Fiber optic networks using multiports and cable assemblies with cable-to-connector orientation

Information

  • Patent Grant
  • 11294133
  • Patent Number
    11,294,133
  • Date Filed
    Friday, July 24, 2020
    3 years ago
  • Date Issued
    Tuesday, April 5, 2022
    2 years ago
Abstract
Fiber optic networks having cable assemblies with a predetermined cable-to-connector orientation that cooperate with a multiport so that the cables of the cable assemblies may be routed to the multiport and organized in an efficient and compact manner. In one embodiment, the cable assembly has a fiber optic connector terminated to a cable with a cross-section so that a major axis of the cable cross-section is aligned with a keying portion and locking feature of fiber optic connector. The cable-to-connector orientation allows cable assemblies to be optically connected to the multiport so that the cables may be routed away from the multiport along the connection plane of the multiport in the fiber optic network.
Description
BACKGROUND

The disclosure is directed to fiber optic networks having cable assemblies and multiports that improve network deployment. More specifically, the disclosure is directed to fiber optic networks having cable assemblies comprising a fiber optic connector-to-cable orientation that allows routing of the cables in an organized fashion along a connection plane of the multiport.


Optical fiber is increasingly being used for a variety of applications, including but not limited to broadband voice, video, and data transmission. As bandwidth demands increase optical fiber is migrating toward subscribers in outdoor communication networks such as in fiber to the premises applications such as FTTx, 5G deployments and the like. To address this need for making optical connections in communication networks for outdoor environments hardened fiber optic connectors were developed. As used herein, the term “hardened” describes a connector or port intended for making an environmentally sealed optical connection suitable for outdoor use, and the term “non-hardened” describes a connector or receptacle port that is not intended for making an environmentally sealed optical connection such as the well-known SC connector.


Network operators face many challenges for building, deploying and connecting fiber optic connections in the outside plant communication network. Besides right of way access for the communication networks, network operators may have limited space to available on existing poles or in existing vaults for mounting devices. Initially, conventional hardened fiber optic connectors were typically mounted on robust and relatively stiff fiber optic cables, and slack storage for these fiber optic cables may also consume limited space or become unsightly in aerial deployments. Thus, the prior art fiber optic networks can have unorganized deployment that may also take up large amounts of space on in aerial or buried deployments due to the cable routing and slack storage management of the cables.


Consequently, there exists an unresolved need for fiber optic assemblies in networks that may be deployed in a space-saving manner while also allowing quick and easy deployment while also being aesthetically pleasing.


SUMMARY

The disclosure is directed to fiber optic networks having at least one cable assembly and a multiport. The concepts disclosed allow a compact form-factor for optical connectivity in the network for numerous applications and variations as desired. Specifically, the concepts allow the cable assemblies routed to the multiport to be arranged in an organized and efficient manner so that the cables of the cable assemblies may be grouped together, bundled or otherwise moved along the connection plane of the multiport.


One aspect of the disclosure is directed to a fiber optic network comprising at least one cable assembly and a multiport. The cable assembly comprising a fiber optic connector and a cable terminated to the fiber optic connector. The fiber optic connector comprises a housing and a ferrule. The housing comprises a rear end and front end with a longitudinal passageway extending between the rear end to the front end with a keying portion disposed on an opposite side from a locking feature of the housing. The cable comprises at least one optical fiber and a cable jacket. The cable jacket comprises a cross-section having a major axis and a minor axis, and the cross-section is defined with respect to the minor axis and the major axis is aligned with the keying portion and the locking feature of the connector. The multiport comprises a linear array of connection ports disposed on the multiport that define a connection plane aligned on the centerlines of the linear array of connection ports. The fiber optic connector is received in the at least one connection port so that the major axis of the cable is perpendicular to the connection plane and the cable is routed away from the multiport along the connection plane.


Another aspect of the disclosure is directed to a fiber optic network comprising at least one cable assembly and a multiport. The cable assembly comprising a fiber optic connector and a cable terminated to the fiber optic connector. The fiber optic connector comprises a housing and a ferrule. The housing comprises a rear portion comprising a rear end and a front portion comprising a front end with a longitudinal passageway extending from the rear end and to the front end with a keying portion disposed on an opposite side from a locking feature of the housing. A transition region is disposed between the rear portion and the front portion, and the transition region comprises a threaded portion. The cable comprises at least one optical fiber and a cable jacket. The cable jacket comprises a cross-section having a major axis and a minor axis, and the cross-section is defined with respect to the minor axis and the major axis is aligned with the keying portion and the locking feature of the connector. The multiport comprises a linear array of connection ports disposed on the multiport that define a connection plane aligned on the centerlines of the linear array of connection ports. The fiber optic connector is received in the at least one connection port so that the major axis of the cable is perpendicular to the connection plane and the cable is routed away from the multiport along the connection plane.


Yet another aspect of the disclosure is directed to a fiber optic network comprising at least one cable assembly and a multiport. The cable assembly comprising a fiber optic connector and a cable terminated to the fiber optic connector. The fiber optic connector comprises a housing and a ferrule. The housing comprises a rear portion comprising a rear end and a front portion comprising a front end with a longitudinal passageway extending from the rear end and to the front end with a keying portion disposed on an opposite side from a locking feature of the housing. The locking feature is integrally formed in the rear portion and a transition region is disposed between the rear portion and the front portion, and the transition region comprises a threaded portion. The cable comprises at least one optical fiber and a cable jacket. The cable jacket comprises a cross-section having a major axis and a minor axis, and the cross-section is defined with respect to the minor axis and the major axis is aligned with the keying portion and the locking feature of the connector. The multiport comprises a linear array of connection ports disposed on the multiport that define a connection plane aligned on the centerlines of the linear array of connection ports. The fiber optic connector is received in the at least one connection port so that the major axis of the cable is perpendicular to the connection plane and the cable is routed away from the multiport along the connection plane.


Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the same as described herein, including the detailed description that follows, the claims, as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description present embodiments that are intended to provide an overview or framework for understanding the nature and character of the claims. The accompanying drawings are included to provide a further understanding of the disclosure and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments and together with the description serve to explain the principles and operation.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a perspective view of a portion of a fiber optic network comprising a representative multiport along with cable assemblies having their connectors attached to the connection ports so that the fiber optic cables have a vertical orientation with the key of the connection port according to the disclosure;



FIG. 2 is a partially exploded view of a cable assembly that terminates a representative fiber optic cable to a fiber optic connector so that a major axis of the fiber optic cable cross-section is oriented with respect to a keying portion and locking feature of the connector;



FIG. 3 depicts a cross-section of the fiber optic cable of FIG. 2 defining a major axis and a minor axis according to the disclosure;



FIG. 3A depicts another explanatory cross-section of a fiber optic cable defining a major axis and a minor axis according to the disclosure;



FIG. 4 depicts a vertical sectional view of cross-section of the cable assembly FIG. 2 showing the major axis of the fiber optic cable aligned with the keying portion and the locking feature of the fiber optic connector according to the disclosure;



FIGS. 5 and 6 are perspective views of a representative housing for the fiber optic connector respectively showing the keying portion and locking feature according to the disclosure;



FIG. 7 is an assembled cross-sectional view of the cable assembly showing the major axis of the fiber optic cable aligned with keying portion and locking feature of the housing of the fiber optic connector;



FIG. 8 is a portion of a fiber optic network showing an end view of the multiport with the orientation of the fiber optic cables of the cable assemblies having the connectors secured in the connection port in a vertical orientation relative to a connector plane defined by the centerlines of the connector ports;



FIG. 9 is a top view of the multiport of FIG. 8 with the arrows showing the bending preference in the connection plane for the fiber optic cables of the cable assemblies attached to the multiport according to the disclosure.





DETAILED DESCRIPTION

Reference will now be made in detail to the embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Whenever possible, like reference numbers will be used to refer to like components or parts.


The concepts disclosed advantageously provide fiber optic networks comprising one or more cable assemblies that cooperate with a multiport for deploying and routing fiber optic cables in the network from the multiport in a compact and efficient manner. The concepts disclosed may be useful for aerial, buried or other deployments in the fiber optic network. The fiber optic networks disclosed are explained and depicted comprising a fiber optic connector with a housing and a ferrule that are terminated to an end of a fiber optic cable having a cross-section with a major axis and a minor axis that impart a preferential bend plane to the cable. The cross-section of the cable has a major axis that is aligned with a keying portion and the locking feature on the housing of the fiber optic connector. Consequently, the preferred bend direction of the fiber optic cable has a predetermined orientation that is aligned so that the major axis of the cable is generally vertical or perpendicular to a connection plane of the ports disposed on the multiport so that the cables are routed away from the multiport along the connection plane. As used herein, “generally perpendicular” means perpendicular to within ±10 degrees, and “perpendicular” means perpendicular to within ±5 degrees. Consequently, cables may be organized and routed in an organized and efficient manner for the routing of cables to a multiport in a fiber optic network.


The cable assembly has the housing of the fiber optic connector clocked in a predetermined manner with respect to the cross-section of the cable so it may be received in the multiport for forming a portion of a fiber optic network. In particular, the cross-section of the cable has a major axis that is aligned with keying portion and locking features of the housing of the connector. The housing of the connector may also be defined by a rear portion (RP) and a front portion (FP) along with a transition region (TR) disposed between the rear portion (RP) and the front portion (FP) of the housing.


