The disclosure is directed to fiber optic devices providing at least one optical connection port along with methods for making the same. More specifically, the disclosure is directed to fiber optic extender ports comprising one or more connection ports and a securing feature associated with the connection port for securing an optical connector along with methods of making the same.
Optical fiber is increasingly being used for a variety of applications, including but not limited to broadband voice, video, and data transmission. As bandwidth demands increase optical fiber is migrating deeper into communication networks such as in fiber to the premises applications such as FTTx, 5G and the like. As optical fiber extended deeper into communication networks the need for making robust optical connections in outdoor applications in a quick and easy manner was apparent. To address this need for making quick, reliable, and robust optical connections in communication networks hardened fiber optic connectors such as the OptiTap® plug connector were developed.
Multiports were also developed for making an optical connection with hardened connectors. Prior art multiports have a plurality of receptacles mounted through a wall of the housing for protecting an indoor connector inside the housing that makes an optical connection to the external hardened connector of the branch or drop cable.
The different branch or drop cables may require different lengths to reach the desired connection location. With factory-terminated solutions there are typically several lengths of drop cables that are offered and the user can use the length of connectorized drop cable that best fits the link length required. However, this can require the craft to stock several different length drop cables and lots of slack storage of cable if the lengths are not well-matched to the link length required.
Consequently, there exists an unresolved need for devices that allow flexibility for the network operators to quickly and easily make optical connections to extend the reach of an optical network while also addressing concerns related to limited space, organization, or aesthetics.
The disclosure is directed to extender ports comprising at leak one connection port and a securing feature associated with the connection port. Methods of making the devices are also disclosed. The devices can have any suitable construction such as disclosed herein such a connection port that is keyed for inhibiting a non-compliant connector from being inserted and potentially causing damage to the device.
One aspect of the disclosure is directed to an extender port comprising a shell, a first connection port, at least one securing feature associated with the connection port passageway, and at least one securing feature resilient member for biasing a portion of the at least one securing feature. The first connection port is disposed on the extender port with the at least one connection port comprising an optical connector opening extending from an outer surface of the extender port into a cavity of the extender port and defining a connection port passageway.
Another aspect of the disclosure is directed to an extender port comprising a shell, a first connection port, a second connection port, and at least one securing feature associated with the connection port passageway, and least one securing feature resilient member for biasing a portion of the at least one securing feature. The first connection port is disposed on the extender port with the at least one connection port comprising an optical connector opening extending from an outer surface of the extender port into a cavity of the extender port and defining a first connection port passageway. The second connection port is disposed on the extender port with the at least one connection port comprising an optical connector opening extending from an outer surface of the extender port into a cavity of the extender port and defining a second connection port passageway. The second connection port passageway being aligned with the first connection port passageway.
Yet another aspect of the disclosure is directed to an extender port comprising a shell, a first connection port, a second connection port, and at leak one securing feature associated with the connection port passageway. The first connection port is disposed on the extender port with the at least one connection port comprising an optical connector opening extending from an outer surface of the extender port into a cavity of the extender port and defining a first connection port passageway. The second connection port is disposed on the extender port with the at least one connection port comprising an optical connector opening extending from an outer surface of the extender port into a cavity of the extender port and defining a second connection port passageway. The second connection port passageway being aligned with the first connection port passageway. The at least one securing feature is capable of translating within a portion of the shell.
A further aspect of the disclosure is directed to an extender port comprising a shell, a first connection port, a second connection port, and at least one securing feature associated with the connection port passageway. The first connection port is disposed on the extender port with the at least one connection port comprising an optical connector opening extending from an outer surface of the extender port into a cavity of the extender port and defining a first connection port passageway. The second connection port is disposed on the extender port with the at least one connection port comprising an optical connector opening extending from an outer surface of the extender port into a cavity of the extender port and defining a second connection port passageway. The second connection port passageway being aligned with the first connection port passageway. The at least one securing feature comprises a common securing member, where a portion of the at least one securing feature is capable of translating within a portion of the shell.
A still further aspect of the disclosure is directed to an extender port comprising a shell, a first connection port, a second connection port, and at least one securing feature associated with the connection port passageway. The first connection port is disposed on the extender port with the at least one connection port comprising an optical connector opening extending from an outer surface of the extender port into a cavity of the extender port and defining a first connection port passageway. The second connection port is disposed on the extender port with the at least one connection port comprising an optical connector opening extending from an outer surface of the extender port into a cavity of the extender port and defining a second connection port passageway. The second connection port passageway being aligned with the first connection port passageway. The at least one securing feature comprising a bore, and wherein the at least one securing feature translates from a retain position to an open position as a suitable fiber optic connector is inserted into the at least one connection port.
One more aspect of the disclosure is directed to an extender port comprising a shell, a first connection port, a second connection port, and at least one securing feature associated with the connection port passageway. The first connection port is disposed on the extender port with the at least one connection port comprising an optical connector opening extending from an outer surface of the extender port into a cavity of the extender port and defining a first connection port passageway. The second connection port is disposed on the extender port with the at least one connection port comprising an optical connector opening extending from an outer surface of the extender port into a cavity of the extender port and defining a second connection port passageway. The second connection port passageway being aligned with the first connection port passageway. The at least one securing feature comprising a bore and a locking feature, and the at least one securing feature is capable of translating within a portion of the shell, wherein the at least one securing feature translates from a retain position to an open position as a suitable fiber optic connector is inserted into the at least one connection port.
Yet another aspect of the disclosure is directed to an extender port comprising a shell, a first connection port, a second connection port, and at least one securing feature associated with the connection port passageway. The first connection port is disposed on the extender port with the at least one connection port comprising an optical connector opening extending from an outer surface of the extender port into a cavity of the extender port and defining a first connection port passageway. The second connection port is disposed on the extender port with the at least one connection port comprising an optical connector opening extending from an outer surface of the extender port into a cavity of the extender port and defining a second connection port passageway. The second connection port passageway being aligned with the first connection port passageway. The at least one securing feature comprising a locking member and an actuator, and the at least one securing feature is capable of translating within a portion of the shell, wherein the at least one securing feature translates from a retain position to an open position as a suitable fiber optic connector is inserted into the at least one connection port.
The disclosure is also directed to methods for making extender port as disclosed. One method of making an extender port comprises providing a shell comprising a first connection port having an optical connector opening and a connection port passageway. The method includes assembling at least one securing feature so it is associated with a connection port passageway of the shell securing, and installing at least one securing feature resilient member for biasing a portion of the at least one securing feature. Other methods for making devices such as extender ports as disclosed herein are also contemplated.
Still another method of making an extender port comprises providing a shell with a first connection port comprising an optical connector opening extending from an outer surface of the extender port into a cavity of the extender port and defining a first connection port passageway, and a second connection port comprising an optical connector opening extending from an outer surface of the extender port into a cavity of the extender port and defining a second connection port passageway, where the second connection port passageway is aligned with the first connection port passageway. The method includes assembling at least one securing feature so it is associated with a connection port passageway of the shell, and installing at least one securing feature resilient member for biasing a portion of the at least one securing feature. Other steps for the methods are described here and may also comprise assembling the securing feature with any of forms disclosed.
Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the same as described herein, including the detailed description that follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description present embodiments that are intended to provide an overview or framework for understanding the nature and character of the claims. The accompanying drawings are included to provide a further understanding of the disclosure, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments and together with the description serve to explain the principles and operation.
Reference will now be made in detail to the embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Whenever possible, like reference numbers will be used to refer to like components or parts.
The concepts for the devices disclosed herein are suitable for providing at least one optical connection for indoor, outdoor or other environments as desired. Generally speaking, the devices disclosed and explained in the exemplary embodiments are extender ports, but the concepts disclosed may be used with any suitable device as appropriate. As used herein, the term “extender port” means any device comprising a first connection port for receiving a fiber optic connector and making an optical connection. In one embodiment, the extender port has a first connection port and a second connection port that are aligned for making an optical connection between two external fiber optic connectors. Thus, the extender port may be used to customize or extend the length of an optical link by using two cables connected by the extender port, thereby providing further flexibility to the network provider. In other embodiments, the extender port can be fixed to a tether cable for optical connection with an external connector. The connection port also has a securing feature associated with the at least one connection port for securing and releasing the fiber optic connector. By way of example, the extender port may further include other components such as active components such as a wireless sub-assembly device having electronics for transmitting or receiving a signal disposed within the shell of the extender port.
The concepts disclosed advantageously allow compact form-factors for the extender ports and may also optionally include at least one connection port comprising a keying portion for aligning the fiber optic connector with the securing feature associated with the connection port. Although, extender ports are shown and described for a single inline connection, the concepts are scalable to many in-line connection ports on a single device in a variety of arrangements or constructions. The securing features disclosed herein for devices engage directly with a portion of connector without conventional structures like prior art devices that require the turning of a coupling nut, bayonet or the like. As used herein, “securing feature” excludes threads and features that cooperate with bayonets on a connector. Thus, the devices disclosed may allow connection port to be closely spaced and may result in small devices since the room and structure needed for turning a threaded coupling nut or bayonet is not necessary. The compact form-factors may allow the placement of the devices in tight spaces in indoor, outdoor, buried, aerial, industrial or other applications while advantageously providing a device having at least one connection port with a robust and reliable optical connection in a removable and replaceable manner. The disclosed devices may also be aesthetically pleasing. Organizers may also be used with the extender ports for providing organization for an array of extender ports having optical connections.
The devices disclosed are simple and elegant in their designs. The devices disclosed comprise at least one connection port and a securing feature associated with the connection port that is suitable for retaining an external fiber optic connector received by the connection port. A keying portion of the connection port may cooperates with a key on a complimentary external fiber optic connector to inhibit damage to the connection port by inhibiting the insertion of a non-compliant connector while also ensuring the correct rotational alignment to secure the fiber optic connector. The keying portion may also aid the user during blind insertion of the connector into the connection port of the device to determine the correct rotational orientation with respect to the connection port when a line of sight is not possible or practical for alignment. The keying portion may be an additive keying portion to the primitive geometric round shape of the connection port passageway 233 such as a male key. However, the concepts for the connection ports 236 of devices may be modified for different connector designs without a keying portion as well.
The concepts disclosed advantageously allow the quick and easy connection and retention by inserting the fiber optic connectors directly into the connection port of the device without the need or space considerations for turning a threaded coupling nut or bayonet for retaining the external fiber optic connector. Generally speaking, the securing features disclosed for use with extender ports herein may comprise one or more components with at least one component translating for releasing or securing the external fiber optic connector to the device. Specifically, the securing feature is capable of translating within the shell. As used herein, the term “securing feature” excludes threaded portions or features for securing a bayonet disposed on a connector.
Since the connector footprint used with the devices disclosed does not require the bulkiness of a coupling nut or bayonet, the fiber optic connectors used with the devices disclosed herein may also be significantly smaller than conventional fiber optic connectors.
The devices disclosed comprise a securing feature for directly engaging with a suitable portion of a connector housing of the external fiber optic connector or the like for securing an optical connection with the device. Different variations of the concepts are discussed in further detail below. The structure for securing the fiber optic connectors in the devices disclosed allows much smaller footprints for both the devices and the fiber optic connectors along with a quick-connect feature. Although shown as simplex devices, the device may also have a dense spacing of connection ports within a shell such as a duplex designs or beyond if desired. The concepts disclosed advantageously allow a scalable and relatively dense and organized array of connection ports in a relatively small form-factor while still being rugged for demanding environments.
The concepts disclosed herein are suitable for optical distribution networks such as for Fiber-to-the-Home or 5G applications, but are equally applicable to other optical applications as well including indoor, automotive, industrial, wireless, or other suitable applications. Additionally, the concepts disclosed may be used with any suitable fiber optic connector footprint that cooperates with the securing feature of the device, Various designs, constructions, or features for devices are disclosed in more detail as discussed herein and may be modified or varied as desired.
Generally speaking, extender port 200 comprises a shell 210 comprising a body 232 and one or more connection ports 236 disposed on a first end or portion 212 of extender port 200. The connection ports 236 are configured for receiving and retaining external fiber optic connectors 10 such as shown in
Extender port 200 of
Connection ports 236 each comprise a respective optical connector opening 238 extending from an outer surface 234 of the extender port 200 into a cavity 216 of the extender port 200 and defining a connection port passageway 233. At least one securing feature 310 is associated with the connection port passageway 233 for cooperating with the external fiber optic connector 10, The securing feature may translate for releasing or securing the external fiber optic connector 10. One or more respective securing feature passageways 245 such as shown in
Optical connections to the extender ports 200 are made by inserting one or more suitable external fiber optic connectors 10 into respective connection port passageways 233 as desired. Specifically, the connection port passageway 233 is configured for receiving a suitable external fiber optic connector 10 (hereinafter connector) of a fiber optic cable assembly 100 (hereinafter cable assembly). Each connection port passageway 233 is associated with a securing feature 310 for retaining (e.g., securing) connector 10 in the extender port 200. The securing feature 310 advantageously allows the user to make a quick and easy optical connection at the connection port 236 of extender ports 200 by pushing the connector 10 into the port until it is secured. The securing feature 310 may operate for providing a connector release feature when actuated such as by pushing downward.
Specifically, the connector 10 may be retained within the respective connection port 236 of the device by pushing and fully-seating the connector 10 within the connection port 236 as shown in
Securing feature 310 may be designed for holding a minimum pull-out force for connector 10. In some embodiments, the pull-out force may be selected to release the connector 10 before damage is done to the device or the connector 10. By way of example, the securing feature 310 associated with the connection port 236 may require a pull-out force of about 50 pounds (about 220 N) before the connector 10 would release. Likewise, the securing feature 310 may provide a side pull-out force for connector 10 for inhibiting damage as well. By way of example, the securing feature 310 associated with the connection port 236 may provide a side pull-out force of about 25 pounds (about 110 N) before the connector 10 would release. Of course, other pull-out forces such as 75 pounds (about 330 N) or 100 (about 440 N) pounds are possible along with other side pull-out forces.
