B2
6870734 Mertesdorf et al. Mar 2005 B2
6870997 Cooke Mar 2005 B2
6879545 Cooke et al. Apr 2005 B2
6915058 Pons Jul 2005 B2
6920273 Knudsen Jul 2005 B2
6920274 Rapp et al. Jul 2005 B2
6925241 Bohle et al. Aug 2005 B2
6934451 Cooke Aug 2005 B2
6934456 Ferris et al. Aug 2005 B2
6937807 Franklin et al. Aug 2005 B2
6944383 Herzog et al. Sep 2005 B1
6944389 Giraud et al. Sep 2005 B2
6963690 Kassal et al. Nov 2005 B1
6968107 Belardi et al. Nov 2005 B2
6968111 Trebesch et al. Nov 2005 B2
6985665 Baechtle Jan 2006 B2
6993237 Cooke et al. Jan 2006 B2
7000784 Canty et al. Feb 2006 B2
7006748 Dagley et al. Feb 2006 B2
7007296 Rakib Feb 2006 B2
7027695 Cooke et al. Apr 2006 B2
7027706 Diaz et al. Apr 2006 B2
7031588 Cowley et al. Apr 2006 B2
7035510 Zimmel et al. Apr 2006 B2
7038137 Grubish et al. May 2006 B2
7054513 Herz et al. May 2006 B2
7066748 Bricaud et al. Jun 2006 B2
7068907 Schray Jun 2006 B2
7070459 Denovich et al. Jul 2006 B2
7079744 Douglas et al. Jul 2006 B2
7090406 Melton et al. Aug 2006 B2
7090407 Melton et al. Aug 2006 B2
7094095 Caveney Aug 2006 B1
7097047 Lee et al. Aug 2006 B2
7101093 Hsiao et al. Sep 2006 B2
7102884 Mertesdorf et al. Sep 2006 B2
7103255 Reagan et al. Sep 2006 B2
7110654 Dillat Sep 2006 B2
7111990 Melton et al. Sep 2006 B2
7113679 Melton et al. Sep 2006 B2
7113686 Bellekens et al. Sep 2006 B2
7113687 Womack et al. Sep 2006 B2
7116883 Kline et al. Oct 2006 B2
7118281 Chiu et al. Oct 2006 B2
7118405 Peng Oct 2006 B2
7120347 Blackwell, Jr. et al. Oct 2006 B2
7120348 Trebesch et al. Oct 2006 B2
7120349 Elliott Oct 2006 B2
7128471 Wilson Oct 2006 B2
7139462 Richtman Nov 2006 B1
7171099 Barnes et al. Jan 2007 B2
7171121 Skarica et al. Jan 2007 B1
7181142 Xu et al. Feb 2007 B1
7194181 Holmberg et al. Mar 2007 B2
7195521 Musolf et al. Mar 2007 B2
7200314 Womack et al. Apr 2007 B2
7200316 Giraud et al. Apr 2007 B2
7228036 Elkins, II et al. Jun 2007 B2
7231125 Douglas et al. Jun 2007 B2
7234878 Yamauchi et al. Jun 2007 B2
7236677 Escoto et al. Jun 2007 B2
7245809 Gniadek et al. Jul 2007 B1
7259325 Pincu et al. Aug 2007 B2
7266283 Kline et al. Sep 2007 B2
7270485 Robinson et al. Sep 2007 B1
7272291 Bayazit et al. Sep 2007 B2
7274852 Smrha et al. Sep 2007 B1
7289731 Thinguldstad Oct 2007 B2
7292769 Watanabe et al. Nov 2007 B2
7298950 Frohlich Nov 2007 B2
7300308 Laursen et al. Nov 2007 B2
7302149 Swam et al. Nov 2007 B2
7302153 Thom Nov 2007 B2
7302154 Trebesch et al. Nov 2007 B2
7308184 Barnes et al. Dec 2007 B2
7310471 Bayazit et al. Dec 2007 B2
7315681 Kewitsch Jan 2008 B2
7325975 Yamada et al. Feb 2008 B2
7330625 Barth Feb 2008 B2
7330626 Kowalczyk et al. Feb 2008 B2
7330629 Cooke et al. Feb 2008 B2
7340145 Allen Mar 2008 B2
7349615 Frazier et al. Mar 2008 B2
7373071 Douglas et al. May 2008 B2
7376321 Bolster et al. May 2008 B2
7376323 Zimmel May 2008 B2
7391952 Ugolini et al. Jun 2008 B1
7397996 Herzog et al. Jul 2008 B2
7400813 Zimmel Jul 2008 B2
7409137 Barnes Aug 2008 B2
7417188 McNutt et al. Aug 2008 B2
7418182 Krampotich Aug 2008 B2
7418184 Gonzales et al. Aug 2008 B1
7421182 Bayazit et al. Sep 2008 B2
7428363 Leon et al. Sep 2008 B2
7437049 Krampotich Oct 2008 B2
7439453 Murano et al. Oct 2008 B2
7454113 Barnes Nov 2008 B2
7460757 Hoehne et al. Dec 2008 B2
7460758 Xin Dec 2008 B2
7461981 Yow, Jr. et al. Dec 2008 B2
7462779 Caveney et al. Dec 2008 B2
7463810 Bayazit et al. Dec 2008 B2
7463811 Trebesch et al. Dec 2008 B2
7469090 Ferris et al. Dec 2008 B2
7471867 Vogel et al. Dec 2008 B2
7474828 Leon et al. Jan 2009 B2
7477824 Reagan et al. Jan 2009 B2