In one explanatory example, the housing of the fiber optic connector comprises a part of the rear portion (RP) having a round cross-section (RCS) and a part of the front portion having a non-round cross-section (NRCS). The front portion (FP) or the rear portion (RP) of the housing may be further defined in various configurations as disclosed herein while retaining a part of the rear portion (RP) with the round cross-section (RCS) and a part of the front portion (FP) having a non-round cross-section (NRCS). Moreover, the housings may have the keying portion and locking features that aid in the proper alignment or orientation of the connector in the multiport without significantly changing the primitive form-factors (i.e., RCS, NRCS) of the housings that are disclosed. By way of explanation, even though a round cross-section of the housing may include another feature such as a keying portion configured as a key or a keyway it is still considered to be a round cross-section. Additionally, housing may have locking features for securing the optical mating with the multiport. The housing may also include threads for securing a dust cap or modifying the fiber optic connector to a second footprint using other components.


The housing footprints for connectors disclosed herein may be still further defined by other geometry of the housing(s). For instance, the front portion (FP) of the housing may comprise another cross-section portion (ACSP). By way of explanation, the another cross-sectional portion (ACSP) may comprise a SC footprint. The SC footprint can, in part, be similar to the inner housing of a conventional SC connector. This particular housing footprint is useful for allowing the connectors disclosed to be backwards compatible into existing devices or ports using well-established connector footprints as desired.


Housings may also define further features such as the transition region disposed between the rear portion and the front portion comprising an asymmetric transition with respect to a longitudinal axis of the housing. Likewise, other features on the housing may define the housing as asymmetric for orientation or mating with devices or ports.


Likewise, the cable assemblies disclosed may be hybrid designs with both optical and electrical connectivity. Electrical connectivity may be provided by contacts on or in a portion of the housing of the connector and may be useful for power or data as desired for applications such as FTTx, 5G networks, industrial applications or the like. These and other additional concepts are discussed and disclosed in illustrative detail with reference to FIGS. herein.



FIG. 1 shows a portion of a fiber optic network 1000 comprising at least one cable assembly 100 and a multiport 200. The cable assembly 100 comprises a fiber optic connector 10 and a fiber optic cable 90. The fiber optic connector 10 is terminated to an end of the fiber optic cable 90 to form the cable assembly 100. FIG. 2 shows a partially exploded view of cable assembly 100, and FIGS. 3 and 3A show representative cross-sections of the fiber optic cable 90,90′ comprising a cross-section having a major axis MAA and a minor axis MIA that impart a preferential bending plane for the cable. FIG. 4 depicts a cross-sectional view of the cable assembly 100 showing the orientation of the fiber optic cable 90 to fiber optic connector 10 when assembled (i.e., clocking of the major axis MAA of the fiber optic cable to with the keying portion and the locking feature of the fiber optic connector 10.


As shown in FIG. 1, one or more fiber optic connectors 10 on the respective terminated ends of the cable assemblies 100 may be attached to respective ports 236 of the multiport 200 to form a portion of the fiber optic network 1000. Multiports 200 may have any suitable number of connection ports 236 for receiving the fiber optic connectors 10 of respective cable assemblies 100. The connection ports 236 may be arranged as one or more linear arrays of connection ports 236 on multiport 200. Each linear array of connection ports 236 disposed on the multiport 200 define a connection plane CP aligned on the centerlines of the connection ports 236 of the linear array such as shown in FIG. 7. Consequently, when the fiber optic connector 10 of the cable assembly is received in the connection port 236 of multiport 200 a major axis MAA of the fiber optic cable 90 may be routed away from the multiport 200 along the defined connection plane CP of the multiport 200 as shown in FIG. 1. This fiber optic network construction is advantageous since it allows multiple cables 90 to easily and quickly be strapped or zip-tied together in a known orientation to save space and maintain an organized network where space may be at a premium. Thus, the fiber optic network disclosed herein are advantageous over conventional fiber optic networks that have the fiber optic cables exiting from the multiport in different orientations or directions and take up excess space and cause routing concerns and issues in confined spaces.



FIG. 2 is a partially exploded view of a cable assembly 100 that terminates a representative fiber optic cable (hereinafter cable) 90 to a fiber optic connector 10. Cable 90 comprises at least one optical fiber 92 and a cable jacket 98 and may include other components or not. The cable 90 comprises a cross-section having a major axis MAA and a minor axis MIA as shown in FIG. 3. As shown in FIG. 3, cable 90 may further comprise one or more strength members 94. The strength members 94 may be any suitable materials such as glass-reinforced rods, aramid yarns, fiberglass, metal wires or the like if used. The major axis MAA of the cable is defined by the longest line through the cable cross-section that passes through the cable center point. In cable 90 the strength members 94 are aligned on the major axis MAA as shown. The minor axis MIA is defined by the axis passing through the cable center point and orthogonal to the major axis MAA. The cross-section of the fiber optic cable 90, 90′ imparts a preferential bend plane for the cable that is aligned with the housing 20 of the connector such as with the keying portion or the locking feature as desired for cable management when disposed in a respective port of the fiber optic network 1000.


Returning to FIG. 2, fiber optic connector 10 comprises a housing 20 and a ferrule 30. As shown in FIGS. 5 and 6, the housing 20 comprises a rear end 21 and a front end 23 with a longitudinal passageway 22 extending from the rear end 21 to the front end 23. The housing 20 also comprises a keying portion 20KP that may be disposed on an opposite side from a locking feature 20L or not as desired. Disposed on an opposite side means that the keying portion 20KP is about 180 degrees from the locking feature 20L in a rotational orientation about the housing 20, but other arrangements of the locking feature and keying portions are possible using the concepts disclosed herein. Ferrule 30 comprises a fiber bore 32 extending from a rear end 31 to a front end 33. The passageway 22 of housing 20 allows one or more optical fibers of cable 90 to pass through the housing 20 for insertion into fiber bore 32 of ferrule 30 such as depicted in FIG. 4.


When the connector 10 is terminated to the cable 90 the major axis MAA of the cable cross-section CS is oriented relative to one or more of a keying portion 20KP and locking feature 20L on the housing 20 of the fiber optic connector 10. The illustrated embodiment of FIG. 4 shows the major axis MAA of cable 90 generally aligned with the keying portion 20KP at the top and the locking feature 20L at the bottom of the housing 20. Thus, when the one or more cable assemblies 100 are attached to multiport 200, the cables 90 may easily be routed away from the multiport 200 along the connection plane CP. Moreover, the one or more cables 90 may be routed away from the multiport on the connection plane CP in either or both sideways directions since the major axis of the cables 90 are aligned perpendicular in the connection plane CP as best shown in FIG. 7. For instance, some of the cables 90 may be routed upward in the connection plane as shown in FIG. 1 and some of the cables 90 may be routed downward in the connection plane CP as well if desired.



FIG. 2 shows that the ferrule 30 may be a portion of a ferrule assembly 60 and the fiber optic connector 10 may also comprise a spring 38 for biasing the ferrule assembly 60 forward. The ferrule assembly 60 may comprise a ferrule holder 49 and ferrule 30. The ferrule assembly 60 may be inserted into housing 20 for assembly. Specifically, the assembly of the ferrule holder 49 and ferrule 30 are inserted into housing 20 from the front end 23 until they are retained by latch arms 20LA of housing 20. Latch arms 20LA may have ramp portions for aiding portions of ferrule holder 49 to deflect the latch arms 20LA outward as the ferrule holder 49 is inserted into housing 20 and then the latch arms 20LA spring back over ferrule holder 49 for retaining the same within the housing 20. However, other assemblies, orientations or constructions are possible according the concepts of the disclosure.


Fiber optic connector 10 may also comprise other components as desired. By way of example, fiber optic connector 10 may further comprise a cable adapter 59 that is received at a rear end 21 of housing 20 for receiving and securing cable 90. Cable adapter 59 allows different cables to be used with the housing 20. For instance, the cable adapter 59 may have an internal passageway sized and shaped for the desired cable. Other alternatives are possible for securing the cable such as using a crimp band or the like. Fiber optic connector 10 may also comprise a boot 70 that is disposed about a rear part of the connector for inhibiting sharp bending of the cable at the rear of the fiber optic connector 10.


Housings 20 of fiber optic connectors 10 may also have suitable features or structures for sealing connectors 10. The sealing plane should be located at a suitable location along the housing 20 for providing suitable environmental protection as necessary for the desired environment. Illustratively, housing 20 may include one or more grooves 20G for receiving an appropriately sized O-ring 65. Housings 20 may include other features or structures for aiding in sealing. For instance, the housing 20 may have a suitable surface for receiving a portion of a heat shrink 99 or the like for sealing between a portion of the cable 90 and the connector 10 when assembled. Any suitable heat shrink 99 may be used such as a glue-lined heat shrink. It is noted that the heat shrink 99 is depicted in its final form. Moreover, other structures or features are possible for aiding in providing a robustly sealed cable assembly 100.


Cable adapters 59 may comprise an aperture or a cable adapter key as desired. Generally speaking, cable adapter 59 comprises passageway from a cable adapter front end to a cable adapter rear end. Passageway allows the optical fiber 92 of cable 90 to pass therethrough. A shoulder (not numbered) allows cable adapter 59 to have a snug-fit within the passageway 22 of housing 20 and inhibits adhesive from wicking or flowing forward of the shoulder. Any adhesive or epoxy used for securing cable adapter may wick around the recessed surface for creating a sufficient bonding area and any excessive adhesive or epoxy may flow into the aperture of cable adapter 59. Housings 20 may also include one or more apertures 29 for injecting epoxy or adhesive or the adhesive or epoxy may be placed on the cable adapter before insertion into the housing. For instance, housing may include two apertures 29 such as show in FIGS. 5 and 6 so that air may escape as adhesive or epoxy is injected. Additionally, the one or more apertures 29 may be aligned with the apertures of the cable adapter 59 so that the adhesive or epoxy also secures the strength members 94 of cable 90 to the cable adapter 59 that is secured to the housing 20, thereby forming a robust cable/connector attachment and also providing sealing at the rear end. The passageway of cable adapter 59 is sized and shaped for the particular cable 90 that is intended to be secured using the cable adapter along with the appropriate components as appropriate. The rear portion of the cable adapter 59 may comprise one or more ribs suitable for receiving a boot or overmold on the rear portion. The ribs may aid in the retention of the boot or overmold.