The securing features 310 disclosed herein may take many different constructions or configurations. By way of explanation, securing features 310 may be formed from a single component as shown in
Generally speaking, the extender ports 200 comprise at least one connection port 236 defined by an optical connector opening 238 extending into a cavity 216 of the extender port 200 along with a securing feature 310 associated with the connection port 236.
More specifically,
By way of explanation, the one or more connection ports 236 and the one or more securing feature passageways 245 are a portion of the shell 210. illustratively,
As shown in
As best depicted in
Extender port may also have a keying portion 233KP disposed on the optical connector opening 238 side of the securing feature 310. Keying portion 233KP inhibits the insertion of a non-compliant connector into connection port 236, thereby inhibiting damage that may be caused to the device. Suitable connectors 10 have a complimentary keying feature that cooperates with the keying portion 233KP of extender port 200. Keying portion 233KP may be a protrusion or additive feature disposed within the connection port passageway 233 on the optical connector opening 238 side of the securing feature 310 and may take several different configuration if used. For instance, keying portion 233KP may be a simple protrusion as shown. In other embodiments, the keying portion 233KP may take the shape of a D-shaped opening to allow only a suitable connector 10 having a complimentary feature to be inserted into the connection port 236. The keying portion 233KP may also aid with blind mating a connector 10 into the connection port 236 since it only allows further insertion into the connection port 236 when the connector is in the proper rotational orientation.
Extender port 200 of
In other embodiments, adapters 230A may be formed from several components, but some adapters or portions thereof could be integrally formed with the extender port as well.
In this embodiment, the securing feature 310 comprises a bore 310B that is aligned with the least one connection port passageway 233 when assembled as best shown in
In some embodiments, the securing feature 310 is capable of moving to an open position when inserting a suitable connector 10 into the connection port passageway 233. When the connector 10 is fully-inserted into the connector port passageway 233, the securing feature 310 is capable of moving to the retain position automatically. Consequently, the connector 10 is secured within the connection port 236 by securing feature 310 without turning a coupling nut or a bayonet like the prior art devices. Stated another way, the securing feature 310 translates from the retain position to an open position as a suitable connector 10 is inserted into the connection port 236. Then, when connector 10 is fully-seated the securing feature 310 is biased back to the retain position to secure the connector 10 in the connection port 236. The securing feature passageway 245 is arranged transversely to a longitudinal axis LA of the extender port 200, but other arrangements are possible. Other securing features may operate in a similar manner, but use an opening instead of a bore that receives the connector therethrough.
As shown in
As depicted in this embodiment, locking feature 310L is disposed within bore 310B. Specifically, locking feature 310L comprises a ramp in this embodiment. The ramp is integrally formed at a portion of the bore 310B with the ramp angling up when looking into the connection port 236. The ramp allows the connector 10 to push and translate the securing feature 310 downward against the securing feature resilient member 310R as the connector 10 is inserted in the connection port 236 as shown. Ramp may have any suitable geometry such as a retention surface such as a ledge at the backside or the ramp may lead to a flat portion before the retention surface. Once the locking feature 310L of the securing feature 310 is aligned with the cooperating geometry of the locking feature 20L of connector 10, then the securing feature 310 translates so that the locking feature 310L engages the locking feature 20L of connector 10 as shown in
The sealing between the components of shell 210 may comprise a sealing element (not visible) disposed between the components. The sealing may comprise a groove in one portion of the shell that cooperates with a tongue on the other portion of the shell 210. Grooves may extend about the perimeter of sealing surface. Grooves may receive one or more appropriately sized O-rings or gaskets for weatherproofing extender port 200. The O-rings are suitably sized for creating a seal between the components of the shell 210. By way of example, suitable O-rings may be a compression O-ring for maintaining a weatherproof seal. Other embodiments may use an adhesive or suitable welding of the materials such as ultrasonic or induction welding with appropriate materials for sealing the extender port 200.
In this embodiment, shell 210B also comprises a tongue 210T near an outer periphery that may cooperate with a groove 210G construction on the first portion 210A of the shell 210 for alignment and/or sealing of the device. The interface between components of the shell may have other structure or features for securing or sealing the components such as fasteners for securing the components of the shell or an adhesive, o-ring or gasket or weldable feature for sealing. Shells 210 may have any suitable shape, design or configuration as desired. Shells 210 may comprise at least one rib or support 210S, thereby providing crush support for the extender port 200 and resulting in a robust structure. Further, shells 210 may comprise more than two portions if desired. Likewise, multiple portions of the shell 210 may comprise connection ports 236.
Any of the extender port 200 disclosed herein may optionally be weatherproof by appropriately sealing seams of the shell 210 between components using any suitable means such as gaskets, O-rings, adhesive, sealant, welding, overmolding or the like. Moreover, the interface between the connection ports 236 and the dust cap or connector 10 may be sealed using appropriate geometry and/or a sealing element such as an O-ring or gasket 65 on the connector or dust cap. If the extender port 200 is intended for indoor applications, then the weatherproofing may not be required.
Extender port 200 may also comprise integrated mounting features. By way of explanation, shell 210 may have mounting features configured as passageways disposed on the lateral sides. Thus, the user may simply use a fastener such as a zip-tie threaded thru these lateral passageways for mounting the extender port 200 to a wall or pole as desired.
As shown in
Securing feature 310 may also comprise other features as best depicted in
Securing feature 310 may also comprises one or more guides 310G that cooperate with the shell 210 for keeping the bore 310B in the proper rotational orientation within the respective securing feature passageway 245 during translation. In this embodiment, two guides 310G are arranged about 180 degrees apart and guide the translation of the securing feature 310. Securing feature 310 may also comprise one or more keys 310K that cooperate with the shell 210 or connection port insert 230 for only allowing one assembly orientation into the shell 210 or connection port insert 230, thereby keeping the locking feature 310L in the proper position within the respective securing feature passageway 245 with respect to the connector insertion direction.
Securing feature 310 may also comprise a stop surface 310SS for inhibiting overtravel or the securing feature 310 from being removed from the extender port 200 when assembled. In this embodiment, the stop surface 310SS is disposed as the top surface of guides 310G. Securing feature 310 may also include a dimple 310G or other feature for inhibiting inadvertent activation/translation of the securing feature 310 or allowing a tactical feel for the user. Securing features 310 may also be a different color or have a marking indicia for identifying the port type.
As best shown in
The securing feature 310 translates from a retain position (RP) to an open position (OP) as a suitable connector 10 is inserted into the connection port 236. Once connector 10 is fully inserted into connector passageway 233, then the securing feature 310 automatically moves to the retain position (RP) since it is biased upwards to the retain position. This advantageously allows a plug and play connectivity of the connectors 10 with extender port 200 without having to turn a coupling nut or a bayonet like conventional devices. Thus, connections to the extender port may be made faster and in positions that may be awkward with relative ease.
Still other types of securing members 310 may operate in a similar manner for securing connector 10, but comprise more than one component such as an actuator 310A that cooperates with a securing member 310M such as disclosed herein with other embodiments. Additionally, the use of more than one component may allow other arrangements for the securing feature passageway 245 relative to a longitudinal axis LA of the device.
To make identification of the connection ports or easier for the user, a marking indicia may be used such as text or color-coding of extender port or marking the input tether (e.g. an orange or green polymer) or the like.
Any of the extender ports 200 may also have one or more dust caps (not shown) for protecting the connection port 236 from dust, dirt or debris entering the extender port or interfering with the optical performance. Thus, when the user wishes to make an optical connection to the extender port, the appropriate dust cap is removed and then connector 10 of cable assembly 100 may be inserted into the respective connection port 236 for making an optical connection to the extender port 200. Dust caps may use similar release and retain features as the connectors 10. By way of explanation, when securing feature 310 is pushed inward or down, the dust cap is released and may be removed.
Other variations of extender ports 200 are possible according to the concepts disclosed. By way of example, Extender ports 200 of
Actuator 310A cooperates with respective securing feature passageways 245 formed as a portion of the first portion 210A of shell 210 as discussed herein. Actuators 310A also comprise push arms 310PA. that are spaced apart for allowing a portion of the connector 10 to pass therethrough for mating as best shown in
Like the extender port 200 of
A simplified adapter assembly 230A is used in this embodiment that comprises a ferrule sleeve 230FS for precision alignment of mating ferrules between connectors 10 that is disposed within adapter housing 230H without a resilient member.
Devices may have other constructions for the securing features 310 that use more than one component. Illustratively,
Extender port 200 of
Securing feature 310 comprises actuator 310A and securing member 310M. Securing member 310M comprises an opening between its arms 310AM that may be elastically deformed by actuator 310A when translated (i.e., pushed) or upon insertion of a suitable connector 10 into connection port 236 by spreading (i.e., translating) the arms of the securing member 310M outward. When the actuator 310A is released or the connector is fully-seated within the connection port 236 or input port 260, the arms 310AM of the securing member 310M springs back to engage a suitable portion of connector 10 such as locking feature 20L of connector housing 20 or move the actuator 310A to a normal position. The arms 310AM have an edge portion that act as a locking feature 310L for the suitable connector 10. By way of explanation, the edge portions of arms 310AM engage the locking feature 20L of the connector housing 20 for securing the connector 20. in order to release the connector 10 from the connection port 236, the arms 310AM and locking features 310L on the arms 310AM are translated outward.
As best shown in
Thus, the securing feature member 310M of securing feature 310 is suitable for retaining connector 10 in connection port 236 as discussed herein. Various different embodiments are possible for securing features 310 comprising more than one component for the devices disclosed.
Securing features 310 comprising more than one component may have various other configurations for use with devices disclosed herein.
Still other variations of the concepts disclosed are possible. Securing features 310 may have any suitable orientation or construction for engaging connectors 10. Securing feature 310 may be arranged at an angle relative to the longitudinal axis LA of the connection port 236. By way of example, the securing feature 310 may comprises securing member 310M and actuator 310A disposed in a securing feature passageway 245 that is angled with respect to the longitudinal axis LA of the connection port 236. Likewise, connector 10 has a connector housing 20 with the locking feature 20L that is angled with respect to the longitudinal axis of the connector. Similar concepts may be used with as a portion of the shell or the connection port insert as well as a monolithic securing feature 310.
It may be advantageous to organize extender ports 200 in arrays.
Organizers 400 can have a variety of shapes and configurations.
The present application also discloses methods for making extender ports. One method of making an extender port comprises providing a shell 210 comprising a first connection port 236 having an optical connector opening 238 and a connection port passageway 233. The method includes assembling at least one securing feature so it is associated with a connection port passageway of the shell securing, and installing at least one securing feature resilient member for biasing a portion of the at least one securing feature. Other methods for making devices such as extender port 200 as disclosed herein are also contemplated.
Another method comprises providing a shell with a first connection port comprising an optical connector opening extending from an outer surface of the extender port into a cavity of the extender port and defining a first connection port passageway, and a second connection port comprising an optical connector opening extending from an outer surface of the extender port into a cavity of the extender port and defining a second connection port passageway, where the second connection port passageway is aligned with the first connection port passageway. The method includes assembling at least one securing feature so it is associated with a connection port passageway of the shell, and installing at least one securing feature resilient member for biasing a portion of the at least one securing feature.
The methods disclosed may further include steps or features as disclosed herein for making extender ports where the securing feature 310 may translate between an open position OP and a retain position RP. The method may include translating the securing feature 310 for moving the securing feature 310 to the open position OP and the securing feature 310 is biased to retain position RP.
Although the disclosure has been illustrated and described herein with reference to explanatory embodiments and specific examples thereof, it will be readily apparent to those of ordinary skill in the art that other embodiments and examples can perform similar functions and/or achieve like results. For instance, the connection port insert may be configured as individual sleeves that are inserted into a passageway of a device, thereby allowing the selection of different configurations of connector ports for a device to tailor the device to the desired external connector. All such equivalent embodiments and examples are within the spirit and scope of the disclosure and are intended to be covered by the appended claims. It will also be apparent to those skilled in the art that various modifications and variations can be made to the concepts disclosed without departing from the spirit and scope of the same. Thus, it is intended that the present application cover the modifications and variations provided they come within the scope of the appended claims and their equivalents.