7477826 Mullaney et al. Jan 2009 B2
7480438 Douglas et al. Jan 2009 B2
7488205 Spisany et al. Feb 2009 B2
7493002 Coburn et al. Feb 2009 B2
7496269 Lee Feb 2009 B1
7499622 Castonguay et al. Mar 2009 B2
7499623 Barnes et al. Mar 2009 B2
7509015 Murano Mar 2009 B2
7509016 Smith et al. Mar 2009 B2
7522804 Araki et al. Apr 2009 B2
7526171 Caveney et al. Apr 2009 B2
7526172 Gniadek et al. Apr 2009 B2
7526174 Leon et al. Apr 2009 B2
7529458 Spisany et al. May 2009 B2
7534958 McNutt et al. May 2009 B2
7536075 Zimmel May 2009 B2
7542645 Hua et al. Jun 2009 B1
7555193 Rapp et al. Jun 2009 B2
7558458 Gronvall et al. Jul 2009 B2
7565051 Vongseng Jul 2009 B2
7567744 Krampotich et al. Jul 2009 B2
7570860 Smrha et al. Aug 2009 B2
7570861 Smrha et al. Aug 2009 B2
7577331 Laurisch et al. Aug 2009 B2
7603020 Wakileh et al. Oct 2009 B1
7607938 Clark et al. Oct 2009 B2
7609967 Hochbaum et al. Oct 2009 B2
7613377 Gonzales et al. Nov 2009 B2
7620287 Appenzeller et al. Nov 2009 B2
7641398 O'Riorden et al. Jan 2010 B2
7668430 McClellan et al. Feb 2010 B2
7668433 Bayazit et al. Feb 2010 B2
7672561 Keith et al. Mar 2010 B1
7676135 Chen Mar 2010 B2
7697811 Murano et al. Apr 2010 B2
7715683 Kowalczyk et al. May 2010 B2
7740409 Bolton et al. Jun 2010 B2
7743495 Mori et al. Jun 2010 B2
7756382 Saravanos et al. Jul 2010 B2
7760984 Solheid et al. Jul 2010 B2
7764858 Bayazit et al. Jul 2010 B2
7809235 Reagan et al. Oct 2010 B2
7822310 Castonguay et al. Oct 2010 B2
7850372 Nishimura et al. Dec 2010 B2
7853112 Zimmel et al. Dec 2010 B2
7856166 Biribuze et al. Dec 2010 B2
7914332 Song et al. Mar 2011 B2
7945135 Cooke et al. May 2011 B2
7945136 Cooke et al. May 2011 B2
7970250 Morris Jun 2011 B2
8014171 Kelly et al. Sep 2011 B2
8014646 Keith et al. Sep 2011 B2
8020813 Clark et al. Sep 2011 B1
8107785 Berglund et al. Jan 2012 B2
20010029125 Morita et al. Oct 2001 A1
20020010818 Wei et al. Jan 2002 A1
20020012353 Gerszberg et al. Jan 2002 A1
20020034290 Pershan Mar 2002 A1
20020037139 Asao et al. Mar 2002 A1
20020064364 Battey et al. May 2002 A1
20020131730 Keeble et al. Sep 2002 A1
20020136519 Tinucci et al. Sep 2002 A1
20020141724 Ogawa et al. Oct 2002 A1
20020150372 Schray Oct 2002 A1
20020172467 Anderson et al. Nov 2002 A1
20020181918 Spence et al. Dec 2002 A1
20020181922 Xin et al. Dec 2002 A1
20020194596 Srivastava Dec 2002 A1
20030007743 Asada Jan 2003 A1
20030007767 Douglas et al. Jan 2003 A1
20030066998 Lee Apr 2003 A1
20030086675 Wu et al. May 2003 A1
20030095753 Wada et al. May 2003 A1
20030147604 Tapia et al. Aug 2003 A1
20030174996 Henschel et al. Sep 2003 A1
20030180012 Deane et al. Sep 2003 A1
20030183413 Kato Oct 2003 A1
20030199201 Mullaney et al. Oct 2003 A1
20030210882 Barthel et al. Nov 2003 A1
20030223723 Massey et al. Dec 2003 A1
20030235387 Dufour Dec 2003 A1
20040013389 Taylor Jan 2004 A1
20040013390 Kim et al. Jan 2004 A1
20040074852 Knudsen et al. Apr 2004 A1
20040086238 Finona et al. May 2004 A1
20040086252 Smith et al. May 2004 A1
20040147159 Urban et al. Jul 2004 A1
20040151465 Krampotich et al. Aug 2004 A1
20040175090 Vastmans et al. Sep 2004 A1
20040192115 Bugg Sep 2004 A1
20040208459 Mizue et al. Oct 2004 A1
20040228598 Allen et al. Nov 2004 A1
20040240882 Lipski et al. Dec 2004 A1
20040264873 Smith et al. Dec 2004 A1
20050002633 Solheid et al. Jan 2005 A1
20050008131 Cook Jan 2005 A1
20050036749 Vogel et al. Feb 2005 A1
20050074990 Shearman et al. Apr 2005 A1
20050076149 McKown et al. Apr 2005 A1
20050083959 Binder Apr 2005 A1
20050107086 Tell et al. May 2005 A1