This embodiment also comprises a boot or overmold disposed on the rear portion of cable adapter 59 as shown. Further, when assembled a sealing element such a heat shrink 99 is disposed over the boot or overmold as best shown in FIG. 4. The sealing element may also be disposed over a portion of the housing 20 as shown. Placing the sealing element over boot or overmold and a portion of the housing 20 allows for sealing of the cable jacket to the rear of the connector. This may also improve the bending strain-relief for the cable assembly.


Further details of the housing 20 of the fiber optic connector 10 of FIG. 2 are shown in FIGS. 5 and 6. Housing 20 comprises a part of the rear portion RP having a round cross-section RCS and a part of the front portion having a non-round cross-section NRCS. Housing 20 may have other features such as further comprising a transition region TR disposed between the rear portion RP and the front portion FP. The transition region TR may comprise an asymmetric portion AT. The transition region TR or asymmetric portion AT may have any suitable geometry or configuration as desired. In one embodiment, the transition region comprises a threaded portion TP. The threaded portion TP may be used for attaching a dust cap to the connector and/or for converting the footprint of the connector using other suitable components such as converting to an OptiTap® connector.


Housing 20 of fiber optic connector 10 comprises one or more features for alignment during mating and may also comprise other features for securing or locking the connector in a suitable connection port or device. Housing 20 may have a relatively compact form-factor such as having a length of about 40 millimeters (mm) or less and a cross-section dimension of about 15 mm or less such as 12 mm or less, but other suitable dimensions are possible for the housing. Due to the construction of housing 20, the multiport 200 may have the connection ports 236 arranged in a dense linear array since the connectors do not require a threaded component or bayonet for securing the connector in the port.


As used herein, the transition region TR is disposed between the rear end 21 and the front end 23 where the housing 20 makes a transformational shift in the primitive cross-sectional shapes from a part of a rear portion RP to a part of the front portion FP. As used herein, a primitive cross-section means the outer perimeter of the cross-section without regard for the internal features of the cross-section. Further, portions of the cross-sections may include other features that modify the shape of the primitive cross-sections as desired such as a keying feature, retention feature or a locking feature, while still practicing the concepts of the transition region TR or front/rear portions as disclosed herein. For instance, a front portion FP may have rounded corners or chamfered corners while still being a rectangular cross-section.


In this embodiment of housing 20, the front portion FP of housing 20 has a rectangular cross-section that provides a first orientation feature for the connectors for alignment during mating and inhibit insertion into a non-compliant device or port. The non-round cross-section NRCS has the rectangular cross-section. The rectangular cross-section provides the first orientation feature since the rectangular portion may only be inserted into a complimentary device or port in certain orientations due to its rectangular shape, thereby inhibiting incorrect insertion or insertion into non-compliant devices or ports.


The front portion FP of housing 20 depicted has more than one primitive cross-sectional shape over its length. Specifically, the front portion FP of housing 20 of also comprises another cross-section portion ACSP. By way of explanation, the another cross-sectional portion (ACSP) may comprise a SC footprint. The SC footprint can, in part, be similar to the inner housing of a conventional SC connector. This particular housing footprint is useful for allowing the connectors disclosed to be backwards compatible into existing devices or ports using well-established connector footprints as desired. Other embodiments may have fiber optic connectors configured for LC connector footprints or other known connector footprints as desired.



FIG. 5 is a top perspective view from the front end showing the keying portion 20KP of housing 20, and FIG. 6 is bottom perspective view from the rear end showing the locking feature 20L of housing 20. The locking feature 20L may comprise a ramp 20R for cooperating and securing fiber optic connector 10 in the multiport 200. The locking feature 20L may also comprise other geometry for securing the connector such a ramp 20R with a ledge 20LD such as shown in FIG. 6.


Rear portion RP may include one or more locking features that alter or modify the cross-section. For instance, housing 20 may also include locking feature 20L so that the connector may secured in an adapter, port or other suitable device. For instance, locking feature 20L may comprise features integrated into the housing such as one or more of a groove, a shoulder such as a ramp with a ledge. In these examples, the locking features 20L advantageously are integrated into the housing 20 and do not require extra components and may be used with any of the disclosed concepts. In some embodiments, the locking features 20L are subtractive portions from the primitive geometry of the rear portion RP such as a ramp or notch integrally formed in the round rear portion RP of housing 20. Consequently, having the locking features integrated into the housing 20 (e.g., monolithically formed as part of the housing) may allow denser arrays of connectors in complimentary devices. Moreover, these locking features integrated into the housing 20 are rearward of the sealing location of connectors 10. For example, the integrated locking features of housing 20 are disposed rearward of at least one groove 20G that seats O-ring 65. Locking feature 20L may cooperate with features of a complimentary mating device for securing the mating of the connector 10 with the complimentary mating device.


Housing 20 has features that aid in the proper alignment or orientation of the connector with the port such as markings, keys, keyways, etc. without changing the primitive form-factors of the housings that are disclosed and claimed herein. Additionally, housing may have other features for mating with a complimentary device. Thus, the features of housing 20 are used for aligning the fiber optic connector 10 within the port 236 of multiport 200.


Keying portion 20KP has a predetermined location with respect to an orientation of housing 20 for aligning the form-factor of the housing with a respective port on a mating device such as a multiport. For instance, the housing 20 or keying portion 20KP provides a proper orientation for connection in one orientation, which may be desired for connectors having angled ferrules. In this embodiment, keying portion 20KP ensures correct rotational orientation of the connector 10 during insertion into port 236 and mating with the multiport 200. Additionally, since the fiber optic cable 100 is aligned to the keying feature 20K the major axis MAA of the fiber optic cable 90 is aligned in the respective port 236 of the multiport 200 so that the major axis of the cable 90 is perpendicular to the connection plane CP as depicted in FIG. 7. The connection plane CP is defined as passing thru the centerlines of the linear array of connection ports 236 as shown in the FIGS.


In this embodiment, the keying portion 20KP is configured as a female key or a subtractive portion on housing 20 such as a female keyway or a slice on the side of the connector leaving a D-shape. The keying portion 20KP extends into the transition region as shown. The keying portion 20KP cooperates with a suitable keying portion in a connection port 236 of the multiport 200 such as an additive or male portion for inhibiting non-compliant connectors from being inserted into the connection port. Although, the keying portion 20KP is disposed about 180 degrees from the at least one locking feature 20L, other arrangements are possible where the keying portion 20KP is disposed less than 180 degrees from the at least one locking feature 20L. In other embodiments, keying portion 20KP may be arranged as a subtractive portion that removes a side or slice of the housing 20 for creating a D-shaped cross-section over the length of the keying portion 20KP; instead of the female keyway shown. Moreover, other structures may be used for the keying portion 20KP such as a male key with the complementary structure on the multiport 200.



FIGS. 8 and 9 depict portions of fiber optic network 1000 showing top and perspective views of the cable assemblies 100 having the connectors 10 secured in the respective connection ports 236. As represented by the arrows, the fiber optic cable may be moved in the connection plane CP for routing the cables to their desired location for organization and routing according to the concepts disclosed.


Other variations of housings disclosed herein are also possible such as having other shapes for the rear portion RP such as a polygon cross-section PCS, instead of the round cross-section RCS. Polygon cross-sections may have any suitable number of sides such as four, five, six, seven or eight, but other suitable number of sides are also possible. Still other variations are possible with the housing concepts disclosed.


Although the disclosure has been illustrated and described herein with reference to explanatory embodiments and specific examples thereof, it will be readily apparent to those of ordinary skill in the art that other embodiments and examples can perform similar functions and/or achieve like results. All such equivalent embodiments and examples are within the spirit and scope of the disclosure and are intended to be covered by the appended claims. It will also be apparent to those skilled in the art that various modifications and variations can be made to the concepts disclosed without departing from the spirit and scope of the same. Thus, it is intended that the present application cover the modifications and variations provided they come within the scope of the appended claims and their equivalents.