This application is a continuation of International Application No. PCT/US2018/040011 filed Jun. 28, 2018, which claims the benefit of priority of U.S. Application Nos. 62/526,195, filed on Jun. 28, 2017; 16/018,918 filed on Jun. 26, 2018; 16/018,988 filed on Jun. 26, 2018; and U.S. application Ser. No. 16/019,008 filed Jun. 26, 2018; the content of which is relied upon and incorporated herein by reference in entirety. This applications also claims the benefit of priority under 35 USC § 365 of International Patent Application Serial Nos. PCT/US2017/064092 filed on Nov. 30, 2017; PCT/US2017/064095 filed on Nov. 30, 2017; PCT/US2018/039484 filed on Jun. 26, 2018; PCT/US2018/039485 filed on Jun. 26, 2018; and PCT/US2018/039494 filed on Jun. 26, 2018; all designating the United States of America, and the content of which is relied upon and incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3074107 | Kiyoshi et al. | Jan 1963 | A |
3532783 | Pusey et al. | Oct 1970 | A |
3792284 | Kaelin | Feb 1974 | A |
3912362 | Hudson | Oct 1975 | A |
4003297 | Mott | Jan 1977 | A |
4044215 | Leibinger | Aug 1977 | A |
4077567 | Ginn et al. | Mar 1978 | A |
4148557 | Garvey | Apr 1979 | A |
4167303 | Bowen et al. | Sep 1979 | A |
4168109 | Dumire | Sep 1979 | A |
4188088 | Andersen et al. | Feb 1980 | A |
4336977 | Monaghan et al. | Jun 1982 | A |
4354731 | Mouissie | Oct 1982 | A |
4373777 | Borsuk et al. | Feb 1983 | A |
4413880 | Forrest et al. | Nov 1983 | A |
4423922 | Porter | Jan 1984 | A |
4440471 | Knowles | Apr 1984 | A |
4461537 | Raymer et al. | Jul 1984 | A |
4515434 | Margolin et al. | May 1985 | A |
4547937 | Collins | Oct 1985 | A |
4560232 | O'Hara | Dec 1985 | A |
4615581 | Morimoto | Oct 1986 | A |
4634214 | Cannon et al. | Jan 1987 | A |
4634858 | Gerdt et al. | Jan 1987 | A |
4684205 | Margolin et al. | Aug 1987 | A |
4688200 | Poorman et al. | Aug 1987 | A |
4690563 | Barton et al. | Sep 1987 | A |
4699458 | Ohtsuki et al. | Oct 1987 | A |
4705352 | Margolin et al. | Nov 1987 | A |
4711752 | Deacon et al. | Dec 1987 | A |
4715675 | Kevern et al. | Dec 1987 | A |
4723827 | Shaw et al. | Feb 1988 | A |
4741590 | Caron | May 1988 | A |
4763983 | Keith | Aug 1988 | A |
4783137 | Kosman et al. | Nov 1988 | A |
4794828 | Olson | Jan 1989 | A |
4842363 | Margolin et al. | Jun 1989 | A |
4844570 | Tanabe | Jul 1989 | A |
4854664 | McCartney | Aug 1989 | A |
4856867 | Gaylin | Aug 1989 | A |
4877303 | Caldwell et al. | Oct 1989 | A |
4902238 | Iacobucci | Feb 1990 | A |
4913514 | Then | Apr 1990 | A |
4921413 | Blew | May 1990 | A |
4944568 | Danbach et al. | Jul 1990 | A |
4960318 | Nilsson et al. | Oct 1990 | A |
4961623 | Midkiff et al. | Oct 1990 | A |
4964688 | Caldwell et al. | Oct 1990 | A |
4979792 | Weber et al. | Dec 1990 | A |
4994134 | Knecht et al. | Feb 1991 | A |
4995836 | Toramoto | Feb 1991 | A |
5007860 | Robinson et al. | Apr 1991 | A |
5016968 | Hammond et al. | May 1991 | A |
5028114 | Krausse et al. | Jul 1991 | A |
5058984 | Bulman et al. | Oct 1991 | A |
5067783 | Lampert | Nov 1991 | A |
5073042 | Mulholland et al. | Dec 1991 | A |
5076656 | Briggs et al. | Dec 1991 | A |
5085492 | Kelsoe et al. | Feb 1992 | A |
5088804 | Grinderslev | Feb 1992 | A |
5091990 | Leung et al. | Feb 1992 | A |
5095176 | Harbrecht et al. | Mar 1992 | A |
5129023 | Anderson et al. | Jul 1992 | A |
5131735 | Berkey et al. | Jul 1992 | A |
5134677 | Leung et al. | Jul 1992 | A |
5136683 | Aoki et al. | Aug 1992 | A |
5142602 | Cabato et al. | Aug 1992 | A |
5146519 | Miller et al. | Sep 1992 | A |
5155900 | Grois et al. | Oct 1992 | A |
5162397 | Descamps et al. | Nov 1992 | A |
5180890 | Pendergrass et al. | Jan 1993 | A |
5189718 | Barrett et al. | Feb 1993 | A |
5210810 | Darden et al. | May 1993 | A |
5212752 | Stephenson et al. | May 1993 | A |
5214732 | Beard et al. | May 1993 | A |
5224187 | Davisdon | Jun 1993 | A |
5231685 | Hanzawa et al. | Jul 1993 | A |
5245683 | Belenkiy et al. | Sep 1993 | A |
5263105 | Johnson et al. | Nov 1993 | A |
5263239 | Ziemek | Nov 1993 | A |
5276750 | Manning | Jan 1994 | A |
5313540 | Ueda et al. | May 1994 | A |
5317663 | Beard et al. | May 1994 | A |
5321917 | Franklin et al. | Jun 1994 | A |
5367594 | Essert et al. | Nov 1994 | A |
5371823 | Barrett et al. | Dec 1994 | A |
5375183 | Edwards et al. | Dec 1994 | A |
5381494 | O'Donnell et al. | Jan 1995 | A |
5390269 | Palecek et al. | Feb 1995 | A |
5394494 | Jennings et al. | Feb 1995 | A |
5394497 | Erdman et al. | Feb 1995 | A |
5408570 | Cook et al. | Apr 1995 | A |
5416874 | Giebel et al. | May 1995 | A |
5425121 | Cooke et al. | Jun 1995 | A |
5452388 | Rittle et al. | Sep 1995 | A |
5519799 | Murakami et al. | May 1996 | A |
5553186 | Allen | Sep 1996 | A |
5557696 | Stein | Sep 1996 | A |
5569050 | Lloyd | Oct 1996 | A |
5588077 | Woodside | Dec 1996 | A |
5600747 | Yamakawa et al. | Feb 1997 | A |
5603631 | Kawahara et al. | Feb 1997 | A |
5608828 | Coutts et al. | Mar 1997 | A |
5631993 | Cloud et al. | May 1997 | A |
5647045 | Robinson et al. | Jul 1997 | A |
5673346 | Iwano et al. | Sep 1997 | A |
5682451 | Lee et al. | Oct 1997 | A |
5694507 | Walles | Dec 1997 | A |
5748821 | Schempp et al. | May 1998 | A |
5761359 | Chudoba et al. | Jun 1998 | A |
5781686 | Robinson et al. | Jul 1998 | A |
5782892 | Castle | Jul 1998 | A |
5789701 | Wettengel et al. | Aug 1998 | A |
5790740 | Cloud et al. | Aug 1998 | A |
5791918 | Pierce | Aug 1998 | A |
5796895 | Jennings et al. | Aug 1998 | A |
RE35935 | Cabato et al. | Oct 1998 | E |
5818993 | Chudoba et al. | Oct 1998 | A |
5857050 | Jiang et al. | Jan 1999 | A |
5857481 | Zimmerman | Jan 1999 | A |
5862290 | Burek et al. | Jan 1999 | A |
5867621 | Luther et al. | Feb 1999 | A |
5876071 | Aldridge | Mar 1999 | A |
5883999 | Cloud et al. | Mar 1999 | A |
5884000 | Cloud et al. | Mar 1999 | A |
5884001 | Cloud et al. | Mar 1999 | A |
5884002 | Cloud et al. | Mar 1999 | A |
5884003 | Cloud et al. | Mar 1999 | A |
5887099 | Csipkes et al. | Mar 1999 | A |
5913001 | Nakajima et al. | Jun 1999 | A |
5920669 | Knecht et al. | Jul 1999 | A |
5923804 | Rosson | Jul 1999 | A |
5925191 | Stein et al. | Jul 1999 | A |
5926596 | Edwards et al. | Jul 1999 | A |
5960141 | Sasaki et al. | Sep 1999 | A |
5961344 | Rosales | Oct 1999 | A |
5971626 | Knodell et al. | Oct 1999 | A |
5993070 | Tamekuni et al. | Nov 1999 | A |
RE36592 | Giebel et al. | Feb 2000 | E |
6030129 | Rosson | Feb 2000 | A |
6035084 | Haake et al. | Mar 2000 | A |
6045270 | Weiss et al. | Apr 2000 | A |
6079881 | Roth | Jun 2000 | A |
6094517 | Yuuki | Jul 2000 | A |
6108482 | Roth | Aug 2000 | A |
6112006 | Foss | Aug 2000 | A |
6149313 | Giebel et al. | Nov 2000 | A |
6151432 | Nakajima et al. | Nov 2000 | A |
RE37028 | Cooke et al. | Jan 2001 | E |
6173097 | Throckmorton et al. | Jan 2001 | B1 |
6179482 | Takizawa et al. | Jan 2001 | B1 |
6188822 | Mcalpine et al. | Feb 2001 | B1 |
6193421 | Tamekuni et al. | Feb 2001 | B1 |
RE37079 | Stephenson et al. | Mar 2001 | E |
RE37080 | Stephenson et al. | Mar 2001 | E |
6200040 | Edwards et al. | Mar 2001 | B1 |
6206579 | Selfridge et al. | Mar 2001 | B1 |
6206581 | Driscoll et al. | Mar 2001 | B1 |
6224268 | Manning et al. | May 2001 | B1 |
6224270 | Nakajima et al. | May 2001 | B1 |
6229944 | Yokokawa et al. | May 2001 | B1 |
6234683 | Waldron et al. | May 2001 | B1 |
6234685 | Carlisle et al. | May 2001 | B1 |
6249628 | Rutterman et al. | Jun 2001 | B1 |
6256438 | Gimblet | Jul 2001 | B1 |
6261006 | Selfridge | Jul 2001 | B1 |
6264374 | Selfridge et al. | Jul 2001 | B1 |
6287016 | Weigel | Sep 2001 | B1 |
6293710 | Lampert et al. | Sep 2001 | B1 |
6298190 | Waldron et al. | Oct 2001 | B2 |
6305849 | Roehrs et al. | Oct 2001 | B1 |
6321013 | Hardwick et al. | Nov 2001 | B1 |
6356390 | Hall, Jr. | Mar 2002 | B1 |
6356690 | McAlpine et al. | Mar 2002 | B1 |
6357929 | Roehrs et al. | Mar 2002 | B1 |
6371660 | Roehrs et al. | Apr 2002 | B1 |
6375363 | Harrison et al. | Apr 2002 | B1 |
6379054 | Throckmorton et al. | Apr 2002 | B2 |
6386891 | Howard et al. | May 2002 | B1 |
6402388 | Imazu et al. | Jun 2002 | B1 |
6404962 | Hardwick et al. | Jun 2002 | B1 |
6409391 | Chang | Jun 2002 | B1 |
6422764 | Marrs et al. | Jul 2002 | B1 |
6427035 | Mahony | Jul 2002 | B1 |
6428215 | Nault | Aug 2002 | B1 |
6439780 | Mudd et al. | Aug 2002 | B1 |
6466725 | Battey et al. | Oct 2002 | B2 |
6496641 | Mahony | Dec 2002 | B1 |
6501888 | Gimblet et al. | Dec 2002 | B2 |
6522804 | Mahony | Feb 2003 | B1 |
6529663 | Parris et al. | Mar 2003 | B1 |
6533468 | Nakajima et al. | Mar 2003 | B2 |
6536956 | Luther et al. | Mar 2003 | B2 |
6539147 | Mahony | Mar 2003 | B1 |
6540410 | Childers et al. | Apr 2003 | B2 |
6542652 | Mahony | Apr 2003 | B1 |
6542674 | Gimblet | Apr 2003 | B1 |
6546175 | Wagman et al. | Apr 2003 | B1 |
6554489 | Kent et al. | Apr 2003 | B2 |
6579014 | Melton et al. | Jun 2003 | B2 |
6599026 | Fahrnbauer et al. | Jul 2003 | B1 |
6599027 | Miyake et al. | Jul 2003 | B2 |
6614980 | Mahony | Sep 2003 | B1 |
6618526 | Jackman et al. | Sep 2003 | B2 |
6619697 | Griffioen et al. | Sep 2003 | B2 |
6621964 | Quinn et al. | Sep 2003 | B2 |
6625375 | Mahony | Sep 2003 | B1 |
6629782 | McPhee et al. | Oct 2003 | B2 |
6644862 | Berto et al. | Nov 2003 | B1 |
6648520 | McDonald et al. | Nov 2003 | B2 |
6668127 | Mahony | Dec 2003 | B1 |
6672774 | Theuerkorn et al. | Jan 2004 | B2 |
6678442 | Gall et al. | Jan 2004 | B2 |
6678448 | Moisel et al. | Jan 2004 | B2 |
6685361 | Rubino et al. | Feb 2004 | B1 |
6695489 | Nault | Feb 2004 | B2 |
6702475 | Giobbio | Mar 2004 | B1 |
6714708 | Mcalpine et al. | Mar 2004 | B2 |
6714710 | Gimblet | Mar 2004 | B2 |
6729773 | Finona et al. | May 2004 | B1 |
6738555 | Cooke et al. | May 2004 | B1 |
6748146 | Parris | Jun 2004 | B2 |
6748147 | Quinn et al. | Jun 2004 | B2 |
6771861 | Wagner et al. | Aug 2004 | B2 |