20050111809 Giraud et al. May 2005 A1
20050123261 Bellekens et al. Jun 2005 A1
20050129379 Reagan et al. Jun 2005 A1
20050175293 Byers et al. Aug 2005 A1
20050201073 Pincu et al. Sep 2005 A1
20050232566 Rapp et al. Oct 2005 A1
20050233647 Denovich et al. Oct 2005 A1
20050254757 Ferretti, III et al. Nov 2005 A1
20050281526 Vongseng et al. Dec 2005 A1
20060018448 Stevens et al. Jan 2006 A1
20060018622 Caveney Jan 2006 A1
20060039290 Roden et al. Feb 2006 A1
20060044774 Vasavda et al. Mar 2006 A1
20060072606 Posthuma Apr 2006 A1
20060077968 Pitsoulakis et al. Apr 2006 A1
20060093303 Reagan et al. May 2006 A1
20060110118 Escoto et al. May 2006 A1
20060147172 Luther et al. Jul 2006 A1
20060153517 Reagan et al. Jul 2006 A1
20060160377 Huang Jul 2006 A1
20060165365 Feustel et al. Jul 2006 A1
20060165366 Feustel et al. Jul 2006 A1
20060191700 Herzog et al. Aug 2006 A1
20060193590 Puetz et al. Aug 2006 A1
20060193591 Rapp et al. Aug 2006 A1
20060198098 Clark et al. Sep 2006 A1
20060215980 Bayazit et al. Sep 2006 A1
20060269194 Luther et al. Nov 2006 A1
20060269206 Zimmel Nov 2006 A1
20060269208 Allen et al. Nov 2006 A1
20060275008 Xin Dec 2006 A1
20060275009 Ellison et al. Dec 2006 A1
20060285812 Ferris et al. Dec 2006 A1
20070003204 Makrides-Saravanos et al. Jan 2007 A1
20070025070 Jiang et al. Feb 2007 A1
20070031099 Herzog et al. Feb 2007 A1
20070033629 McGranahan et al. Feb 2007 A1
20070047894 Holmberg et al. Mar 2007 A1
20070104447 Allen May 2007 A1
20070127201 Mertesdorf et al. Jun 2007 A1
20070131628 Mimlitch, III et al. Jun 2007 A1
20070196071 Laursen et al. Aug 2007 A1
20070221793 Kusuda et al. Sep 2007 A1
20070237484 Reagan et al. Oct 2007 A1
20070274718 Bridges et al. Nov 2007 A1
20080011514 Zheng et al. Jan 2008 A1
20080025683 Murano Jan 2008 A1
20080031585 Solheid et al. Feb 2008 A1
20080063350 Trebesch et al. Mar 2008 A1
20080068788 Ozawa et al. Mar 2008 A1
20080069511 Blackwell, Jr. et al. Mar 2008 A1
20080069512 Barnes et al. Mar 2008 A1
20080080826 Leon et al. Apr 2008 A1
20080080827 Leon et al. Apr 2008 A1
20080080828 Leon et al. Apr 2008 A1
20080085094 Krampotich Apr 2008 A1
20080089656 Wagner et al. Apr 2008 A1
20080095541 Dallesasse Apr 2008 A1
20080100440 Downie et al. May 2008 A1
20080106871 James May 2008 A1
20080118207 Yamamoto et al. May 2008 A1
20080121423 Vogel et al. May 2008 A1
20080124039 Gniadek et al. May 2008 A1
20080131068 Mertesdorf et al. Jun 2008 A1
20080145013 Escoto et al. Jun 2008 A1
20080152294 Hirano et al. Jun 2008 A1
20080166094 Bookbinder et al. Jul 2008 A1
20080166131 Hudgins et al. Jul 2008 A1
20080175550 Coburn et al. Jul 2008 A1
20080175551 Smrha et al. Jul 2008 A1
20080175552 Smrha et al. Jul 2008 A1
20080193091 Herbst Aug 2008 A1
20080205823 Luther et al. Aug 2008 A1
20080205844 Castonguay et al. Aug 2008 A1
20080212928 Kowalczyk et al. Sep 2008 A1
20080219632 Smith et al. Sep 2008 A1
20080219634 Rapp et al. Sep 2008 A1
20080236858 Quijano Oct 2008 A1
20080247723 Herzog et al. Oct 2008 A1
20080267573 Douglas et al. Oct 2008 A1
20080285934 Standish et al. Nov 2008 A1
20080292261 Kowalczyk et al. Nov 2008 A1
20080298763 Appenzeller et al. Dec 2008 A1
20080304803 Krampotich et al. Dec 2008 A1
20080310810 Gallagher Dec 2008 A1
20090010607 Elisson et al. Jan 2009 A1
20090016685 Hudgins et al. Jan 2009 A1
20090022470 Krampotich Jan 2009 A1
20090060439 Cox et al. Mar 2009 A1
20090060440 Wright et al. Mar 2009 A1
20090067800 Vazquez et al. Mar 2009 A1
20090097813 Hill Apr 2009 A1
20090136194 Barnes May 2009 A1