Claims
  • 1. A fiber optic network, comprising: at least one cable assembly, the at least one cable assembly comprising: a fiber optic connector comprising a housing and a ferrule, the housing comprising a rear end and a front end with a longitudinal passageway extending between the rear end to the front end with a keying portion disposed on an opposite side from a locking feature of the housing; anda cable terminated to the fiber optic connector, the cable comprising at least one optical fiber and a cable jacket, wherein the cable jacket comprises a cross-section having a major axis and a minor axis, wherein the cross-section is defined with respect to the minor axis and the major axis is aligned with the keying portion and the locking feature of the fiber optic connector; anda multiport comprising: a linear array of connection ports disposed on the multiport that define a connection plane aligned on centerlines of the linear array of connection ports, wherein the fiber optic connector is received in the at least one connection port so that the major axis of the cable is perpendicular to the connection plane and the cable is routed away from the multiport along the connection plane.
  • 2. The fiber optic network of claim 1, the housing of the fiber optic connector comprising a part of the rear portion having a round cross-section and a part of the front portion comprising a non-round cross-section with a transition region disposed between the rear portion and the front portion, wherein the transition region comprises an asymmetric portion.
  • 3. The fiber optic network of claim 2, wherein the asymmetric portion is a threaded portion.
  • 4. The fiber optic network of claim 3, wherein the threaded portion is adjacent to a keying portion.
  • 5. A fiber optic network, comprising: at least one cable assembly, the at least one cable assembly comprising: a fiber optic connector comprising a housing and a ferrule, the housing comprising a rear portion comprising a rear end and a front portion comprising a front end with a longitudinal passageway extending from the rear end to the front end with a keying portion disposed on an opposite side from a locking feature of the housing, wherein a transition region is disposed between the rear portion and the front portion, and the transition region comprises a threaded portion; anda cable terminated to the fiber optic connector, the cable comprising at least one optical fiber and a cable jacket, wherein the cable jacket comprises a cross-section having a major axis and a minor axis, wherein the cross-section is defined with respect to the minor axis and the major axis is aligned with the keying portion and the locking feature of the fiber optic connector; anda multiport comprising: a linear array of connection ports disposed on the multiport that define a connection plane aligned on centerlines of the linear array of connection ports, wherein the fiber optic connector is received in the at least one connection port so that the major axis of the cable is generally perpendicular to the connection plane and the cable is routed away from the multiport along the connection plane.
  • 6. The fiber optic network of claim 5, wherein the threaded portion extends from a non-round cross-section to a round cross-section.
  • 7. The fiber optic network of claim 5, wherein the threaded portion is adjacent to a keying feature.
  • 8. The fiber optic network of claim 5, wherein the keying portion extends into the transition region.
  • 9. A fiber optic network, comprising: at least one cable assembly, the at least one cable assembly comprising: a fiber optic connector comprising a housing and a ferrule, the housing comprising a rear portion comprising a rear end and a front portion comprising a front end with a longitudinal passageway extending from the rear end to the front end with a keying portion disposed on an opposite side from a locking feature of the housing, wherein the locking feature is integrally formed in the rear portion, and a transition region is disposed between the rear portion of the housing and the front portion, and the transition region comprises a threaded portion; anda cable terminated to the fiber optic connector, the cable comprising at least one optical fiber and a cable jacket, wherein the cable jacket comprises a cross-section having a major axis and a minor axis, and the major axis is aligned with the keying portion and the locking feature of the fiber optic connector; anda multiport comprising: a linear array of connection ports disposed on the multiport that define a connection plane aligned on centerlines of the linear array of connection ports, wherein the fiber optic connector is received in the at least one connection port so that the major axis of the cable is generally perpendicular to the connection plane and the cable is routed away from the multiport along the connection plane.
  • 10. The fiber optic network of claim 9, further comprising a plurality of cable assemblies each comprising a cable terminated to a fiber optic connector that is received in one connection port of the linear array of connection ports, wherein a plurality of cables are routed away from the multiport as a group.
  • 11. The fiber optic network of claim 9, the multiport further comprising a second linear array of connection ports.
  • 12. The fiber optic network of claim 9, the cable further comprising at least one strength member, wherein the at least one strength member is aligned on a major axis of the cross-section of the cable.
  • 13. The fiber optic network of claim 9, the cable further comprising a first strength member and a second strength member, wherein the first strength member and the second strength member are aligned on a major axis of the cross-section of the cable.
  • 14. The fiber optic network of claim 9, the cable further comprising at least one strength member, wherein the at least one strength member is aligned on a major axis of the cross-section of the cable and embedded in the cable jacket.
  • 15. The fiber optic network of claim 9, wherein the keying portion is a female key.
  • 16. The fiber optic network of claim 15, wherein the keying portion extends into the transition region.
  • 17. The fiber optic network of claim 9, wherein the at least one locking feature is disposed about 180 degrees from the keying portion.
  • 18. The fiber optic network of claim 9, wherein the at least one locking feature is a ramp with a ledge.
  • 19. The fiber optic network of claim 9, the fiber optic connector further comprising a ferrule holder, wherein the ferrule is disposed within a portion of the ferrule holder.
  • 20. The fiber optic network of claim 9, wherein the at least one locking feature is a notch, a groove, a shoulder, or a scallop formed in the housing.
  • 21. The fiber optic network of claim 9, wherein the front portion of housing comprises another cross-section portion.
  • 22. The fiber optic network of claim 9, wherein an opening at the front end of the housing is sized for receiving a portion of a ferrule subassembly comprising the ferrule holder and ferrule.
  • 23. The fiber optic network of claim 9, wherein the housing further comprises one or more latch arms for securing the ferrule holder.
  • 24. The fiber optic network of claim 9, the fiber optic connector further comprising a cable adapter.
  • 25. The fiber optic network of claim 9, further comprising a cable adapter, a boot attached to a portion of the cable adapter, and a sealing element disposed over a portion of the boot and a rear portion of the housing.
RELATED APPLICATIONS

This application claims the benefit of priority of U.S. Provisional Application Ser. No. 62/880,844, filed on Jul. 31, 2019, the content of which is relied upon and incorporated herein by reference in its entirety.