6785450 | Wagman et al. | Aug 2004 | B2 |
6789950 | Loder et al. | Sep 2004 | B1 |
6809265 | Gladd et al. | Oct 2004 | B1 |
6841729 | Sakabe et al. | Jan 2005 | B2 |
6848838 | Doss et al. | Feb 2005 | B2 |
6856748 | Elkins et al. | Feb 2005 | B1 |
6877906 | Mizukami et al. | Apr 2005 | B2 |
6880219 | Griffioen et al. | Apr 2005 | B2 |
6899467 | McDonald et al. | May 2005 | B2 |
6908233 | Nakajima et al. | Jun 2005 | B2 |
6909821 | Ravasio et al. | Jun 2005 | B2 |
6916120 | Zimmel et al. | Jul 2005 | B2 |
6918704 | Marrs et al. | Jul 2005 | B2 |
6944387 | Howell et al. | Sep 2005 | B2 |
6962445 | Zimmel et al. | Nov 2005 | B2 |
6970629 | Lail et al. | Nov 2005 | B2 |
6983095 | Reagan et al. | Jan 2006 | B2 |
7011454 | Caveney et al. | Mar 2006 | B2 |
7013074 | Battey et al. | Mar 2006 | B2 |
7025507 | de Marchi | Apr 2006 | B2 |
7033191 | Cao | Apr 2006 | B1 |
7044650 | Tran et al. | May 2006 | B1 |
7052185 | Rubino et al. | May 2006 | B2 |
7079734 | Seddon et al. | Jul 2006 | B2 |
7085468 | Forrester | Aug 2006 | B2 |
7088899 | Reagan et al. | Aug 2006 | B2 |
7090406 | Melton et al. | Aug 2006 | B2 |
7090407 | Melton et al. | Aug 2006 | B2 |
7090409 | Nakajima et al. | Aug 2006 | B2 |
7103255 | Reagan et al. | Sep 2006 | B2 |
7103257 | Donaldson et al. | Sep 2006 | B2 |
7104702 | Barnes et al. | Sep 2006 | B2 |
7111990 | Melton et al. | Sep 2006 | B2 |
7113679 | Melton et al. | Sep 2006 | B2 |
7118283 | Nakajima et al. | Oct 2006 | B2 |
7118284 | Nakajima et al. | Oct 2006 | B2 |
7120347 | Blackwell, Jr. et al. | Oct 2006 | B2 |
7137742 | Theuerkorn et al. | Nov 2006 | B2 |
7146089 | Reagan et al. | Dec 2006 | B2 |
7146090 | Vo et al. | Dec 2006 | B2 |
7150567 | Luther et al. | Dec 2006 | B1 |
7165893 | Schmitz | Jan 2007 | B2 |
7171102 | Reagan et al. | Jan 2007 | B2 |
7178990 | Caveney et al. | Feb 2007 | B2 |
7184634 | Hurley et al. | Feb 2007 | B2 |
7195403 | Oki et al. | Mar 2007 | B2 |
7200317 | Reagan et al. | Apr 2007 | B2 |
7201518 | Holmquist | Apr 2007 | B2 |
7204644 | Barnes et al. | Apr 2007 | B2 |
7213975 | Khemakhem et al. | May 2007 | B2 |
7213980 | Oki et al. | May 2007 | B2 |
7228047 | Szilagyi et al. | Jun 2007 | B1 |
7232260 | Takahashi et al. | Jun 2007 | B2 |
7236670 | Lail et al. | Jun 2007 | B2 |
7241056 | Kuffel et al. | Jul 2007 | B1 |
7260301 | Barth et al. | Aug 2007 | B2 |
7261472 | Suzuki et al. | Aug 2007 | B2 |
7266265 | Gall et al. | Sep 2007 | B2 |
7266274 | Elkins et al. | Sep 2007 | B2 |
7270487 | Billman et al. | Sep 2007 | B2 |
7277614 | Cody et al. | Oct 2007 | B2 |
7279643 | Morrow et al. | Oct 2007 | B2 |
7292763 | Smith et al. | Nov 2007 | B2 |
7302152 | Luther et al. | Nov 2007 | B2 |
7318677 | Dye | Jan 2008 | B2 |
7326091 | Nania et al. | Feb 2008 | B2 |
7330629 | Cooke et al. | Feb 2008 | B2 |
7333708 | Blackwell, Jr. et al. | Feb 2008 | B2 |
7336873 | Lail et al. | Feb 2008 | B2 |
7341382 | Dye | Mar 2008 | B2 |
7346256 | Marrs et al. | Mar 2008 | B2 |
7349605 | Noonan et al. | Mar 2008 | B2 |
7357582 | Oki et al. | Apr 2008 | B2 |
7366416 | Ramachandran et al. | Apr 2008 | B2 |
7394964 | Tinucci et al. | Jul 2008 | B2 |
7397997 | Ferris et al. | Jul 2008 | B2 |
7400815 | Mertesdorf et al. | Jul 2008 | B2 |
7407332 | Oki et al. | Aug 2008 | B2 |
7428366 | Mullaney et al. | Sep 2008 | B2 |
7444056 | Allen et al. | Oct 2008 | B2 |
7454107 | Miller et al. | Nov 2008 | B2 |
7463803 | Cody et al. | Dec 2008 | B2 |
7467896 | Melton et al. | Dec 2008 | B2 |
7469091 | Mullaney et al. | Dec 2008 | B2 |
7477824 | Reagan et al. | Jan 2009 | B2 |
7480437 | Ferris et al. | Jan 2009 | B2 |
7484898 | Katagiyama et al. | Feb 2009 | B2 |
7485804 | Dinh et al. | Feb 2009 | B2 |
7489849 | Reagan et al. | Feb 2009 | B2 |
7492996 | Kowalczyk et al. | Feb 2009 | B2 |
7497896 | Bromet et al. | Mar 2009 | B2 |
7512304 | Gronvall et al. | Mar 2009 | B2 |
7520678 | Khemakhem et al. | Apr 2009 | B2 |
7539387 | Mertesdorf et al. | May 2009 | B2 |
7539388 | Mertesdorf et al. | May 2009 | B2 |
7542645 | Hua et al. | Jun 2009 | B1 |
7559702 | Fujiwara et al. | Jul 2009 | B2 |
7565055 | Lu et al. | Jul 2009 | B2 |
7568845 | Caveney et al. | Aug 2009 | B2 |
7572065 | Lu et al. | Aug 2009 | B2 |
7580607 | Jones et al. | Aug 2009 | B2 |
7591595 | Lu et al. | Sep 2009 | B2 |
7614797 | Lu et al. | Nov 2009 | B2 |
7621675 | Bradley | Nov 2009 | B1 |
7627222 | Reagan et al. | Dec 2009 | B2 |
7628545 | Cody et al. | Dec 2009 | B2 |
7628548 | Benjamin et al. | Dec 2009 | B2 |
7646958 | Reagan et al. | Jan 2010 | B1 |
7653282 | Blackwell, Jr. et al. | Jan 2010 | B2 |
7654747 | Theuerkorn et al. | Feb 2010 | B2 |
7654748 | Kuffel et al. | Feb 2010 | B2 |
7658549 | Elkins et al. | Feb 2010 | B2 |
7661995 | Nania et al. | Feb 2010 | B2 |
7677814 | Lu et al. | Mar 2010 | B2 |
7680388 | Reagan et al. | Mar 2010 | B2 |
7708476 | Liu | May 2010 | B2 |
7709733 | Plankell | May 2010 | B1 |
7712971 | Lee et al. | May 2010 | B2 |
7713679 | Ishiduka et al. | May 2010 | B2 |
7722262 | Caveney et al. | May 2010 | B2 |
7726998 | Siebens | Jun 2010 | B2 |
7738759 | Parikh et al. | Jun 2010 | B2 |
7740409 | Bolton et al. | Jun 2010 | B2 |
7742117 | Lee et al. | Jun 2010 | B2 |
7742670 | Benjamin et al. | Jun 2010 | B2 |
7744286 | Lu et al. | Jun 2010 | B2 |
7744288 | Lu et al. | Jun 2010 | B2 |
7747117 | Greenwood et al. | Jun 2010 | B2 |
7751666 | Parsons et al. | Jul 2010 | B2 |
7753596 | Cox | Jul 2010 | B2 |
7762726 | Lu et al. | Jul 2010 | B2 |
7785015 | Melton et al. | Aug 2010 | B2 |
7785019 | Lewallen et al. | Aug 2010 | B2 |
7802926 | Leeman et al. | Sep 2010 | B2 |
7805044 | Reagan et al. | Sep 2010 | B2 |
7806599 | Margolin et al. | Oct 2010 | B2 |
7820090 | Morrow et al. | Oct 2010 | B2 |
7844148 | Jenkins et al. | Nov 2010 | B2 |
7844158 | Gronvall et al. | Nov 2010 | B2 |
7844160 | Reagan et al. | Nov 2010 | B2 |
7869681 | Battey et al. | Jan 2011 | B2 |
RE42094 | Barnes et al. | Feb 2011 | E |
7881576 | Melton et al. | Feb 2011 | B2 |
7889961 | Cote et al. | Feb 2011 | B2 |
7891882 | Kuffel et al. | Feb 2011 | B2 |
7903923 | Gronvall et al. | Mar 2011 | B2 |
7903925 | Cooke et al. | Mar 2011 | B2 |
7918609 | Melton et al. | Apr 2011 | B2 |
7933517 | Ye et al. | Apr 2011 | B2 |
7938670 | Nania et al. | May 2011 | B2 |
7941027 | Mertesdorf et al. | May 2011 | B2 |
7942590 | Lu et al. | May 2011 | B2 |
7959361 | Lu et al. | Jun 2011 | B2 |
8002476 | Caveney et al. | Aug 2011 | B2 |
8005335 | Reagan et al. | Aug 2011 | B2 |
8023793 | Kowalczyk et al. | Sep 2011 | B2 |
8025445 | Rambow et al. | Sep 2011 | B2 |
8041178 | Lu et al. | Oct 2011 | B2 |
8052333 | Kuffel et al. | Nov 2011 | B2 |
8055167 | Park et al. | Nov 2011 | B2 |
8083418 | Fujiwara et al. | Dec 2011 | B2 |
8111966 | Holmberg et al. | Feb 2012 | B2 |
8137002 | Lu et al. | Mar 2012 | B2 |
8147147 | Khemakhem et al. | Apr 2012 | B2 |
8157454 | Ito et al. | Apr 2012 | B2 |
8164050 | Ford et al. | Apr 2012 | B2 |
8202008 | Lu et al. | Jun 2012 | B2 |
8213761 | Gronvall et al. | Jul 2012 | B2 |
8218935 | Reagan et al. | Jul 2012 | B2 |
8224145 | Reagan et al. | Jul 2012 | B2 |
8229263 | Parris et al. | Jul 2012 | B2 |
8231282 | Kuffel et al. | Jul 2012 | B2 |
8238706 | Kachmar | Aug 2012 | B2 |
8238709 | Solheid et al. | Aug 2012 | B2 |
8249450 | Conner | Aug 2012 | B2 |
8256971 | Caveney et al. | Sep 2012 | B2 |
8267596 | Theuerkorn | Sep 2012 | B2 |
8272792 | Coleman et al. | Sep 2012 | B2 |
RE43762 | Smith et al. | Oct 2012 | E |
8301003 | De et al. | Oct 2012 | B2 |
8301004 | Cooke et al. | Oct 2012 | B2 |
8317411 | Fujiwara et al. | Nov 2012 | B2 |
8348519 | Kuffel et al. | Jan 2013 | B2 |
8363999 | Mertesdorf et al. | Jan 2013 | B2 |
8376629 | Cline et al. | Feb 2013 | B2 |
8376632 | Blackburn et al. | Feb 2013 | B2 |
8402587 | Sugita et al. | Mar 2013 | B2 |
8408811 | De et al. | Apr 2013 | B2 |
8414196 | Lu et al. | Apr 2013 | B2 |
8439577 | Jenkins | May 2013 | B2 |
8465235 | Jenkins et al. | Jun 2013 | B2 |
8466262 | Siadak et al. | Jun 2013 | B2 |
8472773 | De Jong | Jun 2013 | B2 |
8480312 | Smith et al. | Jul 2013 | B2 |
8494329 | Nhep et al. | Jul 2013 | B2 |
8496384 | Kuffel et al. | Jul 2013 | B2 |
8506173 | Lewallen et al. | Aug 2013 | B2 |
8520996 | Cowen et al. | Aug 2013 | B2 |
8534928 | Cooke et al. | Sep 2013 | B2 |
8536516 | Ford et al. | Sep 2013 | B2 |
8556522 | Cunningham | Oct 2013 | B2 |
8573855 | Nhep | Nov 2013 | B2 |
8591124 | Griffiths et al. | Nov 2013 | B2 |
8622627 | Elkins et al. | Jan 2014 | B2 |
8622634 | Arnold et al. | Jan 2014 | B2 |
8635733 | Bardzilowski | Jan 2014 | B2 |
8662760 | Cline et al. | Mar 2014 | B2 |
8668512 | Chang | Mar 2014 | B2 |
8678668 | Cooke et al. | Mar 2014 | B2 |
8687930 | McDowell et al. | Apr 2014 | B2 |
8702324 | Caveney et al. | Apr 2014 | B2 |
8714835 | Kuffel et al. | May 2014 | B2 |
8727638 | Lee et al. | May 2014 | B2 |
8737837 | Conner et al. | May 2014 | B2 |
8755654 | Danley et al. | Jun 2014 | B1 |
8755663 | Makrides-Saravanos et al. | Jun 2014 | B2 |
8758046 | Pezzetti et al. | Jun 2014 | B2 |
8764316 | Barnette et al. | Jul 2014 | B1 |
8770861 | Smith et al. | Jul 2014 | B2 |
8770862 | Lu et al. | Jul 2014 | B2 |
8821036 | Shigehara | Sep 2014 | B2 |
8837894 | Holmberg et al. | Sep 2014 | B2 |
8864390 | Chen et al. | Oct 2014 | B2 |
8870469 | Kachmar | Oct 2014 | B2 |
8879883 | Parikh et al. | Nov 2014 | B2 |
8882364 | Busse et al. | Nov 2014 | B2 |
8917966 | Thompson et al. | Dec 2014 | B2 |
8944703 | Song et al. | Feb 2015 | B2 |
8974124 | Chang | Mar 2015 | B2 |
8992097 | Koreeda et al. | Mar 2015 | B2 |
8998502 | Benjamin et al. | Apr 2015 | B2 |
8998506 | Pepin et al. | Apr 2015 | B2 |
9011858 | Siadak et al. | Apr 2015 | B2 |
9039293 | Hill et al. | May 2015 | B2 |
9075205 | Pepe et al. | Jul 2015 | B2 |
9146364 | Chen et al. | Sep 2015 | B2 |
9151906 | Kobayashi et al. | Oct 2015 | B2 |
9151909 | Chen et al. | Oct 2015 | B2 |