20090136196 Trebesch et al. May 2009 A1
20090148117 Laurisch Jun 2009 A1
20090169163 Abbott, III et al. Jul 2009 A1
20090175588 Brandt et al. Jul 2009 A1
20090180749 Douglas et al. Jul 2009 A1
20090185782 Parikh et al. Jul 2009 A1
20090191891 Ma et al. Jul 2009 A1
20090194647 Keith Aug 2009 A1
20090196563 Mullsteff et al. Aug 2009 A1
20090202214 Holmberg et al. Aug 2009 A1
20090207577 Fransen et al. Aug 2009 A1
20090208178 Kowalczyk et al. Aug 2009 A1
20090208210 Trojer et al. Aug 2009 A1
20090214171 Coburn et al. Aug 2009 A1
20090220200 Wong et al. Sep 2009 A1
20090220204 Ruiz Sep 2009 A1
20090226142 Barnes et al. Sep 2009 A1
20090238531 Holmberg et al. Sep 2009 A1
20090245743 Cote et al. Oct 2009 A1
20090252472 Solheid et al. Oct 2009 A1
20090257726 Redmann et al. Oct 2009 A1
20090257727 Laurisch et al. Oct 2009 A1
20090263122 Helkey et al. Oct 2009 A1
20090269018 Frohlich et al. Oct 2009 A1
20090274429 Krampotich et al. Nov 2009 A1
20090274430 Krampotich et al. Nov 2009 A1
20090290842 Bran de Leon et al. Nov 2009 A1
20090297111 Reagan et al. Dec 2009 A1
20090304342 Adomeit et al. Dec 2009 A1
20090324189 Hill et al. Dec 2009 A1
20100054681 Biribuze et al. Mar 2010 A1
20100054682 Cooke et al. Mar 2010 A1
20100054685 Cooke et al. Mar 2010 A1
20100061691 Murano et al. Mar 2010 A1
20100061693 Bran de Leon et al. Mar 2010 A1
20100074587 Loeffelholz et al. Mar 2010 A1
20100080517 Cline et al. Apr 2010 A1
20100086274 Keith Apr 2010 A1
20100111483 Reinhardt et al. May 2010 A1
20100119201 Smrha et al. May 2010 A1
20100142544 Chapel et al. Jun 2010 A1
20100142910 Hill et al. Jun 2010 A1
20100150518 Leon et al. Jun 2010 A1
20100158467 Hou et al. Jun 2010 A1
20100166377 Nair et al. Jul 2010 A1
20100178022 Schroeder et al. Jul 2010 A1
20100202745 Sokolowski et al. Aug 2010 A1
20100220967 Cooke et al. Sep 2010 A1
20100278499 Mures et al. Nov 2010 A1
20100296790 Cooke et al. Nov 2010 A1
20100310225 Anderson et al. Dec 2010 A1
20100316334 Kewitsch Dec 2010 A1
20100322582 Cooke et al. Dec 2010 A1
20100322583 Cooke et al. Dec 2010 A1
20110073730 Kitchen Mar 2011 A1
20110085774 Murphy et al. Apr 2011 A1
20110085776 Biribuze et al. Apr 2011 A1
20110097053 Smith et al. Apr 2011 A1
20110097977 Bubnick et al. Apr 2011 A1
20110280537 Cowen et al. Nov 2011 A1
20120051707 Barnes et al. Mar 2012 A1
Foreign Referenced Citations (131)
Number Date Country
2029592 May 1992 CA
2186314 Apr 1997 CA
688705 Jan 1998 CH
8711970 Oct 1987 DE
3726718 Feb 1989 DE
3726719 Feb 1989 DE
4030301 Mar 1992 DE
4231181 Aug 1993 DE
10338848 Mar 2005 DE
202005009932 Nov 2005 DE
0250900 Jan 1988 EP
0408266 Jan 1991 EP
0474091 Aug 1991 EP
0468671 Jan 1992 EP
0490698 Jun 1992 EP
0529830 Mar 1993 EP
0544004 Jun 1993 EP
0547778 Jun 1993 EP
0581527 Feb 1994 EP
0620462 Oct 1994 EP
0693699 Jan 1996 EP
0720322 Jul 1996 EP
0940700 Sep 1999 EP
0949522 Oct 1999 EP
1041417 Oct 2000 EP
1056177 Nov 2000 EP
1065542 Jan 2001 EP
1203974 May 2002 EP
1289319 Mar 2003 EP
1316829 Jun 2003 EP
1777563 Apr 2007 EP
2378378 Aug 1978 FR
2241591 Sep 1991 GB
2277812 Nov 1994 GB
3172806 Jul 1991 JP
5045541 Feb 1993 JP
06018749 Jan 1994 JP
6018749 Jan 1994 JP
7308011 Nov 1995 JP
8007308 Jan 1996 JP
8248235 Sep 1996 JP
8248237 Sep 1996 JP
3487946 Oct 1996 JP
8254620 Oct 1996 JP
3279474 Oct 1997 JP
9258033 Oct 1997 JP
9258055 Oct 1997 JP
2771870 Jul 1998 JP
3448448 Aug 1998 JP
10227919 Aug 1998 JP
3478944 Dec 1998 JP
10339817 Dec 1998 JP
11023858 Jan 1999 JP
2000098138 Apr 2000 JP
2000098139 Apr 2000 JP
2000241631 Sep 2000 JP
2001004849 Jan 2001 JP
3160322 Apr 2001 JP