US Referenced Citations (605)
Number Name Date Kind
3074107 Kiyoshi et al. Jan 1963 A
3532783 Pusey et al. Oct 1970 A
3792284 Kaelin Feb 1974 A
3912362 Hudson Oct 1975 A
4148557 Garvey Apr 1979 A
4167303 Bowen et al. Sep 1979 A
4168109 Dumire Sep 1979 A
4188088 Andersen et al. Feb 1980 A
4336977 Monaghan et al. Jun 1982 A
4354731 Mouissie Oct 1982 A
4373777 Borsuk et al. Feb 1983 A
4413880 Forrest et al. Nov 1983 A
4423922 Porter Jan 1984 A
4440471 Knowles Apr 1984 A
4461537 Raymer et al. Jul 1984 A
4515434 Margolin et al. May 1985 A
4547937 Collins Oct 1985 A
4560232 O'Hara Dec 1985 A
4615581 Yoshitaka Oct 1986 A
4634214 Cannon et al. Jan 1987 A
4634858 Gerdt et al. Jan 1987 A
4684205 Margolin et al. Aug 1987 A
4688200 Poorman et al. Aug 1987 A
4690563 Barton et al. Sep 1987 A
4699458 Ohtsuki et al. Oct 1987 A
4705352 Margolin et al. Nov 1987 A
4711752 Deacon et al. Dec 1987 A
4715675 Kevern et al. Dec 1987 A
4723827 Shaw et al. Feb 1988 A
4741590 Caron May 1988 A
4763983 Stephen Aug 1988 A
4783137 Kosman et al. Nov 1988 A
4842363 Margolin et al. Jun 1989 A
4844570 Takashi Jul 1989 A
4854664 McCartney Aug 1989 A
4856867 Gaylin Aug 1989 A
4902238 Iacobucci Feb 1990 A
4913514 Then Apr 1990 A
4921413 Blew May 1990 A
4944568 Bach et al. Jul 1990 A
4960318 Nilsson et al. Oct 1990 A
4961623 Midkiff et al. Oct 1990 A
4964688 Caldwell et al. Oct 1990 A
4979792 Weber et al. Dec 1990 A
4995836 Hisao Feb 1991 A
5007860 Robinson et al. Apr 1991 A
5016968 Hammond et al. May 1991 A
5028114 Krausse et al. Jul 1991 A
5058984 Bulman et al. Oct 1991 A
5067783 Lampert Nov 1991 A
5073042 Mulholland et al. Dec 1991 A
5076656 Briggs et al. Dec 1991 A
5085492 Kelsoe et al. Feb 1992 A
5088804 Grinderslev Feb 1992 A
5095176 Harbrecht et al. Mar 1992 A
5129023 Anderson et al. Jul 1992 A
5131735 Berkey et al. Jul 1992 A
5134677 Leung et al. Jul 1992 A
5136683 Aoki et al. Aug 1992 A
5142602 Cabato et al. Aug 1992 A
5146519 Miller et al. Sep 1992 A
5155900 Grois et al. Oct 1992 A
5162397 Descamps et al. Nov 1992 A
5180890 Pendergrass et al. Jan 1993 A
5189718 Barrett et al. Feb 1993 A
5210810 Darden et al. May 1993 A
5212752 Stephenson et al. May 1993 A
5214732 Beard et al. May 1993 A
5224187 Davisdon Jun 1993 A
5231685 Hanzawa et al. Jul 1993 A
5245683 Belenkiy et al. Sep 1993 A
5263105 Johnson et al. Nov 1993 A
5263239 Ziemek Nov 1993 A
5276750 Manning Jan 1994 A
5313540 Ueda et al. May 1994 A
5317663 Beard et al. May 1994 A
5321917 Franklin et al. Jun 1994 A
5367594 Essert et al. Nov 1994 A
5371823 Barrett et al. Dec 1994 A
5375183 Edwards et al. Dec 1994 A
5381494 O'Donnell et al. Jan 1995 A
5390269 Palecek et al. Feb 1995 A
5394494 Jennings et al. Feb 1995 A
5394497 Erdman et al. Feb 1995 A
5408570 Cook et al. Apr 1995 A
5416874 Giebel et al. May 1995 A
5452388 Rittle et al. Sep 1995 A
5519799 Murakami et al. May 1996 A
5553186 Allen Sep 1996 A
5557696 Stein Sep 1996 A
5569050 Lloyd Oct 1996 A
5588077 Woodside Dec 1996 A
5600747 Yamakawa et al. Feb 1997 A
5603631 Kawahara et al. Feb 1997 A
5608828 Coutts et al. Mar 1997 A
5631993 Cloud et al. May 1997 A
5647045 Robinson et al. Jul 1997 A
5673346 Iwano et al. Sep 1997 A
5682451 Lee et al. Oct 1997 A
5694507 Walles Dec 1997 A
5748821 Schempp et al. May 1998 A
5761359 Chudoba et al. Jun 1998 A
5781686 Robinson et al. Jul 1998 A
5782892 Castle et al. Jul 1998 A
5789701 Wettengel et al. Aug 1998 A
5791918 Pierce Aug 1998 A
5796895 Jennings et al. Aug 1998 A
RE35935 Cabato et al. Oct 1998 E
5818993 Chudoba et al. Oct 1998 A
5857050 Jiang et al. Jan 1999 A
5862290 Burek et al. Jan 1999 A
5887099 Csipkes et al. Mar 1999 A
5913001 Nakajima et al. Jun 1999 A
5920669 Knecht et al. Jul 1999 A
5923804 Rosson Jul 1999 A
5925191 Stein et al. Jul 1999 A
5926596 Edwards et al. Jul 1999 A
5960141 Sasaki et al. Sep 1999 A
5961344 Rosales et al. Oct 1999 A
5971626 Knodell et al. Oct 1999 A
5993070 Tamekuni et al. Nov 1999 A
6035084 Haake et al. Mar 2000 A
6045270 Weiss et al. Apr 2000 A
6079881 Roth Jun 2000 A
6094517 Hayato Jul 2000 A
6108482 Roth Aug 2000 A
6112006 Foss Aug 2000 A
6149313 Giebel et al. Nov 2000 A
6151432 Nakajima et al. Nov 2000 A
RE37028 Cooke et al. Jan 2001 E
6173097 Throckmorton et al. Jan 2001 B1
6179482 Takizawa et al. Jan 2001 B1
6188822 McAlpine et al. Feb 2001 B1
6200040 Edwards et al. Mar 2001 B1
6206579 Selfridge et al. Mar 2001 B1
6206581 Driscoll et al. Mar 2001 B1
6220762 Kanai et al. Apr 2001 B1
6224268 Manning et al. May 2001 B1
6229944 Yokokawa et al. May 2001 B1
6234683 Waldron et al. May 2001 B1
6234685 Carlisle et al. May 2001 B1
6249628 Rutterman et al. Jun 2001 B1
6256438 Gimblet Jul 2001 B1
6261006 Allen Jul 2001 B1
6264374 Selfridge et al. Jul 2001 B1
6287016 Hans-Dieter Sep 2001 B1
6305849 Roehrs et al. Oct 2001 B1
6321013 Hardwick et al. Nov 2001 B1
6356390 Hall, Jr. Mar 2002 B1
6356690 McAlpine et al. Mar 2002 B1
6357929 Roehrs et al. Mar 2002 B1
6371660 Roehrs et al. Apr 2002 B1
6375363 Harrison et al. Apr 2002 B1
6379054 Throckmorton et al. Apr 2002 B2
6402388 Imazu et al. Jun 2002 B1
6404962 Hardwick et al. Jun 2002 B1
6409391 Chang Jun 2002 B1
6422764 Marrs et al. Jul 2002 B1
6427035 Mahony Jul 2002 B1
6439780 Mudd et al. Aug 2002 B1
6466725 Battey et al. Oct 2002 B2
6496641 Mahony Dec 2002 B1
6501888 Gimblet et al. Dec 2002 B2
6522804 Mahony Feb 2003 B1
6529663 Parris et al. Mar 2003 B1
6536956 Luther et al. Mar 2003 B2
6539147 Mahony Mar 2003 B1
6540410 Childers et al. Apr 2003 B2
6542674 Gimblet Apr 2003 B1
6546175 Wagman et al. Apr 2003 B1
6554489 Kent et al. Apr 2003 B2
6579014 Melton et al. Jun 2003 B2
6599026 Fahrnbauer et al. Jul 2003 B1
6599027 Miyake et al. Jul 2003 B2
6614980 Mahony Sep 2003 B1
6618526 Jackman et al. Sep 2003 B2
6619697 Griffioen et al. Sep 2003 B2
6621964 Quinn et al. Sep 2003 B2
6625375 Mahony Sep 2003 B1
6629782 McPhee et al. Oct 2003 B2
6648520 McDonald et al. Nov 2003 B2
6668127 Mahony Dec 2003 B1
6672774 Theuerkorn et al. Jan 2004 B2
6678442 Gall et al. Jan 2004 B2
6678448 Moisel et al. Jan 2004 B2
6685361 Rubino et al. Feb 2004 B1
6702475 Giobbio et al. Mar 2004 B1
6714708 McAlpine et al. Mar 2004 B2
6714710 Gimblet Mar 2004 B2
6729773 Finona et al. May 2004 B1
6738555 Cooke et al. May 2004 B1
6748146 Parris Jun 2004 B2
6748147 Quinn et al. Jun 2004 B2
6771861 Wagner et al. Aug 2004 B2
6785450 Wagman et al. Aug 2004 B2
6789950 Loder et al. Sep 2004 B1
6809265 Gladd et al. Oct 2004 B1
6848838 Doss et al. Feb 2005 B2
6856748 Elkins et al. Feb 2005 B1
6899467 McDonald et al. May 2005 B2
6909821 Ravasio et al. Jun 2005 B2
6916120 Zimmel et al. Jul 2005 B2
6944387 Howell et al. Sep 2005 B2
6962445 Zimmel et al. Nov 2005 B2
7011454 Caveney et al. Mar 2006 B2
7025507 de Marchi Apr 2006 B2
7079734 Seddon et al. Jul 2006 B2
7090406 Melton et al. Aug 2006 B2
7090407 Melton et al. Aug 2006 B2
7104702 Barnes et al. Sep 2006 B2
7111990 Melton et al. Sep 2006 B2
7113679 Melton et al. Sep 2006 B2
7120347 Blackwell et al. Oct 2006 B2
7137742 Theuerkorn et al. Nov 2006 B2
7146090 Vo et al. Dec 2006 B2
7150567 Luther et al. Dec 2006 B1
7165893 Schmitz Jan 2007 B2
7178990 Caveney et al. Feb 2007 B2
7184634 Hurley et al. Feb 2007 B2
7201518 Holmquist Apr 2007 B2