9158074 | Anderson et al. | Oct 2015 | B2 |
9158075 | Benjamin et al. | Oct 2015 | B2 |
9182567 | Mullaney | Nov 2015 | B2 |
9188759 | Conner | Nov 2015 | B2 |
9207410 | Lee et al. | Dec 2015 | B2 |
9207421 | Conner | Dec 2015 | B2 |
9213150 | Matsui et al. | Dec 2015 | B2 |
9223106 | Coan et al. | Dec 2015 | B2 |
9239441 | Melton et al. | Jan 2016 | B2 |
9268102 | Daems et al. | Feb 2016 | B2 |
9274286 | Caveney et al. | Mar 2016 | B2 |
9279951 | Mcgranahan et al. | Mar 2016 | B2 |
9285550 | Nhep et al. | Mar 2016 | B2 |
9297974 | Valderrabano et al. | Mar 2016 | B2 |
9297976 | Hill et al. | Mar 2016 | B2 |
9310570 | Busse et al. | Apr 2016 | B2 |
9316791 | Durrant et al. | Apr 2016 | B2 |
9322998 | Miller | Apr 2016 | B2 |
9360640 | Ishigami et al. | Jun 2016 | B2 |
9383539 | Hill et al. | Jul 2016 | B2 |
9400364 | Hill et al. | Jul 2016 | B2 |
9405068 | Graham et al. | Aug 2016 | B2 |
9417403 | Mullaney et al. | Aug 2016 | B2 |
9423584 | Coan et al. | Aug 2016 | B2 |
9435969 | Lambourn et al. | Sep 2016 | B2 |
9442257 | Lu | Sep 2016 | B2 |
9450393 | Thompson et al. | Sep 2016 | B2 |
9459412 | Katoh | Oct 2016 | B2 |
9482819 | Li et al. | Nov 2016 | B2 |
9482829 | Lu et al. | Nov 2016 | B2 |
9513444 | Barnette et al. | Dec 2016 | B2 |
9513451 | Corbille et al. | Dec 2016 | B2 |
9535229 | Ott et al. | Jan 2017 | B2 |
9541711 | Raven et al. | Jan 2017 | B2 |
9551842 | Theuerkorn | Jan 2017 | B2 |
9557504 | Holmberg et al. | Jan 2017 | B2 |
9684138 | Lu | Jan 2017 | B2 |
9581775 | Kondo et al. | Feb 2017 | B2 |
9588304 | Durrant et al. | Mar 2017 | B2 |
9612407 | Kobayashi et al. | Apr 2017 | B2 |
9618704 | Dean et al. | Apr 2017 | B2 |
9618718 | Islam | Apr 2017 | B2 |
9624296 | Siadak et al. | Apr 2017 | B2 |
9625660 | Daems et al. | Apr 2017 | B2 |
9638871 | Bund et al. | May 2017 | B2 |
9645331 | Kim | May 2017 | B1 |
9645334 | Ishii et al. | May 2017 | B2 |
9651741 | Isenhour et al. | May 2017 | B2 |
9664862 | Lu et al. | May 2017 | B2 |
9678285 | Hill et al. | Jun 2017 | B2 |
9678293 | Coan et al. | Jun 2017 | B2 |
9684136 | Cline et al. | Jun 2017 | B2 |
9696500 | Barnette et al. | Jul 2017 | B2 |
9711868 | Scheucher | Jul 2017 | B2 |
9720193 | Nishimura | Aug 2017 | B2 |
9733436 | Van et al. | Aug 2017 | B2 |
9739951 | Busse et al. | Aug 2017 | B2 |
9762322 | Amundson | Sep 2017 | B1 |
9766416 | Kim | Sep 2017 | B1 |
9772457 | Hill et al. | Sep 2017 | B2 |
9804343 | Hill et al. | Oct 2017 | B2 |
9810855 | Cox et al. | Nov 2017 | B2 |
9810856 | Graham et al. | Nov 2017 | B2 |
9829658 | Nishimura | Nov 2017 | B2 |
9829668 | Coenegracht et al. | Nov 2017 | B2 |
9851522 | Reagan et al. | Dec 2017 | B2 |
9857540 | Ahmed et al. | Jan 2018 | B2 |
9864151 | Lu | Jan 2018 | B2 |
9878038 | Siadak et al. | Jan 2018 | B2 |
D810029 | Robert et al. | Feb 2018 | S |
9885841 | Pepe et al. | Feb 2018 | B2 |
9891391 | Watanabe | Feb 2018 | B2 |
9905933 | Scheucher | Feb 2018 | B2 |
9910236 | Cooke et al. | Mar 2018 | B2 |
9921375 | Compton et al. | Mar 2018 | B2 |
9927580 | Bretz et al. | Mar 2018 | B2 |
9933582 | Lin | Apr 2018 | B1 |
9939591 | Mullaney et al. | Apr 2018 | B2 |
9964713 | Barnette et al. | May 2018 | B2 |
9964715 | Lu | May 2018 | B2 |
9977194 | Waldron et al. | May 2018 | B2 |
9977198 | Bund et al. | May 2018 | B2 |
9983374 | Li et al. | May 2018 | B2 |
10007068 | Hill et al. | Jun 2018 | B2 |
10031302 | Ji et al. | Jul 2018 | B2 |
10036859 | Daems et al. | Jul 2018 | B2 |
10038946 | Smolorz | Jul 2018 | B2 |
10042136 | Reagan et al. | Aug 2018 | B2 |
10061090 | Coenegracht | Aug 2018 | B2 |
10073224 | Tong et al. | Sep 2018 | B2 |
10094986 | Barnette et al. | Oct 2018 | B2 |
10101538 | Lu et al. | Oct 2018 | B2 |
10107968 | Tong et al. | Oct 2018 | B2 |
10109927 | Scheucher | Oct 2018 | B2 |
10114176 | Gimblet et al. | Oct 2018 | B2 |
10126508 | Compton et al. | Nov 2018 | B2 |
10180541 | Coenegracht et al. | Jan 2019 | B2 |
10209454 | Isenhour et al. | Feb 2019 | B2 |
10215930 | Mullaney et al. | Feb 2019 | B2 |
10235184 | Walker | Mar 2019 | B2 |
10261268 | Theuerkorn | Apr 2019 | B2 |
10268011 | Courchaine et al. | Apr 2019 | B2 |
10288820 | Coenegracht | May 2019 | B2 |
10317628 | Van et al. | Jun 2019 | B2 |
10324263 | Bund et al. | Jun 2019 | B2 |
10338323 | Lu et al. | Jul 2019 | B2 |
10353154 | Ott et al. | Jul 2019 | B2 |
10353156 | Hill et al. | Jul 2019 | B2 |
10359577 | Dannoux et al. | Jul 2019 | B2 |
10371914 | Coan et al. | Aug 2019 | B2 |
10379298 | Dannoux et al. | Aug 2019 | B2 |
10379308 | Coate | Aug 2019 | B2 |
10386584 | Rosson | Aug 2019 | B2 |
10401575 | Daily et al. | Sep 2019 | B2 |
10401578 | Coenegracht | Sep 2019 | B2 |
10401584 | Coan et al. | Sep 2019 | B2 |
10409007 | Kadar-Kallen et al. | Sep 2019 | B2 |
10422962 | Coenegracht | Sep 2019 | B2 |
10422970 | Holmberg et al. | Sep 2019 | B2 |
10429593 | Baca et al. | Oct 2019 | B2 |
10429594 | Dannoux et al. | Oct 2019 | B2 |
10434173 | Siadak et al. | Oct 2019 | B2 |
10439295 | Scheucher | Oct 2019 | B2 |
10444442 | Takano et al. | Oct 2019 | B2 |
10451811 | Coenegracht et al. | Oct 2019 | B2 |
10451817 | Lu | Oct 2019 | B2 |
10451830 | Szumacher et al. | Oct 2019 | B2 |
10488597 | Parikh et al. | Nov 2019 | B2 |
10495822 | Nhep | Dec 2019 | B2 |
10502916 | Coan et al. | Dec 2019 | B2 |
10520683 | Nhep | Dec 2019 | B2 |
10539745 | Kamada et al. | Jan 2020 | B2 |
10578821 | Ott et al. | Mar 2020 | B2 |
10585246 | Bretz et al. | Mar 2020 | B2 |
10591678 | Mullaney et al. | Mar 2020 | B2 |
10605998 | Rosson | Mar 2020 | B2 |
10606006 | Hill et al. | Mar 2020 | B2 |
10613278 | Kempeneers et al. | Apr 2020 | B2 |
10620388 | Isenhour et al. | Apr 2020 | B2 |
10656347 | Kato | May 2020 | B2 |
10677998 | Van et al. | Jun 2020 | B2 |
10680343 | Scheucher | Jun 2020 | B2 |
10712516 | Courchaine et al. | Jul 2020 | B2 |
10739534 | Murray et al. | Aug 2020 | B2 |
10746939 | Lu et al. | Aug 2020 | B2 |
10761274 | Pepe et al. | Sep 2020 | B2 |
10782487 | Lu | Sep 2020 | B2 |
10802236 | Kowalczyk et al. | Oct 2020 | B2 |
10830967 | Pimentel et al. | Nov 2020 | B2 |
10830975 | Vaughn et al. | Nov 2020 | B2 |
10852498 | Hill et al. | Dec 2020 | B2 |
10852499 | Cooke et al. | Dec 2020 | B2 |
10859771 | Nhep | Dec 2020 | B2 |
10859781 | Hill et al. | Dec 2020 | B2 |
10962731 | Coenegracht | Mar 2021 | B2 |
10976500 | Ott et al. | Apr 2021 | B2 |
11061191 | Van Baelen et al. | Jul 2021 | B2 |
11290188 | Tuccio et al. | Mar 2022 | B2 |
20010002220 | Throckmorton et al. | May 2001 | A1 |
20010012428 | Nakajima et al. | Aug 2001 | A1 |
20010019654 | Waldron et al. | Sep 2001 | A1 |
20010036342 | Knecht et al. | Nov 2001 | A1 |
20010036345 | Gimblet et al. | Nov 2001 | A1 |
20020012502 | Farrar et al. | Jan 2002 | A1 |
20020062978 | Sakabe et al. | May 2002 | A1 |
20020064364 | Battey et al. | May 2002 | A1 |
20020076165 | Childers et al. | Jun 2002 | A1 |
20020079697 | Griffioen et al. | Jun 2002 | A1 |
20020081077 | Nault | Jun 2002 | A1 |
20020122634 | Miyake et al. | Sep 2002 | A1 |
20020122653 | Donaldson et al. | Sep 2002 | A1 |
20020131721 | Gaio et al. | Sep 2002 | A1 |
20020159745 | Howell et al. | Oct 2002 | A1 |
20020172477 | Quinn et al. | Nov 2002 | A1 |
20030031447 | Nault | Feb 2003 | A1 |
20030059181 | Jackman et al. | Mar 2003 | A1 |
20030063866 | Melton et al. | Apr 2003 | A1 |
20030063867 | McDonald et al. | Apr 2003 | A1 |
20030063868 | Fentress | Apr 2003 | A1 |
20030063897 | Heo | Apr 2003 | A1 |
20030080555 | Griffioen et al. | May 2003 | A1 |
20030086664 | Moisel et al. | May 2003 | A1 |
20030094298 | Morrow et al. | May 2003 | A1 |
20030099448 | Gimblet | May 2003 | A1 |
20030103733 | Fleenor et al. | Jun 2003 | A1 |
20030123813 | Ravasio et al. | Jul 2003 | A1 |
20030128936 | Fahrnbauer et al. | Jul 2003 | A1 |
20030165311 | Wagman et al. | Sep 2003 | A1 |
20030201117 | Sakabe et al. | Oct 2003 | A1 |
20030206705 | McAlpine et al. | Nov 2003 | A1 |
20030210875 | Wagner et al. | Nov 2003 | A1 |
20040047566 | McDonald et al. | Mar 2004 | A1 |
20040057676 | Doss et al. | Mar 2004 | A1 |
20040057681 | Quinn et al. | Mar 2004 | A1 |
20040072454 | Nakajima et al. | Apr 2004 | A1 |
20040076377 | Mizukami et al. | Apr 2004 | A1 |
20040076386 | Nechitailo | Apr 2004 | A1 |
20040086238 | Finona et al. | May 2004 | A1 |
20040096162 | Kocher et al. | May 2004 | A1 |
20040120662 | Lail et al. | Jun 2004 | A1 |
20040120663 | Lail et al. | Jun 2004 | A1 |
20040157449 | Hidaka et al. | Aug 2004 | A1 |
20040157499 | Nania et al. | Aug 2004 | A1 |
20040206542 | Gladd et al. | Oct 2004 | A1 |
20040223699 | Melton et al. | Nov 2004 | A1 |
20040223720 | Melton et al. | Nov 2004 | A1 |
20040228589 | Melton et al. | Nov 2004 | A1 |
20040240808 | Rhoney et al. | Dec 2004 | A1 |
20040247251 | Rubino et al. | Dec 2004 | A1 |
20040252954 | Ginocchio et al. | Dec 2004 | A1 |
20040262023 | Morrow et al. | Dec 2004 | A1 |
20050019031 | Ye et al. | Jan 2005 | A1 |
20050036744 | Caveney et al. | Feb 2005 | A1 |
20050036786 | Ramachandran et al. | Feb 2005 | A1 |
20050053342 | Melton et al. | Mar 2005 | A1 |
20050054237 | Gladd et al. | Mar 2005 | A1 |
20050084215 | Grzegorzewska et al. | Apr 2005 | A1 |
20050105873 | Reagan et al. | May 2005 | A1 |
20050123422 | Lilie | Jun 2005 | A1 |
20050129379 | Reagan et al. | Jun 2005 | A1 |
20050163448 | Blackwell et al. | Jul 2005 | A1 |
20050175307 | Battey et al. | Aug 2005 | A1 |
20050180697 | De Marchi | Aug 2005 | A1 |
20050213890 | Barnes et al. | Sep 2005 | A1 |
20050213892 | Barnes et al. | Sep 2005 | A1 |
20050213899 | Hurley et al. | Sep 2005 | A1 |
20050213902 | Parsons | Sep 2005 | A1 |
20050213921 | Mertesdorf et al. | Sep 2005 | A1 |
20050226568 | Nakajima et al. | Oct 2005 | A1 |
20050232550 | Nakajima et al. | Oct 2005 | A1 |
20050232552 | Takahashi et al. | Oct 2005 | A1 |
20050232567 | Reagan et al. | Oct 2005 | A1 |
20050244108 | Billman et al. | Nov 2005 | A1 |