2001133636 May 2001 JP
3173962 Jun 2001 JP
3176906 Jun 2001 JP
2001154030 Jun 2001 JP
2001159714 Jun 2001 JP
2002022974 Jan 2002 JP
2002169035 Jun 2002 JP
3312893 Aug 2002 JP
200133636 Aug 2002 JP
2002305389 Oct 2002 JP
3344701 Nov 2002 JP
2003029054 Jan 2003 JP
3403573 May 2003 JP
2003169026 Jun 2003 JP
2003215353 Jul 2003 JP
2003344701 Dec 2003 JP
3516765 Apr 2004 JP
2004144808 May 2004 JP
2004514931 May 2004 JP
3542939 Jul 2004 JP
2004246147 Sep 2004 JP
2004361652 Dec 2004 JP
2004361893 Dec 2004 JP
3107704 Feb 2005 JP
2005055748 Mar 2005 JP
2005062569 Mar 2005 JP
2005084241 Mar 2005 JP
2005148327 Jun 2005 JP
3763645 Apr 2006 JP
3763645 Apr 2006 JP
3778021 May 2006 JP
2006126513 May 2006 JP
2006126516 May 2006 JP
3794540 Jul 2006 JP
2006227041 Aug 2006 JP
3833638 Oct 2006 JP
3841344 Nov 2006 JP
3847533 Nov 2006 JP
200747336 Feb 2007 JP
3896035 Mar 2007 JP
2007067458 Mar 2007 JP
3934052 Jun 2007 JP
3964191 Aug 2007 JP
3989853 Oct 2007 JP
4026244 Dec 2007 JP
4029494 Jan 2008 JP
4065223 Mar 2008 JP
4093475 Jun 2008 JP
4105696 Jun 2008 JP
4112437 Jul 2008 JP
4118862 Jul 2008 JP
2008176118 Jul 2008 JP
2008180817 Aug 2008 JP
4184329 Nov 2008 JP
2008542822 Nov 2008 JP
2009503582 Jan 2009 JP
9105281 Apr 1991 WO
9326070 Dec 1993 WO
9520175 Jul 1995 WO
9636896 Nov 1996 WO
9712268 Apr 1997 WO
9744605 Nov 1997 WO
9825416 Jun 1998 WO
0005611 Feb 2000 WO
0127660 Apr 2001 WO
0242818 May 2002 WO
03009527 Jan 2003 WO
2004052066 Jun 2004 WO
2007050515 May 2007 WO
2007079074 Jul 2007 WO
2007149215 Dec 2007 WO
2008063054 May 2008 WO
2009120280 Oct 2009 WO
Non-Patent Literature Citations (157)
Entry
Patent Cooperation Treaty, International Search Report for International Application No. PCT/US10/35529, Jul. 23, 2010, 2 pages.
Non-final Office Action for U.S. Appl. No. 12/732,487 mailed Sep. 19, 2012, 22 pages.
Final Office Action for U.S. Appl. No. 12/394,114 mailed Oct. 25, 2012, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/915,682 mailed Oct. 24, 2012, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/818,986 mailed Feb. 3, 2012, 12 pages.
Final Office Action for U.S. Appl. No. 12/818,986 mailed Oct. 18, 2012, 13 pages.
Non-final Office Action for U.S. Appl. No. 12/952,960 mailed Oct. 4, 2012, 11 pages.
Non-final Office Action for U.S. Appl. No. 12/953,134 mailed Sep. 25, 2012, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/953,039 mailed Jan. 11, 2013, 6 pages.
Non-final Office Action for U.S. Appl. No. 12/952,912 mailed Dec. 28, 2012, 9 pages.
Non-final Office Action for U.S. Appl. No. 12/953,118 mailed Jan. 7, 2013, 9 pages.
Non-final Office Action for U.S. Appl. No. 12/953,536 mailed Jan. 2, 2013, 20 pages.
Non-final Office Action for U.S. Appl. No. 12/707,889 mailed Jan. 2, 2013, 7 pages.
European Search Report for patent application 10790017.17 mailed Nov. 8, 2012, 7 pages.
Examination Report for European patent application 09789090.9-2216 mailed Aug. 29, 2011, 4 pages.
Examination Report for European patent application 09789090.9-2216 mailed Mar. 30, 2012, 6 pages.
Written Opinion of the International Searching Authority for International patent application PCT/US2009004548, mailed Apr. 5, 2011, 6 pages.
European Search Report for European patent application 09789090.9-2217 mailed Jan. 24, 2013, 5 pages.
Non-final Office Action for U.S. Appl. No. 12/946,139 mailed Jul. 26, 2012, 12 pages.
Final Office Action for U.S. Appl. No. 12/946,139 mailed Feb. 15, 2013, 17 pages.
Non-final Office Action for U.S. Appl. No. 12/751,884 mailed Feb. 15, 2013, 5 pages.