7204644 Barnes et al. Apr 2007 B2
7213975 Khemakhem et al. May 2007 B2
7228047 Szilagyi et al. Jun 2007 B1
7241056 Kuffel et al. Jul 2007 B1
7266265 Gall et al. Sep 2007 B2
7270487 Billman et al. Sep 2007 B2
7277614 Cody et al. Oct 2007 B2
7302152 Luther et al. Nov 2007 B2
7330629 Cooke et al. Feb 2008 B2
7333708 Blackwell et al. Feb 2008 B2
7341382 Dye Mar 2008 B2
7346256 Marrs Mar 2008 B2
7366416 Ramachandran et al. Apr 2008 B2
7444056 Allen et al. Oct 2008 B2
7463803 Cody et al. Dec 2008 B2
7467896 Melton et al. Dec 2008 B2
7489849 Reagan et al. Feb 2009 B2
7497896 Bromet et al. Mar 2009 B2
7512304 Gronvall et al. Mar 2009 B2
7542645 Hua et al. Jun 2009 B1
7565055 Lu et al. Jul 2009 B2
7614797 Lu et al. Nov 2009 B2
7621675 Bradley Nov 2009 B1
7627222 Reagan et al. Dec 2009 B2
7628545 Cody et al. Dec 2009 B2
7628548 Benjamin et al. Dec 2009 B2
7653282 Blackwell et al. Jan 2010 B2
7654747 Theuerkorn et al. Feb 2010 B2
7680388 Reagan et al. Mar 2010 B2
7708476 Liu May 2010 B2
7709733 Plankell May 2010 B1
7712971 Lee et al. May 2010 B2
7713679 Ishiduka et al. May 2010 B2
7740409 Bolton et al. Jun 2010 B2
7742117 Lee et al. Jun 2010 B2
7742670 Benjamin et al. Jun 2010 B2
7753596 Cox Jul 2010 B2
7762726 Lu et al. Jul 2010 B2
7785015 Melton et al. Aug 2010 B2
7802926 Leeman et al. Sep 2010 B2
7806599 Margolin et al. Oct 2010 B2
7844148 Jenkins et al. Nov 2010 B2
7844160 Reagan et al. Nov 2010 B2
RE42094 Barnes et al. Feb 2011 E
7903923 Gronvall et al. Mar 2011 B2
7903925 Cooke et al. Mar 2011 B2
7918609 Melton et al. Apr 2011 B2
7933517 Ye et al. Apr 2011 B2
7942590 Lu et al. May 2011 B2
8025445 Rambow et al. Sep 2011 B2
8213761 Gronvall et al. Jul 2012 B2
8218935 Reagan et al. Jul 2012 B2
8229263 Parris et al. Jul 2012 B2
8238706 Kachmar Aug 2012 B2
8267596 Theuerkorn Sep 2012 B2
8272792 Coleman et al. Sep 2012 B2
RE43762 Smith et al. Oct 2012 E
8301003 De et al. Oct 2012 B2
8301004 Cooke et al. Oct 2012 B2
8376629 Cline et al. Feb 2013 B2
8408811 De et al. Apr 2013 B2
8439577 Jenkins May 2013 B2
8465235 Jenkins et al. Jun 2013 B2
8466262 Siadak et al. Jun 2013 B2
8472773 De Jong Jun 2013 B2
8480312 Smith et al. Jul 2013 B2
8520996 Cowen et al. Aug 2013 B2
8534928 Cooke et al. Sep 2013 B2
8556522 Cunningham Oct 2013 B2
8622634 Arnold et al. Jan 2014 B2
8635733 Bardzilowski Jan 2014 B2
8662760 Cline et al. Mar 2014 B2
8678668 Cooke et al. Mar 2014 B2
8687930 Mcdowell et al. Apr 2014 B2
8727638 Lee et al. May 2014 B2
8737837 Conner et al. May 2014 B2
8755654 Danley et al. Jun 2014 B1
8755663 Makrides-Saravanos et al. Jun 2014 B2
8758046 Pezzetti et al. Jun 2014 B2
8764316 Barnette et al. Jul 2014 B1
8770861 Smith et al. Jul 2014 B2
8870469 Kachmar Oct 2014 B2
8882364 Busse et al. Nov 2014 B2
8917966 Thompson et al. Dec 2014 B2
8992097 Koreeda et al. Mar 2015 B2
8998502 Benjamin et al. Apr 2015 B2
9158074 Anderson et al. Oct 2015 B2
9158075 Benjamin et al. Oct 2015 B2
9182567 Mullaney Nov 2015 B2
9207410 Lee et al. Dec 2015 B2
9285550 Nhep et al. Mar 2016 B2
9297974 Valderrabano et al. Mar 2016 B2
9310570 Busse et al. Apr 2016 B2
9322998 Max Apr 2016 B2
9383539 Power et al. Jul 2016 B2
9405068 Graham et al. Aug 2016 B2
9435969 Lambourn et al. Sep 2016 B2
9442257 Lu Sep 2016 B2
9450393 Thompson et al. Sep 2016 B2
9482819 Li et al. Nov 2016 B2
9513444 Barnette et al. Dec 2016 B2
9535229 Ott et al. Jan 2017 B2
9541711 Raven Jan 2017 B2
9551842 Thomas Jan 2017 B2
9618704 Dean, Jr. Apr 2017 B2
9618718 Islam Apr 2017 B2
9638871 Bund et al. May 2017 B2
9645331 Kim May 2017 B1
9651741 Isenhour et al. May 2017 B2
9664862 Lu et al. May 2017 B2
9684136 Cline et al. Jun 2017 B2
9684138 Yu Jun 2017 B2
9696500 Barnette et al. Jul 2017 B2
9739951 Busse et al. Aug 2017 B2
9762322 Amundson Sep 2017 B1
9766416 Kim Sep 2017 B1
9772457 Hill et al. Sep 2017 B2
9810855 Cox et al. Nov 2017 B2
9810856 Graham et al. Nov 2017 B2
9829668 Coenegracht et al. Nov 2017 B2
9857540 Ahmed et al. Jan 2018 B2
9864151 Lu Jan 2018 B2
D810029 Robert et al. Feb 2018 S
9891391 Yasuhiro Feb 2018 B2
9910236 Cooke et al. Mar 2018 B2
9933582 Lin Apr 2018 B1
9964715 Yu May 2018 B2
9983374 Li et al. May 2018 B2
10031302 Ji et al. Jul 2018 B2
10038946 Smolorz Jul 2018 B2
10061090 Coenegracht Aug 2018 B2
10073224 Tong et al. Sep 2018 B2
10114176 Gimblet et al. Oct 2018 B2
10180541 Coenegracht et al. Jan 2019 B2
10209454 Isenhour et al. Feb 2019 B2
10235184 Walker Mar 2019 B2
10261268 Theuerkorn Apr 2019 B2
10268011 Courchaine et al. Apr 2019 B2
10288820 Philippe May 2019 B2
10353154 Ott et al. Jul 2019 B2
10353156 Hill et al. Jul 2019 B2
10359577 Dannoux et al. Jul 2019 B2
10401575 Daily et al. Sep 2019 B2
10401578 Coenegracht Sep 2019 B2
10409007 Kadar-Kallen et al. Sep 2019 B2
10422962 Coenegracht Sep 2019 B2
10444442 Takano et al. Oct 2019 B2
10451811 Coenegracht et al. Oct 2019 B2
10451817 Lu Oct 2019 B2
10451830 Szumacher et al. Oct 2019 B2
10488597 Parikh et al. Nov 2019 B2
10495822 Ponharith Dec 2019 B2
10520683 Nhep Dec 2019 B2
10578821 Ott et al. Mar 2020 B2
10606006 Hill et al. Mar 2020 B2
10613278 Kempeneers et al. Apr 2020 B2
10656347 Kato May 2020 B2
10712516 Courchaine et al. Jul 2020 B2
10739534 Murray et al. Aug 2020 B2
10782487 Lu Sep 2020 B2
10802236 Kowalczyk et al. Oct 2020 B2
10830967 Pimentel et al. Nov 2020 B2
10830975 Vaughn et al. Nov 2020 B2
10852498 Hill et al. Dec 2020 B2
10852499 Cooke et al. Dec 2020 B2
10859771 Ponharith Dec 2020 B2
10859781 Hill et al. Dec 2020 B2
10962731 Coenegracht Mar 2021 B2
10976500 Ott et al. Apr 2021 B2
11061191 Van Baelen et al. Jul 2021 B2
20010019654 Waldron et al. Sep 2001 A1
20010036345 Gimblet et al. Nov 2001 A1
20020012502 Farrar et al. Jan 2002 A1
20020062978 Sakabe et al. May 2002 A1
20020064364 Battey et al. May 2002 A1
20020081077 Nault Jun 2002 A1
20020122653 Donaldson et al. Sep 2002 A1
20020131721 Gaio et al. Sep 2002 A1
20030063866 Melton et al. Apr 2003 A1
20030063867 McDonald et al. Apr 2003 A1
20030063868 Fentress Apr 2003 A1
20030063897 Heo Apr 2003 A1
20030094298 Morrow et al. May 2003 A1
20030099448 Gimblet May 2003 A1
20030123813 Ravasio et al. Jul 2003 A1
20040047566 McDonald et al. Mar 2004 A1
20040052474 Lampert et al. Mar 2004 A1
20040072454 Nakajima et al. Apr 2004 A1
20040076377 Mizukami et al. Apr 2004 A1
20040076386 Nechitailo Apr 2004 A1
20040096162 Kocher et al. May 2004 A1
20040120662 Lail et al. Jun 2004 A1
20040120663 Lail et al. Jun 2004 A1
20040157449 Hidaka et al. Aug 2004 A1
20040157499 Nania et al. Aug 2004 A1
20040223699 Melton et al. Nov 2004 A1
20040223720 Melton et al. Nov 2004 A1
20040228589 Melton et al. Nov 2004 A1
20040240808 Rhoney et al. Dec 2004 A1
20040252954 Ginocchio et al. Dec 2004 A1
20050019031 Ye et al. Jan 2005 A1
20050036786 Ramachandran et al. Feb 2005 A1
20050054237 Gladd et al. Mar 2005 A1
20050084215 Grzegorzewska et al. Apr 2005 A1
20050123422 Lilie Jun 2005 A1
20050129379 Reagan et al. Jun 2005 A1
20050175307 Battey et al. Aug 2005 A1
20050213902 Parsons Sep 2005 A1
20050232552 Takahashi et al. Oct 2005 A1
20050271344 Grubish et al. Dec 2005 A1
20050281510 Vo et al. Dec 2005 A1
20050281514 Oki et al. Dec 2005 A1
20060045430 Theuerkorn et al. Mar 2006 A1