20050271344 | Grubish et al. | Dec 2005 | A1 |
20050281510 | Vo et al. | Dec 2005 | A1 |
20050281514 | Oki et al. | Dec 2005 | A1 |
20050286837 | Oki et al. | Dec 2005 | A1 |
20050286838 | Oki et al. | Dec 2005 | A1 |
20060002668 | Lail et al. | Jan 2006 | A1 |
20060008232 | Reagan et al. | Jan 2006 | A1 |
20060008233 | Reagan et al. | Jan 2006 | A1 |
20060008234 | Reagan et al. | Jan 2006 | A1 |
20060045428 | Theuerkorn et al. | Mar 2006 | A1 |
20060045430 | Theuerkorn et al. | Mar 2006 | A1 |
20060056769 | Khemakhem et al. | Mar 2006 | A1 |
20060056770 | Schmitz | Mar 2006 | A1 |
20060088247 | Tran et al. | Apr 2006 | A1 |
20060093278 | Elkins et al. | May 2006 | A1 |
20060093303 | Reagan et al. | May 2006 | A1 |
20060093304 | Battey et al. | May 2006 | A1 |
20060098932 | Battey et al. | May 2006 | A1 |
20060120672 | Cody et al. | Jun 2006 | A1 |
20060127016 | Baird et al. | Jun 2006 | A1 |
20060133748 | Seddon et al. | Jun 2006 | A1 |
20060133758 | Mullaney et al. | Jun 2006 | A1 |
20060133759 | Mullaney et al. | Jun 2006 | A1 |
20060147172 | Luther et al. | Jul 2006 | A1 |
20060153503 | Suzuki et al. | Jul 2006 | A1 |
20060153517 | Reagan et al. | Jul 2006 | A1 |
20060165352 | Caveney et al. | Jul 2006 | A1 |
20060171638 | Dye | Aug 2006 | A1 |
20060171640 | Dye | Aug 2006 | A1 |
20060210750 | Morrow et al. | Sep 2006 | A1 |
20060233506 | Noonan et al. | Oct 2006 | A1 |
20060257092 | Lu et al. | Nov 2006 | A1 |
20060269204 | Barth et al. | Nov 2006 | A1 |
20060269208 | Allen et al. | Nov 2006 | A1 |
20060280420 | Blackwell et al. | Dec 2006 | A1 |
20060283619 | Kowalczyk et al. | Dec 2006 | A1 |
20060291787 | Seddon | Dec 2006 | A1 |
20070031100 | Garcia et al. | Feb 2007 | A1 |
20070031103 | Tinucci et al. | Feb 2007 | A1 |
20070036483 | Shin et al. | Feb 2007 | A1 |
20070041732 | Oki et al. | Feb 2007 | A1 |
20070047897 | Cooke et al. | Mar 2007 | A1 |
20070077010 | Melton et al. | Apr 2007 | A1 |
20070098343 | Miller et al. | May 2007 | A1 |
20070110374 | Oki et al. | May 2007 | A1 |
20070116413 | Cox | May 2007 | A1 |
20070127872 | Caveney et al. | Jun 2007 | A1 |
20070140642 | Mertesdorf et al. | Jun 2007 | A1 |
20070160327 | Lewallen et al. | Jul 2007 | A1 |
20070189674 | Scheibenreif et al. | Aug 2007 | A1 |
20070237484 | Reagan et al. | Oct 2007 | A1 |
20070263961 | Khemakhem et al. | Nov 2007 | A1 |
20070286554 | Kuffel et al. | Dec 2007 | A1 |
20080019641 | Elkins et al. | Jan 2008 | A1 |
20080020532 | Monfray et al. | Jan 2008 | A1 |
20080044145 | Jenkins et al. | Feb 2008 | A1 |
20080069511 | Blackwell et al. | Mar 2008 | A1 |
20080080817 | Melton et al. | Apr 2008 | A1 |
20080112681 | Battey et al. | May 2008 | A1 |
20080131068 | Mertesdorf et al. | Jun 2008 | A1 |
20080138016 | Katagiyama et al. | Jun 2008 | A1 |
20080138025 | Reagan et al. | Jun 2008 | A1 |
20080166906 | Nania et al. | Jul 2008 | A1 |
20080175541 | Lu et al. | Jul 2008 | A1 |
20080175542 | Lu et al. | Jul 2008 | A1 |
20080175544 | Fujiwara et al. | Jul 2008 | A1 |
20080175548 | Knecht et al. | Jul 2008 | A1 |
20080226252 | Mertesdorf et al. | Sep 2008 | A1 |
20080232743 | Gronvall et al. | Sep 2008 | A1 |
20080240658 | Leeman et al. | Oct 2008 | A1 |
20080260344 | Smith et al. | Oct 2008 | A1 |
20080260345 | Mertesdorf et al. | Oct 2008 | A1 |
20080264664 | Dinh et al. | Oct 2008 | A1 |
20080273837 | Margolin et al. | Nov 2008 | A1 |
20090003772 | Lu et al. | Jan 2009 | A1 |
20090034923 | Miller et al. | Feb 2009 | A1 |
20090041411 | Melton et al. | Feb 2009 | A1 |
20090041412 | Danley et al. | Feb 2009 | A1 |
20090060421 | Parikh et al. | Mar 2009 | A1 |
20090060423 | Melton et al. | Mar 2009 | A1 |
20090067791 | Greenwood et al. | Mar 2009 | A1 |
20090067849 | Oki et al. | Mar 2009 | A1 |
20090074363 | Parsons et al. | Mar 2009 | A1 |
20090074369 | Bolton et al. | Mar 2009 | A1 |
20090123115 | Gronvall et al. | May 2009 | A1 |
20090129729 | Caveney et al. | May 2009 | A1 |
20090148101 | Lu et al. | Jun 2009 | A1 |
20090148102 | Lu et al. | Jun 2009 | A1 |
20090148103 | Lu et al. | Jun 2009 | A1 |
20090148104 | Lu et al. | Jun 2009 | A1 |
20090148118 | Gronvall et al. | Jun 2009 | A1 |
20090148120 | Reagan et al. | Jun 2009 | A1 |
20090156041 | Radle | Jun 2009 | A1 |
20090162016 | Lu et al. | Jun 2009 | A1 |
20090185835 | Park et al. | Jul 2009 | A1 |
20090190895 | Reagan et al. | Jul 2009 | A1 |
20090238531 | Holmberg et al. | Sep 2009 | A1 |
20090245737 | Fujiwara et al. | Oct 2009 | A1 |
20090245743 | Cote et al. | Oct 2009 | A1 |
20090263097 | Solheid et al. | Oct 2009 | A1 |
20090297112 | Mertesdorf et al. | Dec 2009 | A1 |
20090317039 | Blazer et al. | Dec 2009 | A1 |
20090317045 | Reagan et al. | Dec 2009 | A1 |
20100008909 | Siadak et al. | Jan 2010 | A1 |
20100014813 | Ito et al. | Jan 2010 | A1 |
20100014824 | Lu et al. | Jan 2010 | A1 |
20100014867 | Ramanitra et al. | Jan 2010 | A1 |
20100015834 | Siebens | Jan 2010 | A1 |
20100021254 | Jenkins et al. | Jan 2010 | A1 |
20100034502 | Lu et al. | Feb 2010 | A1 |
20100040331 | Khemakhem et al. | Feb 2010 | A1 |
20100040338 | Sek | Feb 2010 | A1 |
20100054680 | Lochkovic et al. | Mar 2010 | A1 |
20100061685 | Kowalczyk et al. | Mar 2010 | A1 |
20100074578 | Imaizumi et al. | Mar 2010 | A1 |
20100080516 | Coleman et al. | Apr 2010 | A1 |
20100086260 | Parikh et al. | Apr 2010 | A1 |
20100086267 | Cooke et al. | Apr 2010 | A1 |
20100092129 | Conner | Apr 2010 | A1 |
20100092133 | Conner | Apr 2010 | A1 |
20100092136 | Nhep | Apr 2010 | A1 |
20100092146 | Conner et al. | Apr 2010 | A1 |
20100092169 | Conner et al. | Apr 2010 | A1 |
20100092171 | Conner | Apr 2010 | A1 |
20100129034 | Kuffel et al. | May 2010 | A1 |
20100144183 | Nania et al. | Jun 2010 | A1 |
20100172616 | Lu et al. | Jul 2010 | A1 |
20100197222 | Scheucher | Aug 2010 | A1 |
20100215321 | Jenkins | Aug 2010 | A1 |
20100220962 | Caveney et al. | Sep 2010 | A1 |
20100226615 | Reagan et al. | Sep 2010 | A1 |
20100232753 | Parris et al. | Sep 2010 | A1 |
20100247053 | Cowen et al. | Sep 2010 | A1 |
20100266242 | Lu et al. | Oct 2010 | A1 |
20100266244 | Lu et al. | Oct 2010 | A1 |
20100266245 | Sabo | Oct 2010 | A1 |
20100272399 | Griffiths et al. | Oct 2010 | A1 |
20100284662 | Reagan et al. | Nov 2010 | A1 |
20100290741 | Lu et al. | Nov 2010 | A1 |
20100303426 | Davis | Dec 2010 | A1 |
20100303427 | Rambow et al. | Dec 2010 | A1 |
20100310213 | Lewallen et al. | Dec 2010 | A1 |
20100322563 | Melton et al. | Dec 2010 | A1 |
20100329625 | Reagan et al. | Dec 2010 | A1 |
20110019964 | Nhep et al. | Jan 2011 | A1 |
20110047731 | Sugita et al. | Mar 2011 | A1 |
20110067452 | Gronvall et al. | Mar 2011 | A1 |
20110069932 | Overton et al. | Mar 2011 | A1 |
20110108719 | Ford et al. | May 2011 | A1 |
20110116749 | Kuffel et al. | May 2011 | A1 |
20110123166 | Reagan et al. | May 2011 | A1 |
20110129186 | Lewallen et al. | Jun 2011 | A1 |
20110164854 | Desard et al. | Jul 2011 | A1 |
20110222826 | Blackburn et al. | Sep 2011 | A1 |
20110262099 | Castonguay et al. | Oct 2011 | A1 |
20110262100 | Reagan et al. | Oct 2011 | A1 |
20110299814 | Nakagawa | Dec 2011 | A1 |
20110305421 | Caveney et al. | Dec 2011 | A1 |
20120002925 | Nakagawa | Jan 2012 | A1 |
20120008909 | Mertesdorf et al. | Jan 2012 | A1 |
20120045179 | Theuerkorn | Feb 2012 | A1 |
20120063724 | Kuffel et al. | Mar 2012 | A1 |
20120063729 | Fujiwara et al. | Mar 2012 | A1 |
20120106912 | McGranahan et al. | May 2012 | A1 |
20120106913 | Makrides-Saravanos et al. | May 2012 | A1 |
20120134629 | Lu et al. | May 2012 | A1 |
20120183268 | De Montmorillon et al. | Jul 2012 | A1 |
20120213478 | Chen et al. | Aug 2012 | A1 |
20120251060 | Hurley | Oct 2012 | A1 |
20120251063 | Reagan et al. | Oct 2012 | A1 |
20120252244 | Elkins, II et al. | Oct 2012 | A1 |
20120275749 | Kuffel et al. | Nov 2012 | A1 |
20120321256 | Caveney et al. | Dec 2012 | A1 |
20130004122 | Kingsbury | Jan 2013 | A1 |
20130020480 | Ford et al. | Jan 2013 | A1 |
20130034333 | Holmberg et al. | Feb 2013 | A1 |
20130064506 | Eberle, Jr. et al. | Mar 2013 | A1 |
20130094821 | Logan | Apr 2013 | A1 |
20130109213 | Chang | May 2013 | A1 |
20130114930 | Smith et al. | May 2013 | A1 |
20130136402 | Kuffel et al. | May 2013 | A1 |
20130170834 | Cho et al. | Jul 2013 | A1 |
20130209099 | Reagan et al. | Aug 2013 | A1 |
20130236139 | Chen et al. | Sep 2013 | A1 |
20130266562 | Siadak et al. | Oct 2013 | A1 |
20130315538 | Kuffel et al. | Nov 2013 | A1 |
20140013813 | Le | Jan 2014 | A1 |
20140016902 | Pepe | Jan 2014 | A1 |
20140050446 | Chang | Feb 2014 | A1 |
20140056561 | Lu et al. | Feb 2014 | A1 |
20140079356 | Pepin et al. | Mar 2014 | A1 |
20140133804 | Lu et al. | May 2014 | A1 |
20140133806 | Hill et al. | May 2014 | A1 |
20140133807 | Katoh | May 2014 | A1 |
20140133808 | Hill et al. | May 2014 | A1 |
20140153876 | Dendas et al. | Jun 2014 | A1 |
20140153878 | Mullaney | Jun 2014 | A1 |
20140161397 | Gallegos et al. | Jun 2014 | A1 |
20140205257 | Durrant et al. | Jul 2014 | A1 |
20140219609 | Nielson et al. | Aug 2014 | A1 |
20140219622 | Coan et al. | Aug 2014 | A1 |
20140233896 | Ishigami et al. | Aug 2014 | A1 |
20140241670 | Barnette et al. | Aug 2014 | A1 |
20140241671 | Koreeda et al. | Aug 2014 | A1 |
20140241689 | Bradley et al. | Aug 2014 | A1 |
20140254987 | Caveney et al. | Sep 2014 | A1 |
20140294395 | Waldron et al. | Oct 2014 | A1 |
20140314379 | Lu et al. | Oct 2014 | A1 |
20140328559 | Kobayashi et al. | Nov 2014 | A1 |
20140341511 | Daems et al. | Nov 2014 | A1 |
20140348467 | Cote et al. | Nov 2014 | A1 |
20140355936 | Bund et al. | Dec 2014 | A1 |
20150003787 | Chen et al. | Jan 2015 | A1 |
20150003788 | Chen et al. | Jan 2015 | A1 |
20150036982 | Nhep et al. | Feb 2015 | A1 |
20150110451 | Blazer et al. | Apr 2015 | A1 |
20150144883 | Sendelweck | May 2015 | A1 |
20150153532 | Holmberg et al. | Jun 2015 | A1 |