Non-final Office Action for U.S. Appl. No. 12/394,114 mailed Feb. 27, 2013, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/819,065 mailed Mar. 4, 2013, 7 pages.
Final Office Action for U.S. Appl. No. 12/952,960 mailed Mar. 7, 2013, 13 pages.
Notice of Allowance for U.S. Appl. No. 12/732,487 mailed Mar. 19, 2013, 11 pages.
Non-final Office Action for U.S. Appl. No. 12/953,134 mailed Mar. 21, 2013, 9 pages.
Final Office Action for U.S. Appl. No. 12/641,617 mailed May 10, 2013, 21 pages.
Notice of Allowance for U.S. Appl. No. 13/090,621 mailed Apr. 22, 2013, 8 pages.
Final Office Action for U.S. Appl. No. 12/953,039 mailed May 1, 2013, 8 pages.
Final Office Action for U.S. Appl. No. 12/953,118 mailed May 3, 2013, 11 pages.
Final Office Action for U.S. Appl. No. 12/915,682 mailed Apr. 18, 2013, 9 pages.
Advisory Action for U.S. Appl. No. 12/952,960 mailed May 15, 2013, 2 pages.
Non-final Office Action for U.S. Appl. No. 12/952,960 mailed Jun. 20, 2013, 13 pages.
Non-final Office Action for U.S. Appl. No. 12/953,536 mailed Jun. 6, 2013, 21 pages.
Non-final Office Action for U.S. Appl. No. 11/820,300 mailed Apr. 25, 2012, 10 pages.
Final Office Action for U.S. Appl. No. 12/871,052 mailed Jul. 1, 2013, 12 pages.
Non-final Office Action for U.S. Appl. No. 12/940,699 mailed Jun. 26, 2013, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/090,621 mailed Jun. 25, 2013, 8 pages.
Annex to Form PCT/ISA/2006, Communication Relating to the Results of the Partial International Search, for PCT/US2009/004549 mailed Feb. 10, 2010, 2 pages.
Annex to Form PCT/ISA/206, Communication Relating to the Results of the Partial International Search, for PCT/US2009/004548 mailed Jan. 19, 2010, 2 pages.
Corning Cable Systems, “Corning Cable Systems Products for BellSouth High Density Shelves,” Jun. 2000, 2 pages.
Corning Cable Systems, “Corning Cable Systems Quick Reference Guide for Verizon FTTP FDH Products,” Jun. 2005, 4 pages.
Conner, M. “Passive Optical Design for RFOG and Beyond,” Braodband Properties, Apr. 2009, pp. 78-81.
Corning Evolant, “Eclipse Hardware Family,” Nov. 2009, 1 page.
Corning Evolant, “Enhanced Management Frame,” Dec. 2009, 1 page.
Corning Evolant, “Enhanced Management Frame (EMF),” Specification Sheet, Nov. 2009, 24 pages.
Corning Cable Systems, “Evolant Solutions for Evolving Networks: Fiber Optic Hardware,” Oct. 2002, 2 pages.
Corning Cable Systems, “Fiber Optic Hardware with Factory-Installed Pigtails: Features and Benefits,” Nov. 2010, 12 pages.
Corning Cable Systems, “FiberManager System 1- and 3-Position Compact Shelves,” Jan. 2003, 4 pages.
Corning Cable Systems, “FiberManager System Frame and Components,” Jan. 2003, 12 pages.
Corning Cable Systems, “High Density Frame,” Jul. 2001, 2 pages.
Corning Cable Systems, “High Density Frame (HDF) Connector-Splice Shelves and Housings,” May 2003, 4 pages.
International Search Report for PCT/US10/35529 mailed Jul. 23, 2010, 2 pages.
International Search Report for PCT/US10/35563 mailed Jul. 23, 2012, 1 page.
International Search Report for PCT/US2008/002514 mailed Aug. 8, 2008, 2 pages.
International Search Report for PCT/US2008/010317 mailed Mar. 4, 2008, 2 pages.
International Search Report for PCT/US2009/001692 mailed Nov. 24, 2009, 5 pages.
International Search Report for PCT/US2010/024888 mailed Jun. 23, 2010, 5 pages.
International Search Report for PCT/US2010/027402 mailed Jun. 16, 2010, 2 pages.
Corning Cable Systems, “MTX Frames and Accessories,” Feb. 2006, 4 pages.
Panduit, “Lock-in LC Duplex Clip,” Accessed Mar. 22, 2012, 1 page.
International Search Report for PCT/US06/49351 mailed Apr. 25, 2008, 1 page.
International Search Report for PCT/US09/57069 mailed Mar. 24, 2010, 2 pages.
International Search Report for PCT/US2009/057244 mailed Nov. 9, 2009 3 pages.
International Search Report for PCTUS2009004548 mailed Mar. 19, 2010, 5 pages.
International Search Report for PCTUS2009004549 mailed Apr. 20, 2010, 6 pages.
Siecor, “Single Shelf HDF with Slack Storage and Heat Shield (HH1-CSH-1238-1V-BS),” Jan. 1998, 12 pages.
Corning Cable Systems, “Mass Termination Xchange (MTX) Frame System Equipment Office Planning and Application Guide,” SRP003-664, Issue 1, Mar. 2005, 57 pages.