20060088247 Tran et al. Apr 2006 A1
20060093278 Elkins et al. May 2006 A1
20060093303 Reagan et al. May 2006 A1
20060120672 Cody et al. Jun 2006 A1
20060127016 Baird et al. Jun 2006 A1
20060133758 Mullaney et al. Jun 2006 A1
20060133759 Mullaney et al. Jun 2006 A1
20060147172 Luther et al. Jul 2006 A1
20060153503 Suzuki et al. Jul 2006 A1
20060153517 Reagan et al. Jul 2006 A1
20060171638 Dye Aug 2006 A1
20060269204 Barth et al. Nov 2006 A1
20060269208 Allen et al. Nov 2006 A1
20060280420 Blackwell et al. Dec 2006 A1
20060283619 Kowalczyk et al. Dec 2006 A1
20060291787 Seddon Dec 2006 A1
20070031100 Garcia et al. Feb 2007 A1
20070031103 Tinucci et al. Feb 2007 A1
20070036483 Shin et al. Feb 2007 A1
20070077010 Melton et al. Apr 2007 A1
20070098343 Miller et al. May 2007 A1
20070189674 Scheibenreif et al. Aug 2007 A1
20080020532 Monfray et al. Jan 2008 A1
20080080817 Melton et al. Apr 2008 A1
20080138016 Katagiyama et al. Jun 2008 A1
20080175542 Lu et al. Jul 2008 A1
20080175544 Fujiwara et al. Jul 2008 A1
20080175548 Knecht et al. Jul 2008 A1
20080232743 Gronvall et al. Sep 2008 A1
20080240658 Leeman et al. Oct 2008 A1
20080264664 Dinh et al. Oct 2008 A1
20080273837 Margolin et al. Nov 2008 A1
20090060421 Parikh et al. Mar 2009 A1
20090148101 Lu et al. Jun 2009 A1
20090148104 Lu et al. Jun 2009 A1
20090156041 Radle Jun 2009 A1
20090185835 Park et al. Jul 2009 A1
20090245743 Cote et al. Oct 2009 A1
20090263097 Solheid et al. Oct 2009 A1
20090317039 Blazer et al. Dec 2009 A1
20100008909 Siadak et al. Jan 2010 A1
20100014813 Ito et al. Jan 2010 A1
20100014867 Ramanitra et al. Jan 2010 A1
20100015834 Siebens Jan 2010 A1
20100040338 Sek Feb 2010 A1
20100054680 Lochkovic et al. Mar 2010 A1
20100074578 Imaizumi et al. Mar 2010 A1
20100092136 Nhep Apr 2010 A1
20100172616 Lu et al. Jul 2010 A1
20100197222 Scheucher Aug 2010 A1
20100232753 Parris et al. Sep 2010 A1
20100247053 Cowen et al. Sep 2010 A1
20100266245 Sabo Oct 2010 A1
20100272399 Griffiths et al. Oct 2010 A1
20100303426 Davis Dec 2010 A1
20100303427 Rambow et al. Dec 2010 A1
20100310213 Lewallen et al. Dec 2010 A1
20110019964 Nhep et al. Jan 2011 A1
20110047731 Sugita et al. Mar 2011 A1
20110069932 Overton et al. Mar 2011 A1
20110108719 Ford et al. May 2011 A1
20110129186 Lewallen et al. Jun 2011 A1
20110164854 Desard et al. Jul 2011 A1
20110222826 Blackburn et al. Sep 2011 A1
20110262099 Castonguay et al. Oct 2011 A1
20110299814 Nakagawa Dec 2011 A1
20120002925 Nakagawa Jan 2012 A1
20120008909 Mertesdorf et al. Jan 2012 A1
20120106912 McGranahan et al. May 2012 A1
20120183268 De et al. Jul 2012 A1
20120251060 Hurley Oct 2012 A1
20120251063 Reagan et al. Oct 2012 A1
20120252244 Elkins et al. Oct 2012 A1
20130004122 Kingsbury Jan 2013 A1
20130034333 Holmberg et al. Feb 2013 A1
20130064506 Eberle et al. Mar 2013 A1
20130094821 Logan Apr 2013 A1
20130109213 Chang May 2013 A1
20130170834 Cho et al. Jul 2013 A1
20130236139 Chen et al. Sep 2013 A1
20140016902 Pepe et al. Jan 2014 A1
20140050446 Jun-Fu Feb 2014 A1
20140079356 Pepin et al. Mar 2014 A1
20140133806 Hill et al. May 2014 A1
20140133807 Katoh May 2014 A1
20140153876 Dendas et al. Jun 2014 A1
20140161397 Gallegos et al. Jun 2014 A1
20140205257 Durrant et al. Jul 2014 A1
20140219609 Nielson et al. Aug 2014 A1
20140219622 Coan et al. Aug 2014 A1
20140233896 Ishigami et al. Aug 2014 A1
20140241671 Koreeda et al. Aug 2014 A1
20140241689 Bradley et al. Aug 2014 A1
20140294395 Waldron et al. Oct 2014 A1
20140328559 Kobayashi et al. Nov 2014 A1
20140348467 Cote et al. Nov 2014 A1
20140355936 Bund et al. Dec 2014 A1
20150003788 Chen et al. Jan 2015 A1
20150036982 Nhep et al. Feb 2015 A1
20150110451 Blazer et al. Apr 2015 A1
20150144883 Sendelweck May 2015 A1
20150185423 Matsui et al. Jul 2015 A1
20150253528 Corbille et al. Sep 2015 A1
20150268423 Burkholder et al. Sep 2015 A1
20150268434 Barnette et al. Sep 2015 A1
20150293310 Kanno Oct 2015 A1
20150309274 Hurley et al. Oct 2015 A1
20150316727 Kondo et al. Nov 2015 A1
20150346435 Kato Dec 2015 A1
20150346436 Pepe et al. Dec 2015 A1
20160015885 Pananen et al. Jan 2016 A1
20160126667 Droesbeke et al. May 2016 A1
20160131851 Theuerkorn May 2016 A1
20160131857 Pimentel et al. May 2016 A1
20160139346 Bund et al. May 2016 A1
20160154186 Gimblet et al. Jun 2016 A1
20160161688 Nishimura Jun 2016 A1
20160161689 Nishimura Jun 2016 A1
20160209599 Van et al. Jul 2016 A1
20160216468 Gimblet et al. Jul 2016 A1
20160238810 Hubbard et al. Aug 2016 A1
20160246019 Ishii et al. Aug 2016 A1
20160249019 Westwick et al. Aug 2016 A1
20160259133 Kobayashi et al. Sep 2016 A1
20160306122 Tong et al. Oct 2016 A1
20170038538 Isenhour et al. Feb 2017 A1
20170059784 Gniadek et al. Mar 2017 A1
20170131509 Xiao et al. May 2017 A1
20170139158 Coenegracht May 2017 A1
20170160492 Lin et al. Jun 2017 A1
20170168248 Hayauchi et al. Jun 2017 A1
20170170596 Goossens et al. Jun 2017 A1
20170176252 Marple et al. Jun 2017 A1
20170176690 Bretz et al. Jun 2017 A1
20170219782 Nishimura Aug 2017 A1
20170238822 Young et al. Aug 2017 A1
20170254961 Kamada et al. Sep 2017 A1
20170254962 Mueller-Schlomka et al. Sep 2017 A1
20170261699 Compton et al. Sep 2017 A1
20170285279 Daems et al. Oct 2017 A1
20170343741 Coenegracht et al. Nov 2017 A1
20170343745 Rosson Nov 2017 A1
20170351037 Watanabe et al. Dec 2017 A1
20180079569 Joseph Mar 2018 A1
20180081127 Coenegracht Mar 2018 A1
20180180831 Blazer et al. Jun 2018 A1
20190004251 Dannoux et al. Jan 2019 A1
20190004252 Rosson Jan 2019 A1
20190004256 Rosson Jan 2019 A1
20190004258 Dannoux et al. Jan 2019 A1
20190107677 Coenegracht et al. Apr 2019 A1
20190147202 Harney May 2019 A1
20190162910 Gurreri May 2019 A1
20190170961 Coenegracht et al. Jun 2019 A1
20190187396 Finnegan et al. Jun 2019 A1
20200012051 Coenegracht et al. Jan 2020 A1
20200049922 Rosson Feb 2020 A1
20200057205 Dannoux et al. Feb 2020 A1
20200057222 Dannoux et al. Feb 2020 A1
20200057224 Dannoux et al. Feb 2020 A1
20200057723 Chirca et al. Feb 2020 A1
20200103608 Johnson et al. Apr 2020 A1
20200110229 Dannoux et al. Apr 2020 A1
20200116952 Rosson Apr 2020 A1
20200116953 Rosson Apr 2020 A1
20200116958 Dannoux et al. Apr 2020 A1
20200124805 Rosson et al. Apr 2020 A1
20200124812 Dannoux et al. Apr 2020 A1
20200241211 Shonkwiler et al. Jul 2020 A1
20200348476 Hill et al. Nov 2020 A1
20200371306 Mosier et al. Nov 2020 A1
20200393629 Hill et al. Dec 2020 A1
Foreign Referenced Citations (249)
Number Date Country
2006232206 Oct 2006 AU
1060911 May 1992 CN
1071012 Apr 1993 CN
1213783 Apr 1999 CN
1231430 Oct 1999 CN
1114839 Jul 2003 CN
1646962 Jul 2005 CN
1833188 Sep 2006 CN
1922523 Feb 2007 CN
1985205 Jun 2007 CN
101084461 Dec 2007 CN
101111790 Jan 2008 CN
101195453 Jun 2008 CN
201404194 Feb 2010 CN
201408274 Feb 2010 CN
201522561 Jul 2010 CN
101806939 Aug 2010 CN
101846773 Sep 2010 CN
101866034 Oct 2010 CN
101939680 Jan 2011 CN
201704194 Jan 2011 CN
102141655 Aug 2011 CN
102346281 Feb 2012 CN
202282523 Jun 2012 CN
203224645 Oct 2013 CN
203396982 Jan 2014 CN
103713362 Apr 2014 CN
104064903 Sep 2014 CN
104280830 Jan 2015 CN
104603656 May 2015 CN
105467529 Apr 2016 CN
110954996 Apr 2020 CN
3537684 Apr 1987 DE
3737842 Sep 1988 DE
19805554 Aug 1998 DE