20150168657 | Islam | Jun 2015 | A1 |
20150183869 | Siadak et al. | Jul 2015 | A1 |
20150185423 | Matsui et al. | Jul 2015 | A1 |
20150253527 | Hill et al. | Sep 2015 | A1 |
20150253528 | Corbille et al. | Sep 2015 | A1 |
20150268423 | Burkholder et al. | Sep 2015 | A1 |
20150268434 | Barnette, Jr. et al. | Sep 2015 | A1 |
20150293310 | Kanno | Oct 2015 | A1 |
20150309274 | Hurley et al. | Oct 2015 | A1 |
20150316727 | Kondo et al. | Nov 2015 | A1 |
20150346435 | Kato | Dec 2015 | A1 |
20150346436 | Pepe et al. | Dec 2015 | A1 |
20160015885 | Pananen et al. | Jan 2016 | A1 |
20160041346 | Barnette et al. | Feb 2016 | A1 |
20160062053 | Mullaney | Mar 2016 | A1 |
20160085032 | Lu et al. | Mar 2016 | A1 |
20160109671 | Coan et al. | Apr 2016 | A1 |
20160116686 | Durrant et al. | Apr 2016 | A1 |
20160126667 | Droesbeke et al. | May 2016 | A1 |
20160131851 | Theuerkorn | May 2016 | A1 |
20160131857 | Pimentel et al. | May 2016 | A1 |
20160139346 | Bund et al. | May 2016 | A1 |
20160154184 | Bund et al. | Jun 2016 | A1 |
20160154186 | Gimblet et al. | Jun 2016 | A1 |
20160161682 | Nishimura | Jun 2016 | A1 |
20160161688 | Nishimura | Jun 2016 | A1 |
20160161689 | Nishimura | Jun 2016 | A1 |
20160187590 | Lu | Jun 2016 | A1 |
20160202431 | Hill et al. | Jul 2016 | A1 |
20160209599 | Van Baelen et al. | Jul 2016 | A1 |
20160209602 | Theuerkorn | Jul 2016 | A1 |
20160216468 | Gimblet et al. | Jul 2016 | A1 |
20160238810 | Hubbard et al. | Aug 2016 | A1 |
20160246019 | Ishii et al. | Aug 2016 | A1 |
20160249019 | Westwick et al. | Aug 2016 | A1 |
20160259133 | Kobayashi et al. | Sep 2016 | A1 |
20160259134 | Daems et al. | Sep 2016 | A1 |
20160306122 | Tong et al. | Oct 2016 | A1 |
20160327754 | Hill et al. | Nov 2016 | A1 |
20170023758 | Reagan et al. | Jan 2017 | A1 |
20170038538 | Isenhour et al. | Feb 2017 | A1 |
20170045699 | Coan et al. | Feb 2017 | A1 |
20170052325 | Mullaney et al. | Feb 2017 | A1 |
20170059784 | Gniadek et al. | Mar 2017 | A1 |
20170123163 | Lu et al. | May 2017 | A1 |
20170123165 | Barnette et al. | May 2017 | A1 |
20170131509 | Xiao et al. | May 2017 | A1 |
20170139158 | Coenegracht | May 2017 | A1 |
20170160492 | Lin et al. | Jun 2017 | A1 |
20170168248 | Hayauchi | Jun 2017 | A1 |
20170168256 | Reagan et al. | Jun 2017 | A1 |
20170170596 | Goossens et al. | Jun 2017 | A1 |
20170176252 | Marple et al. | Jun 2017 | A1 |
20170176690 | Bretz et al. | Jun 2017 | A1 |
20170182160 | Siadak et al. | Jun 2017 | A1 |
20170219782 | Nishimura | Aug 2017 | A1 |
20170235067 | Holmberg et al. | Aug 2017 | A1 |
20170238822 | Young | Aug 2017 | A1 |
20170254961 | Kamada et al. | Sep 2017 | A1 |
20170254962 | Mueller-Schlomka et al. | Sep 2017 | A1 |
20170261696 | Compton et al. | Sep 2017 | A1 |
20170261698 | Compton et al. | Sep 2017 | A1 |
20170261699 | Compton et al. | Sep 2017 | A1 |
20170285275 | Hill et al. | Oct 2017 | A1 |
20170285279 | Daems et al. | Oct 2017 | A1 |
20170288315 | Scheucher | Oct 2017 | A1 |
20170293091 | Lu et al. | Oct 2017 | A1 |
20170336587 | Coan et al. | Nov 2017 | A1 |
20170343741 | Coenegracht et al. | Nov 2017 | A1 |
20170343745 | Rosson | Nov 2017 | A1 |
20170351037 | Watanabe et al. | Dec 2017 | A1 |
20180031774 | Van et al. | Feb 2018 | A1 |
20180081127 | Coenegracht | Mar 2018 | A1 |
20180143386 | Coan et al. | May 2018 | A1 |
20180151960 | Scheucher | May 2018 | A1 |
20180180831 | Blazer et al. | Jun 2018 | A1 |
20180224610 | Pimentel et al. | Aug 2018 | A1 |
20180239094 | Barnette et al. | Aug 2018 | A1 |
20180246283 | Pepe et al. | Aug 2018 | A1 |
20180259721 | Bund et al. | Sep 2018 | A1 |
20180267265 | Zhang et al. | Sep 2018 | A1 |
20180329149 | Mullaney et al. | Nov 2018 | A1 |
20180372962 | Isenhour et al. | Dec 2018 | A1 |
20190004251 | Dannoux et al. | Jan 2019 | A1 |
20190004252 | Rosson | Jan 2019 | A1 |
20190004255 | Dannoux et al. | Jan 2019 | A1 |
20190004256 | Rosson | Jan 2019 | A1 |
20190004258 | Dannoux et al. | Jan 2019 | A1 |
20190011641 | Isenhour et al. | Jan 2019 | A1 |
20190018210 | Coan et al. | Jan 2019 | A1 |
20190033532 | Gimblet et al. | Jan 2019 | A1 |
20190038743 | Siadak et al. | Feb 2019 | A1 |
20190041584 | Coenegracht et al. | Feb 2019 | A1 |
20190041585 | Bretz et al. | Feb 2019 | A1 |
20190041595 | Reagan et al. | Feb 2019 | A1 |
20190058259 | Scheucher | Feb 2019 | A1 |
20190107677 | Coenegracht et al. | Apr 2019 | A1 |
20190147202 | Harney | May 2019 | A1 |
20190162910 | Gurreri | May 2019 | A1 |
20190162914 | Baca et al. | May 2019 | A1 |
20190170961 | Coenegracht et al. | Jun 2019 | A1 |
20190187396 | Finnegan et al. | Jun 2019 | A1 |
20190235177 | Lu et al. | Aug 2019 | A1 |
20190250338 | Mullaney et al. | Aug 2019 | A1 |
20190271817 | Coenegracht | Sep 2019 | A1 |
20190324217 | Lu et al. | Oct 2019 | A1 |
20190339460 | Dannoux et al. | Nov 2019 | A1 |
20190339461 | Dannoux et al. | Nov 2019 | A1 |
20190369336 | Van et al. | Dec 2019 | A1 |
20190369345 | Reagan et al. | Dec 2019 | A1 |
20190374637 | Siadak et al. | Dec 2019 | A1 |
20200012051 | Coenegracht et al. | Jan 2020 | A1 |
20200036101 | Scheucher | Jan 2020 | A1 |
20200049922 | Rosson | Feb 2020 | A1 |
20200057205 | Dannoux et al. | Feb 2020 | A1 |
20200057222 | Dannoux et al. | Feb 2020 | A1 |
20200057223 | Dannoux et al. | Feb 2020 | A1 |
20200057224 | Dannoux et al. | Feb 2020 | A1 |
20200057723 | Chirca et al. | Feb 2020 | A1 |
20200096705 | Rosson | Mar 2020 | A1 |
20200096709 | Rosson | Mar 2020 | A1 |
20200096710 | Rosson | Mar 2020 | A1 |
20200103599 | Rosson | Apr 2020 | A1 |
20200103608 | Johnson et al. | Apr 2020 | A1 |
20200110229 | Dannoux et al. | Apr 2020 | A1 |
20200110234 | Holmberg et al. | Apr 2020 | A1 |
20200116949 | Rosson | Apr 2020 | A1 |
20200116952 | Rosson | Apr 2020 | A1 |
20200116953 | Rosson | Apr 2020 | A1 |
20200116954 | Rosson | Apr 2020 | A1 |
20200116958 | Dannoux et al. | Apr 2020 | A1 |
20200116962 | Dannoux et al. | Apr 2020 | A1 |
20200124812 | Dannoux et al. | Apr 2020 | A1 |
20200132939 | Coenegracht et al. | Apr 2020 | A1 |
20200174214 | Alves et al. | Jun 2020 | A1 |
20200192042 | Coan et al. | Jun 2020 | A1 |
20200209492 | Rosson | Jul 2020 | A1 |
20200218017 | Coenegracht | Jul 2020 | A1 |
20200225422 | Van et al. | Jul 2020 | A1 |
20200225424 | Coenegracht | Jul 2020 | A1 |
20200241211 | Shonkwiler et al. | Jul 2020 | A1 |
20200348476 | Hill et al. | Nov 2020 | A1 |
20200371306 | Mosier et al. | Nov 2020 | A1 |
20200393629 | Hill et al. | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
2006232206 | Oct 2006 | AU |
1060911 | May 1992 | CN |
1071012 | Apr 1993 | CN |
1213783 | Apr 1999 | CN |
1231430 | Oct 1999 | CN |
1114839 | Jul 2003 | CN |
1646962 | Jul 2005 | CN |
1833188 | Sep 2006 | CN |
1922523 | Feb 2007 | CN |
1985205 | Jun 2007 | CN |
101084461 | Dec 2007 | CN |
101111790 | Jan 2008 | CN |
101195453 | Jun 2008 | CN |
201404194 | Feb 2010 | CN |
201408274 | Feb 2010 | CN |
201522561 | Jul 2010 | CN |
101806939 | Aug 2010 | CN |
101846773 | Sep 2010 | CN |
101866034 | Oct 2010 | CN |
101939680 | Jan 2011 | CN |
201704194 | Jan 2011 | CN |
102141655 | Aug 2011 | CN |
102346281 | Feb 2012 | CN |
202282523 | Jun 2012 | CN |
203224645 | Oct 2013 | CN |
103713362 | Apr 2014 | CN |
103782209 | May 2014 | CN |
104007514 | Aug 2014 | CN |
104064903 | Sep 2014 | CN |
104280830 | Jan 2015 | CN |
104603656 | May 2015 | CN |
105467529 | Apr 2016 | CN |
105492946 | Apr 2016 | CN |
106716205 | May 2017 | CN |
106873086 | Jun 2017 | CN |
3537684 | Apr 1987 | DE |
3737842 | Sep 1988 | DE |
19805554 | Aug 1998 | DE |
0012566 | Jun 1980 | EP |
0026553 | Apr 1981 | EP |
0122566 | Oct 1984 | EP |
0130513 | Jan 1985 | EP |
0244791 | Nov 1987 | EP |
0462362 | Dec 1991 | EP |
0468671 | Jan 1992 | EP |
0469671 | Feb 1992 | EP |
0547778 | Jun 1993 | EP |
0547788 | Jun 1993 | EP |
0762171 | Mar 1997 | EP |
0782025 | Jul 1997 | EP |
0855610 | Jul 1998 | EP |
0856751 | Aug 1998 | EP |
0856761 | Aug 1998 | EP |
0940700 | Sep 1999 | EP |
0949522 | Oct 1999 | EP |
957381 | Nov 1999 | EP |
0997757 | May 2000 | EP |
1065542 | Jan 2001 | EP |
1122566 | Aug 2001 | EP |
1243957 | Sep 2002 | EP |
1258758 | Nov 2002 | EP |
1391762 | Feb 2004 | EP |
1431786 | Jun 2004 | EP |
1438622 | Jul 2004 | EP |
1678537 | Jul 2006 | EP |
1759231 | Mar 2007 | EP |
1786079 | May 2007 | EP |
1810062 | Jul 2007 | EP |
2069845 | Jun 2009 | EP |
2149063 | Feb 2010 | EP |
2150847 | Feb 2010 | EP |
2193395 | Jun 2010 | EP |
2255233 | Dec 2010 | EP |
2333597 | Jun 2011 | EP |
2362253 | Aug 2011 | EP |
2401641 | Jan 2012 | EP |
2609458 | Jul 2013 | EP |
2622395 | Aug 2013 | EP |
2734879 | May 2014 | EP |
2815259 | Dec 2014 | EP |
2817667 | Dec 2014 | EP |
2992372 | Mar 2016 | EP |
3022596 | May 2016 | EP |
3064973 | Sep 2016 | EP |
3101740 | Dec 2016 | EP |
3207223 | Aug 2017 | EP |
3245545 | Nov 2017 | EP |
3265859 | Jan 2018 | EP |
3336992 | Jun 2018 | EP |
3362830 | Aug 2018 | EP |
3427096 | Jan 2019 | EP |
3443395 | Feb 2019 | EP |
3535614 | Sep 2019 | EP |
3537197 | Sep 2019 | EP |
3646074 | May 2020 | EP |
3646079 | May 2020 | EP |
1184287 | May 2017 | ES |
2485754 | Dec 1981 | FR |
2022284 | Dec 1979 | GB |
2154333 | Sep 1985 | GB |
2169094 | Jul 1986 | GB |
52-030447 | Mar 1977 | JP |
58-142308 | Aug 1983 | JP |
61-145509 | Jul 1986 | JP |
62-054204 | Mar 1987 | JP |
63-020111 | Jan 1988 | JP |
63089421 | Apr 1988 | JP |
63078908 | May 1988 | JP |
03-063615 | Mar 1991 | JP |
03207223 | Sep 1991 | JP |
05-106765 | Apr 1993 | JP |
05-142439 | Jun 1993 | JP |
05-297246 | Nov 1993 | JP |
06-320111 | Nov 1994 | JP |
07318758 | Dec 1995 | JP |
08-050211 | Feb 1996 | JP |
08-054522 | Feb 1996 | JP |
08-062432 | Mar 1996 | JP |
08292331 | Nov 1996 | JP |
09-049942 | Feb 1997 | JP |
09-135526 | May 1997 | JP |
09-159867 | Jun 1997 | JP |
09-203831 | Aug 1997 | JP |
09-325223 | Dec 1997 | JP |
09-325249 | Dec 1997 | JP |
10-170781 | Jun 1998 | JP |