Corning Cable Systems, “Mass Termination Xchange (MTX) Equipment Patch Cord Interbay Vertical Channel,” SRP003-684, Issue 1, Mar. 2005, 8 pages.
Corning Cable Systems, “High Density Frame (HDF) Installation,” SRP003-355, Issue 4, Sep. 2002, 18 pages.
Written Opinion for PCT/US2010/023901 mailed Aug. 25, 2011, 8 pages.
Advisory Action for U.S. Appl. No. 12/221,117 mailed Aug. 24, 2011, 3 pages.
Examiner's Answer to Appeal Brief for U.S. Appl. No. 12/221,117 mailed Mar. 29, 2012, 16 pages.
Final Office Action for U.S. Appl. No. 12/221,117 mailed Feb. 19, 2010, 7 pages.
Final Office Action for U.S. Appl. No. 12/221,117 mailed Jun. 10, 2011, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/221,117 mailed Jul. 14, 2010, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/221,117 mailed Jun. 9, 2009, 5 pages.
Non-final Office Action for U.S. Appl. No. 12/221,117 mailed Dec. 21, 2010, 7 pages.
Advisory Action for U.S. Appl. No. 12/394,483 mailed Feb. 16, 2012, 3 pages.
Final Office Action for U.S. Appl. No. 12/394,483 mailed Dec. 6, 2011, 14 pages.
Non-final Office Action for U.S. Appl. No. 12/394,483 mailed Jun. 17, 2011, 11 pages.
Advisory Action for U.S. Appl. No. 12/950,234 mailed Dec. 21, 2011, 3 pages.
Non-final Office Action for U.S. Appl. No. 12/950,234 mailed Jun. 17, 2011, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/950,234 mailed Mar. 12, 2012, 10 pages.
Final Office Action for U.S. Appl. No. 12/950,234 mailed Oct. 14, 2011, 10 pages.
Advisory Action mailed May 12, 2011, for U.S. Appl. No. 12/323,423, 3 pages.
Final Rejection mailed Mar. 3, 2011, for U.S. Appl. No. 12/323,423, 17 pages.
Non-Final Rejection mailed Aug. 5, 2011, for U.S. Appl. No. 12/323,423, 13 pages.
International Search Report for PCT/US2009/066779 mailed Aug. 27, 2010, 3 pages.
“MPO Fiber Optic Rack Panels now available from L-com Connectivity Products,” article dated Jun. 4, 2007, 16 pages, http://www.I-com.com/content/Article.aspx?Type=P&Id=438.
“19” Rack Panel with 16 MPO Fiber Optic Couplers—1U high, product page, accessed Oct. 23, 2012, 2 pages, http://www.I-com.com/item.aspx?id=9767#.UlbgG8XXay5.
“Drawing for L-com 1U Panel with 16 MTP couplers,” May 15, 2007, 1 page, http://www.I-com.com/multimedia/eng—drawings/PR17516MTP.pdf.
Non-final Office Action for U.S. Appl. No. 12/819,034 mailed May 11, 2012, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/819,081 mailed Aug. 21, 2012, 12 pages.
Notice of Allowance of for U.S. Appl. No. 12/819,034 mailed Sep. 11, 2012, 7 pages.
Notice of Allowance for U.S. Appl. No. 12/417,325 mailed Aug. 22, 2012, 7 pages.
Notice of Panel Decision for Pre-Appeal Brief for U.S. Appl. No. 12/417,325 mailed Aug. 8, 2012, 2 pages.
Advisory Action for U.S. Appl. No. 12/417,325 mailed Jun. 29, 2012, 3 pages.
Advisory Action for U.S. Appl. No. 12/417,325 mailed Jun. 12, 2012, 3 pages.
Final Office Action for U.S. Appl. No. 12/417,325 mailed Apr. 16, 2012, 6 pages.
Final Office Action for U.S. Appl. No. 12/417,325 mailed Feb. 7, 2012, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/417,325 mailed Jun. 15, 2011, 6 pages.
Notice of Allowance for U.S. Appl. No. 12/487,929 mailed Sep. 12, 2012, 4 pages.
Notice of Allowance for U.S. Appl. No. 12/487,929 mailed Jun. 13, 2012, 8 pages.
Advisory Action for U.S. Appl. No. 12/487,929 mailed Apr. 17, 2012, 3 pages.
Final Office Action for U.S. Appl. No. 12/487,929 mailed Feb. 14, 2012, 6 pages.
Final Office Action for U.S. Appl. No. 12/487,929 mailed Dec. 5, 2011, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/487,929 mailed May 23, 2011, 7 pages.
Notice of Allowance for U.S. Appl. No. 12/415,253 mailed Mar. 11, 2011, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/415,253 mailed Jul. 12, 2010, 11 pages.
Final Office Action for U.S. Appl. No. 12/415,253 mailed Apr. 16, 2010, 9 pages.
Non-final Office Action for U.S. Appl. No. 12/415,253 mailed Sep. 30, 2009, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/641,617 mailed Oct. 5, 2012, 21 pages.
Final Office Action for U.S. Appl. No. 12/630,938 mailed Jun. 1, 2012, 18 pages.