0012566 Jun 1980 EP
0122566 Oct 1984 EP
0130513 Jan 1985 EP
0244791 Nov 1987 EP
0462362 Dec 1991 EP
0468671 Jan 1992 EP
0469671 Feb 1992 EP
0547778 Jun 1993 EP
0547788 Jun 1993 EP
0762171 Mar 1997 EP
0782025 Jul 1997 EP
0855610 Jul 1998 EP
0856751 Aug 1998 EP
0856761 Aug 1998 EP
0940700 Sep 1999 EP
0949522 Oct 1999 EP
0957381 Nov 1999 EP
0997757 May 2000 EP
1065542 Jan 2001 EP
1122566 Aug 2001 EP
1243957 Sep 2002 EP
1258758 Nov 2002 EP
1391762 Feb 2004 EP
1431786 Jun 2004 EP
1438622 Jul 2004 EP
1678537 Jul 2006 EP
1759231 Mar 2007 EP
1810062 Jul 2007 EP
2069845 Jun 2009 EP
2149063 Feb 2010 EP
2150847 Feb 2010 EP
2193395 Jun 2010 EP
2255233 Dec 2010 EP
2333597 Jun 2011 EP
2362253 Aug 2011 EP
2401641 Jan 2012 EP
2609458 Jul 2013 EP
2622395 Aug 2013 EP
2734879 May 2014 EP
2815259 Dec 2014 EP
2817667 Dec 2014 EP
2992372 Mar 2016 EP
3022596 May 2016 EP
3064973 Sep 2016 EP
3101740 Dec 2016 EP
3207223 Aug 2017 EP
3245545 Nov 2017 EP
3265859 Jan 2018 EP
3336992 Jun 2018 EP
3362830 Aug 2018 EP
3427096 Jan 2019 EP
3443395 Feb 2019 EP
3535614 Sep 2019 EP
3537197 Sep 2019 EP
3646074 May 2020 EP
3646079 May 2020 EP
1184287 May 2017 ES
2485754 Dec 1981 FR
2022284 Dec 1979 GB
2154333 Sep 1985 GB
2169094 Jul 1986 GB
52-030447 Mar 1977 JP
58-142308 Aug 1983 JP
61-145509 Jul 1986 JP
62-054204 Mar 1987 JP
63-020111 Jan 1988 JP
63-078908 Apr 1988 JP
63-089421 Apr 1988 JP
03-063615 Mar 1991 JP
03-207223 Sep 1991 JP
05-106765 Apr 1993 JP
05-142439 Jun 1993 JP
05-297246 Nov 1993 JP
06-320111 Nov 1994 JP
07-318758 Dec 1995 JP
08-050211 Feb 1996 JP
08-054522 Feb 1996 JP
08-062432 Mar 1996 JP
08-292331 Nov 1996 JP
09-049942 Feb 1997 JP
09-135526 May 1997 JP
09-159867 Jun 1997 JP
09-203831 Aug 1997 JP
09-325223 Dec 1997 JP
09-325249 Dec 1997 JP
10-170781 Jun 1998 JP
10-332953 Dec 1998 JP
10-339826 Dec 1998 JP
11-064682 Mar 1999 JP
11-119064 Apr 1999 JP
11-248979 Sep 1999 JP
11-271582 Oct 1999 JP
11-281861 Oct 1999 JP
11-326693 Nov 1999 JP
11-337768 Dec 1999 JP
11-352368 Dec 1999 JP
2000-002828 Jan 2000 JP
2001-116968 Apr 2001 JP
2001-290051 Oct 2001 JP
2002-520987 Jul 2002 JP
2002-250987 Sep 2002 JP
2003-009331 Jan 2003 JP
2003-070143 Mar 2003 JP
2003-121699 Apr 2003 JP
2003-177279 Jun 2003 JP
2003-302561 Oct 2003 JP
2004-361521 Dec 2004 JP
2005-024789 Jan 2005 JP
2005-031544 Feb 2005 JP
2005-077591 Mar 2005 JP
2005-114860 Apr 2005 JP
2005-520987 Jul 2005 JP
2006-023502 Jan 2006 JP
2006-146084 Jun 2006 JP
2006-259631 Sep 2006 JP
2006-337637 Dec 2006 JP
2007-078740 Mar 2007 JP
2007-121859 May 2007 JP
2008-191422 Aug 2008 JP
2008-250360 Oct 2008 JP
2009-265208 Nov 2009 JP
2010-152084 Jul 2010 JP
2010-191420 Sep 2010 JP
2011-033698 Feb 2011 JP
2013-041089 Feb 2013 JP
2013-156580 Aug 2013 JP
2014-085474 May 2014 JP
2014-095834 May 2014 JP
2014-134746 Jul 2014 JP
5537852 Jul 2014 JP
5538328 Jul 2014 JP
2014-157214 Aug 2014 JP
2014-219441 Nov 2014 JP
2015-125217 Jul 2015 JP
2016-109816 Jun 2016 JP
2016-109817 Jun 2016 JP
2016-109819 Jun 2016 JP
2016-156916 Sep 2016 JP
3207223 Nov 2016 JP
3207233 Nov 2016 JP
10-2013-0081087 Jul 2013 KR
222688 Apr 1994 TW
9425885 Nov 1994 WO
9836304 Aug 1998 WO
0127660 Apr 2001 WO
0192927 Dec 2001 WO
0192937 Dec 2001 WO
0225340 Mar 2002 WO
0336358 May 2003 WO
2004061509 Jul 2004 WO
2005045494 May 2005 WO
2006009597 Jan 2006 WO
2006052420 May 2006 WO
2006113726 Oct 2006 WO
2006123777 Nov 2006 WO
2008027201 Mar 2008 WO
2008150408 Dec 2008 WO
2008150423 Dec 2008 WO
2009042066 Apr 2009 WO
2009113819 Sep 2009 WO
2009117060 Sep 2009 WO
2009154990 Dec 2009 WO
2010092009 Aug 2010 WO
2010099141 Sep 2010 WO
2011044090 Apr 2011 WO
2011047111 Apr 2011 WO
2012027313 Mar 2012 WO
2012037727 Mar 2012 WO
2012044741 Apr 2012 WO
2012163052 Dec 2012 WO
2013016042 Jan 2013 WO
2013122752 Aug 2013 WO
2013126488 Aug 2013 WO
2013177016 Nov 2013 WO
2014151259 Sep 2014 WO
2014167447 Oct 2014 WO
2014179411 Nov 2014 WO
2014197894 Dec 2014 WO
2015047508 Apr 2015 WO
2015144883 Oct 2015 WO
2015197588 Dec 2015 WO
2016059320 Apr 2016 WO
2016073862 May 2016 WO
2016095213 Jun 2016 WO
2016100078 Jun 2016 WO
2016115288 Jul 2016 WO
2016156610 Oct 2016 WO
2016168389 Oct 2016 WO
2017063107 Apr 2017 WO
2017146722 Aug 2017 WO
2017155754 Sep 2017 WO
2017178920 Oct 2017 WO
2018083561 May 2018 WO
2018175123 Sep 2018 WO
2018204864 Nov 2018 WO
2019005190 Jan 2019 WO
2019005191 Jan 2019 WO
2019005192 Jan 2019 WO
2019005193 Jan 2019 WO
2019005194 Jan 2019 WO
2019005195 Jan 2019 WO
2019005196 Jan 2019 WO
2019005197 Jan 2019 WO
2019005198 Jan 2019 WO
2019005199 Jan 2019 WO
2019005200 Jan 2019 WO
2019005201 Jan 2019 WO
2019005202 Jan 2019 WO
2019005203 Jan 2019 WO
2019005204 Jan 2019 WO
2019036339 Feb 2019 WO
2019126333 Jun 2019 WO
2019195652 Oct 2019 WO
2020101850 May 2020 WO
Non-Patent Literature Citations (18)
Entry
Brown, “What is Transmission Welding?” Laser Plasti Welding website, 6 pgs, Retrieved on Dec. 17, 2018 from: http://www.laserplasticwelding.com/what-is-transmission-welding.
Clearfield, “Fieldshield Optical Fiber Protection System: Installation Manual.” for part No. 016164. Last Updated Dec. 2014. 37 pgs.
Clearfield, “FieldShield SC and LC Pushable Connectors,” Last Updated Jun. 1, 2018, 2 pgs.
Clearfield, “FieldShield SmarTerminal: Hardened Pushable Connectors” Last Updated Jun. 29, 2018, 2 pgs.
Coaxum, L et al., U.S. Appl. No. 62/341,947, “Fiber Optic Multiport Having Different Types of Ports for Multi-Use,” filed May 26, 2016.
Coming Cable Systems, “SST Figure-8 Drop Cables 1-12 Fibers”, Preliminary Product Specifications, 11 pgs. (2002).
Coming Cable Systems, “SST-Drop (armor) Cables 1-12 Fibers”, Product Specifications, 2 pgs. (2002).
Coming Cable Systems, “SST-Drop (Dielectric) Cables 1-12 Fibers”, Product Specifications, 2 pgs. (2002).
Faulkner et al. “Optical networks for local lopp applications,” J. Lightwave Technol.0733-8724 7(11), 17411751 (1989).
Fiber Systems International: Fiber Optic Solutions, data, “TFOCA-11 4-Channel Fiber Optic Connector” sheet. 2 pgs.
Infolite—Design and Data Specifications, 1 pg. Retrieved Feb. 21, 2019.
Nawata, “Multimode and Single-Mode Fiber Connectors Technology”; IEEE Journal of Quantum Electronics, vol. QE-16, No. 6 Published Jun. 1980.
Ramanitra et al. “Optical access network using a self-latching variable splitter remotely powered through an optical fiber link,” Optical Engineering 46(4) pp. 45007-1-45007-9, Apr. 2007.
Ratnam et al. “Burst switching using variable optical splitter based switches with wavelength conversion,” ICIIS 2017—Poeceedings Jan. 2018, pp. 1-6.
Schneier, Bruce; “Applied Cryptography: Protocols, Algorithms, and Source Code in C,” Book. 1995 Sec. 10.3, 12.2, 165 pgs.
Stratos: Ughtwave., “Innovation Brought to Light”, Hybrid HMA Series, Hybrid Multi Application, 2 pgs.
Wang et al. “Opto-VLSI-based dynamic optical splitter,” Electron. Lett.0013-5194 10.1049/el:20046715 40(22), 14451446 (2004).
Xiao et al. “1xN wavelength selective adaptive optical power splitter for wavelength-division-multiplexed passive optical networks,” Optics & Laser Technology 68, pp. 160-164, May 2015.
Related Publications (1)
Number Date Country
20210033811 A1 Feb 2021 US
Provisional Applications (1)
Number Date Country
62880844 Jul 2019 US