10-332953 | Dec 1998 | JP |
10-339826 | Dec 1998 | JP |
11064682 | Mar 1999 | JP |
11-119064 | Apr 1999 | JP |
11-248979 | Sep 1999 | JP |
11-271582 | Oct 1999 | JP |
11-281861 | Oct 1999 | JP |
11326693 | Nov 1999 | JP |
11-337768 | Dec 1999 | JP |
11-352368 | Dec 1999 | JP |
2000-002828 | Jan 2000 | JP |
2001-116968 | Apr 2001 | JP |
2001290051 | Oct 2001 | JP |
2002-520987 | Jul 2002 | JP |
3296698 | Jul 2002 | JP |
2002-250987 | Sep 2002 | JP |
2003-009331 | Jan 2003 | JP |
2003-070143 | Mar 2003 | JP |
2003121699 | Apr 2003 | JP |
2003177279 | Jun 2003 | JP |
2003-302561 | Oct 2003 | JP |
2004-361521 | Dec 2004 | JP |
2005-024789 | Jan 2005 | JP |
2005031544 | Feb 2005 | JP |
2005077591 | Mar 2005 | JP |
2005-114860 | Apr 2005 | JP |
2005-520987 | Jul 2005 | JP |
2006023502 | Jan 2006 | JP |
2006-146084 | Jun 2006 | JP |
2006-259631 | Sep 2006 | JP |
2006337637 | Dec 2006 | JP |
2007078740 | Mar 2007 | JP |
2007121859 | May 2007 | JP |
2008-191422 | Aug 2008 | JP |
2008-250360 | Oct 2008 | JP |
2009265208 | Nov 2009 | JP |
2010152084 | Jul 2010 | JP |
2010-191420 | Sep 2010 | JP |
2011-018003 | Jan 2011 | JP |
2011033698 | Feb 2011 | JP |
2013-041089 | Feb 2013 | JP |
2013156580 | Aug 2013 | JP |
2014-095834 | May 2014 | JP |
2014085474 | May 2014 | JP |
05537852 | Jul 2014 | JP |
05538328 | Jul 2014 | JP |
2014134746 | Jul 2014 | JP |
2014-157214 | Aug 2014 | JP |
2014-219441 | Nov 2014 | JP |
2015-125217 | Jul 2015 | JP |
2016-109816 | Jun 2016 | JP |
2016-109817 | Jun 2016 | JP |
2016-109819 | Jun 2016 | JP |
2016-156916 | Sep 2016 | JP |
3207223 | Nov 2016 | JP |
3207233 | Nov 2016 | JP |
1020130081087 | Jul 2013 | KR |
9425885 | Nov 1994 | WO |
9836304 | Aug 1998 | WO |
0127660 | Apr 2001 | WO |
0192927 | Dec 2001 | WO |
0192937 | Dec 2001 | WO |
0225340 | Mar 2002 | WO |
0336358 | May 2003 | WO |
2004061509 | Jul 2004 | WO |
2005045494 | May 2005 | WO |
2006009597 | Jan 2006 | WO |
2006052420 | May 2006 | WO |
2006113726 | Oct 2006 | WO |
2006123777 | Nov 2006 | WO |
2008027201 | Mar 2008 | WO |
2008150408 | Dec 2008 | WO |
2008150423 | Dec 2008 | WO |
2009042066 | Apr 2009 | WO |
2009113819 | Sep 2009 | WO |
2009117060 | Sep 2009 | WO |
2009154990 | Dec 2009 | WO |
2010092009 | Aug 2010 | WO |
2010099141 | Sep 2010 | WO |
2011044090 | Apr 2011 | WO |
2011047111 | Apr 2011 | WO |
2012027313 | Mar 2012 | WO |
2012037727 | Mar 2012 | WO |
2012044741 | Apr 2012 | WO |
2012163052 | Dec 2012 | WO |
2013016042 | Jan 2013 | WO |
2013122752 | Aug 2013 | WO |
2013126488 | Aug 2013 | WO |
2013177016 | Nov 2013 | WO |
2014151259 | Sep 2014 | WO |
2014167447 | Oct 2014 | WO |
2014179411 | Nov 2014 | WO |
2014197894 | Dec 2014 | WO |
2015047508 | Apr 2015 | WO |
2015144883 | Oct 2015 | WO |
2015197588 | Dec 2015 | WO |
2016059320 | Apr 2016 | WO |
2016073862 | May 2016 | WO |
2016095213 | Jun 2016 | WO |
2016100078 | Jun 2016 | WO |
2016115288 | Jul 2016 | WO |
2016156610 | Oct 2016 | WO |
2016168389 | Oct 2016 | WO |
2017063107 | Apr 2017 | WO |
2017146722 | Aug 2017 | WO |
2017155754 | Sep 2017 | WO |
2017178920 | Oct 2017 | WO |
2018083561 | May 2018 | WO |
2018175123 | Sep 2018 | WO |
2018204864 | Nov 2018 | WO |
2019006176 | Jan 2019 | WO |
2019005190 | Jan 2019 | WO |
2019005191 | Jan 2019 | WO |
2019005192 | Jan 2019 | WO |
2019005193 | Jan 2019 | WO |
2019005194 | Jan 2019 | WO |
2019005195 | Jan 2019 | WO |
2019005196 | Jan 2019 | WO |
2019005197 | Jan 2019 | WO |
2019005198 | Jan 2019 | WO |
2019005199 | Jan 2019 | WO |
2019005200 | Jan 2019 | WO |
2019005201 | Jan 2019 | WO |
2019005202 | Jan 2019 | WO |
2019005203 | Jan 2019 | WO |
2019005204 | Jan 2019 | WO |
WO-2019006191 | Jan 2019 | WO |
2019036339 | Feb 2019 | WO |
2019126333 | Jun 2019 | WO |
2019195652 | Oct 2019 | WO |
2020101850 | May 2020 | WO |
Entry |
---|
CoolShirt fittings, https://www.amazon.com/Cool-Shirt-5014-0001-Release-Connectors/dp/B01LXBXYJ9 , Sep. 23, 2016 (Year: 2016). |
https://www.amazon.com/Cool-Shirt-5014-0001-Release-Connectors/dp/B01LXBXYJ9 (Year: 2016). |
Invitation to Pay Additional Fees of the European International Searching Authority; PCT/US2019/058316; Mailed Feb. 14, 2020; 12 Pgs. |
Brown, “What is Transmission Welding?” Laser Plasti Welding website, 6 pgs, Retrieved on Dec. 17, 2018 from: http://www.laserplasticwelding.com/what-is-transmission-welding. |
Clearfield, “Fieldshield Optical Fiber Protection System: Installation Manual.” for part No. 016164. Last Updated Dec. 2014. 37 pgs. |
Clearfield, “FieldShield SC and LC Pushable Connectors,” Last Updated Jun. 1, 2018, 2 pgs. |
Clearfield, “FieldShield SmarTerminal: Hardened Pushable Connectors” Last Updated Jun. 29, 2018, 2 pgs. |
Corning Cable Systems, “SST Figure-8 Drop Cables 1-12 Fibers”, Preliminary Product Specifications, 11 pgs. (2002). |
Corning Cable Systems, “SST-Drop (armor) Cables 1-12 Fibers”, Product Specifications, 2 pgs. (2002). |
Corning Cable Systems, “SST-Drop (Dielectric) Cables 1-12 Fibers”, Product Specifications, 2 pgs. (2002). |
Fiber Systems International: Fiber Optic Solutions, data, “TFOCA-11 4-Channel Fiber Optic Connector” sheet. 2 pgs. |
Infolite—Design and Data Specifications, 1 pg. Retrieved Feb. 21, 2019. |
Nawata, “Multimode and Single-Mode Fiber Connectors Technology”; IEEE Journal of Quantum Electronics, vol. QE-16, No. 6 Published Jun. 1980. |
Schneier, Bruce; “Applied Cryptography: Protocols, Algorithms, and Source Code in C,” Book. 1995 SEC. 10.3, 12.2, 165 Pgs. |
Stratos: Ughtwave., “Innovation Brought to Light”, Hybrid HMA Series, Hybrid Multi Application, 2 pgs. |
Faulkner et al. “Optical networks for local lopp applications,” J. Lightwave Technol.0733-8724 7(11), 17411751 (1989). |
Ramanitra et al. “Optical access network using a self-latching variable splitter remotely powered through an optical fiber link,” Optical Engineering 46(4) p. 45007-1-9, Apr. 2007. |
Ratnam et al. “Burst switching using variable optical splitter based switches with wavelength conversion,” ICIIS 2017—Poeceedings Jan. 2018, pp. 1-6. |
Wang et al. “Opto-VLSI-based dynamic optical splitter,” Electron. Lett.0013-5194 10.1049/el:20046715 40(22), 14451446 (2004). |
Xiao et al. “1xN wavelength selective adaptive optical power splitter for wavelength-division-multiplexed passive optical networks,” Optics & Laser Technology 68, pp. 160-164, May 2015. |
Coaxum, L., et al., U.S. Appl. No. 62/341,947, “Fiber Optic Multiport Having Different Types of Ports for Multi-Use,” filed May 26, 2016. |
International Search Report and Written Opinion PCT/US2017/063938 Dated May 14, 2018. |
International Search Report and Written Opinion PCT/US2017/063953 Dated May 14, 2018. |
International Search Report and Written Opinion PCT/US2017/063991 Dated May 14, 2018. |
International Search Report and Written Opinion PCT/US2017/064027 Dated Oct. 9, 2018. |
International Search Report and Written Opinion PCT/US2017/064063 Dated May 15, 2018. |
International Search Report and Written Opinion PCT/US2017/064071 Dated May 14, 2018. |
International Search Report and Written Opinion PCT/US2017/064072 Dated May 14, 2018. |
International Search Report and Written Opinion PCT/US2017/064077 Dated Feb. 26, 2018. |
International Search Report and Written Opinion PCT/US2017/064084 Dated Feb. 26, 2018. |
International Search Report and Written Opinion PCT/US2017/064087 Dated Feb. 26, 2018. |
International Search Report and Written Opinion PCT/US2017/064092 Dated Feb. 23, 2018. |
International Search Report and Written Opinion PCT/US2017/064093 Dated Feb. 26, 2018. |
International Search Report and Written Opinion PCT/US2017/064095 Dated Feb. 23, 2018. |
International Search Report and Written Opinion PCT/US2017/064096 Dated Feb. 26, 2018. |
International Search Report and Written Opinion PCT/US2018/039019 Dated Sep. 18, 2018. |
International Search Report and Written Opinion PCT/US2018/039490 Dated Oct. 4, 2018. |
International Search Report and Written Opinion PCT/US2018/039494 Dated Oct. 11, 2018. |
International Search Report and Written Opinion PCT/US2018/040011 Dated Oct. 5, 2018. |
International Search Report and Written Opinion PCT/US2018/040104 Dated Oct. 9, 2018. |
International Search Report and Written Opinion PCT/US2018/040126 Dated Oct. 9, 2018. |
International Search Report and Written Opinion PCT/US2018/040130 Dated Sep. 18, 2018. |
Notice of Allowance Received for U.S. Appl. No. 16/018,997 Dated Oct. 4, 2018. |
Office Action Pertaining to U.S. Appl. No. 16/018,918 Dated Sep. 28, 2018. |
Office Action Pertaining to U.S. Appl. No. 16/018,988 Dated Oct. 31, 2018. |
Office Action Pertaining to U.S. Appl. No. 16/109,008 Dated Oct. 31, 2018. |
Chinese Patent Application No. 201880056460.2, Office Action dated May 19, 2021, 12 pages (English Translation Only), Chinese Patent Office. |
Liu et al., “Variable optical power splitters create new apps”, Retrieved from: https://www.lightwaveonline.com/fttx/pon-systems/article/16648432/variable-optical-power-splitters-create-new-apps, 2005, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20200049896 A1 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
62526195 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2018/040011 | Jun 2018 | WO |
Child | 16658539 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16018988 | Jun 2018 | US |
Child | PCT/US2018/040011 | US | |
Parent | PCT/US2018/039494 | Jun 2018 | WO |
Child | PCT/US2018/040011 | US | |
Parent | 16019008 | Jun 2018 | US |
Child | PCT/US2018/040011 | US | |
Parent | PCT/US2018/039485 | Jun 2018 | WO |
Child | PCT/US2018/040011 | US | |
Parent | 16018918 | Jun 2018 | US |
Child | PCT/US2018/040011 | US | |
Parent | PCT/US2018/039484 | Jun 2018 | WO |
Child | PCT/US2018/040011 | US | |
Parent | PCT/US2017/064092 | Nov 2017 | WO |
Child | PCT/US2018/040011 | US | |
Parent | PCT/US2017/064095 | Nov 2017 | WO |
Child | 16018988 | US |