Non-final Office Action for U.S. Appl. No. 12/630,938 mailed Dec. 19, 2011, 15 pages.
Non-final Office Action for U.S. Appl. No. 12/751,884 mailed Jul. 2, 2012, 9 pages.
Non-final Office Action for U.S. Appl. No. 12/871,052 mailed Aug. 13, 2012, 8 pages.
Non-final Office Action for U.S. Appl. No. 12/576,806 mailed Dec. 13, 2011, 6 pages.
Notice of Allowance for U.S. Appl. No. 12/576,806 mailed Apr. 18, 2012, 5 pages.
International Search Report for PCT/US2010/023901 mailed Jun. 11, 2010, 3 pages.
Notice of Allowance for U.S. Appl. No. 12/576,769 mailed May 31, 2012, 9 pages.
Non-Final Rejection mailed Sep. 7, 2010, for U.S. Appl. No. 12/323,423, 18 pages.
Notice of Allowance for U.S. Appl. No. 12/323,423 mailed Jan. 24, 2012, 8 pages.
Examiner's Answer mailed Mar. 4, 2011, for U.S. Appl. No. 12/323,415, 11 pages.
Final Rejection mailed Jun. 25, 2010, for U.S. Appl. No. 12/323,415, 10 pages.
Non-Final Rejection mailed Aug. 5, 2011, for U.S. Appl. No. 12/323,415, 41 pages.
Non-final Office Action for U.S. Appl. No. 12/323,415 mailed Apr. 23, 2012, 11 pages.
Non-Final Rejection mailed Dec. 10, 2009, for U.S. Appl. No. 12/323,415, 7 pages.
Examiner's Answer to Appeal Brief for U.S. Appl. No. 11/320,062 mailed Dec. 8, 2011, 8 pages.
Final Office Action for U.S. Appl. No. 11/320,062 mailed Mar. 8, 2011, 8 pages.
Non-final Office Action for U.S. Appl. No. 11/320,062 mailed Jan. 15, 2010, 11 pages.
Non-final Office Action for U.S. Appl. No. 12/320,062 mailed Sep. 30, 2010, 7 pages.
Final Office Action for U.S. Appl. No. 11/439,086 mailed Feb. 4, 2010, 14 pages.
Non-final Office Action for U.S. Appl. No. 11/439,086 mailed May 3, 2010, 11 pages.
Non-final Office Action for U.S. Appl. No. 11/439,086 mailed Sep. 21, 2009, 10 pages.
Final Office Action for U.S. Appl. No. 12/079,481 mailed Mar. 18, 2010, 10 pages.
Non-final Office Action for U.S. Appl. No. 12/079,481 mailed Dec. 26, 2008, 9 pages.
Non-final Office Action for U.S. Appl. No. 12/079,481 mailed Sep. 16, 2009, 10 pages.
Notice of Allowance for U.S. Appl. No. 12/079,481 mailed Jun. 3, 2010, 6 pages.
Notice of Allowance for U.S. Appl. No. 12/079,481 mailed Oct. 4, 2010, 4 pages.
Notice of Allowance for U.S. Appl. No. 12/415,454 mailed Jun. 19, 2012, 5 pages.
Non-final Office Action for U.S. Appl. No. 12/323,373 mailed May 3, 2012, 7 pages.
Non-final Office Action for U.S. Appl. No. 11/809,474 mailed Apr. 8, 2008, 13 pages.
Non-final Office Action for U.S. Appl. No. 11/809,474 mailed Nov. 13, 2008, 10 pages.
Notice of Allowance for U.S. Appl. No. 11/809,474 mailed Jul. 6, 2009, 6 pages.
Final Office Action for U.S. Appl. No. 11/320,031 mailed Mar. 8, 2011, 8 pages.
Non-final Office Action for U.S. Appl. No. 11/320,031 mailed Jan. 5, 2010, 16 pages.
Non-final Office Action for U.S. Appl. No. 11/320,031 mailed Sep. 30, 2010, 7 pages.
Notice of Allowance for U.S. Appl. No. 11/320,031 mailed Nov. 15, 2011, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/157,622 mailed Mar. 31, 2009, 9 pages.
Non-final Office Action for U.S. Appl. No. 12/157,622 mailed Oct. 15, 2009, 9 pages.
Notice of Allowance for U.S. Appl. No. 12/157,622 mailed Apr. 22, 2010, 4 pages.
Non-final Office Action for U.S. Appl. No. 12/323,395 mailed Dec. 8, 2011, 7 pages.
Non-final Office Action for U.S. Appl. No. 12/415,454 mailed Mar. 2, 2012, 5 pages.
Non-final Office Action for U.S. Appl. No. 12/415,454 mailed Sep. 6, 2011, 7 pages.
Notice of Allowance for U.S. Appl. No. 12/415,454 mailed Jan. 13, 2012, 5 pages.
Non-final Office Action for U.S. Appl. No. 12/576,769 mailed Feb. 2, 2012, 23 pages.
Related Publications (1)
Number Date Country
20100296791 A1 Nov 2010 US
Provisional Applications (4)
Number Date Country
61180331 May 2009 US
61219233 Jun 2009 US
61180334 May 2009 US
61219241 Jun 2009 US