Optical fiber is increasingly being used for a variety of applications, including but not limited to broadband voice, video, and data transmission. As bandwidth demands increase optical fiber is migrating deeper into communication networks such as in fiber to the premises applications such as FTTx, 5G and the like. As optical fiber extended deeper into communication networks the need for making robust optical connections in outdoor applications in a quick and easy manner was apparent. To address this need for making quick, reliable, and robust optical connections in communication networks hardened fiber optic connectors such as the OptiTap® plug connector were developed.
Multiports were also developed for making an optical connection with hardened connectors. Prior art multiports have a plurality of receptacles mounted through a wall of the housing for protecting an indoor connector inside the housing that makes an optical connection to the external hardened connector of the branch or drop cable. As optical networks grow and the needs continue to evolve with FTTx and 5G applications there is a further need for optical connectivity that is quick, simple and scalable.
Consequently, there exists an unresolved need for devices that allow flexibility for the network operators to quickly and easily make optical connections in optical networks while also addressing concerns related to limited space, organization, or aesthetics.
The disclosure is directed to port module inserts comprising at least one connection port and a securing feature associated with the connection port. Methods of making the devices are also disclosed.
One aspect of the disclosure is directed to a port module insert comprising a housing comprising an inner housing and an outer housing along with at least one securing feature. The inner housing comprises at least one connection port having an optical connector opening extending from an outer surface of the inner housing into a cavity and defining a connection port passageway, and at least one securing feature passageway. The at least one securing feature being associated with the connection port passageway, wherein a portion of the at least one securing feature is disposed within a portion of the at leak one securing feature passageway.
Another aspect of the disclosure is directed to a port module insert comprising a housing comprising an inner housing and an outer housing along with at least one securing feature, and at least one securing feature resilient member for biasing a portion of the at least one securing feature. The inner housing comprises at least one connection port having an optical connector opening extending from an outer surface of the inner housing into a cavity and defining a connection port passageway, and at least one securing feature passageway. The at least one securing feature being associated with the connection port passageway, wherein a portion of the at least one securing feature is disposed within a portion of the at least one securing feature passageway.
Yet another aspect of the disclosure is directed to a port module insert comprising a housing comprising an inner housing and an outer housing along with at least one securing feature. The inner housing comprises at least one connection port having an optical connector opening extending from an outer surface of the inner housing into a cavity and defining a connection port passageway, and at least one securing feature passageway. The at least one securing feature being associated with the connection port passageway, wherein a portion of the at least one securing feature is disposed within a portion of the at least one securing feature passageway, and a portion of the at least one securing feature is capable of translating within a portion of the at least one securing feature passageway.
One other aspect of the disclosure is directed to a port module insert comprising a housing comprising an inner housing and an outer housing along with at least one securing feature. The inner housing comprises at least one connection port having an optical connector opening extending from an outer surface of the inner housing into a cavity and defining a connection port passageway, and at least one securing feature passageway. The at least one securing feature being associated with the connection port passageway, wherein a portion of the at least one securing feature is disposed within a portion of the at least one securing feature passageway, and the at least one securing feature comprises a bore, where and a portion of the at least one securing feature is capable of translating within a portion of the at least one securing feature passageway.
A further aspect of the disclosure is directed to a port module insert comprising a housing comprising an inner housing and an outer housing along with at least one securing feature. The inner housing comprises at least one connection port having an optical connector opening extending from an outer surface of the inner housing into a cavity and defining a connection port passageway, and at least one securing feature passageway. The at least one securing feature being associated with the connection port passageway, wherein a portion of the at least one securing feature is disposed within a portion of the at least one securing feature passageway, and the at least one securing feature comprises a bore, where a portion of the at least one securing feature is capable of translating within a portion of the at least one securing feature passageway. The at least one securing feature translates from a retain position to an open position as a suitable fiber optic connector is inserted into the at least one connection port.
Yet another aspect of the disclosure is directed to a port module insert comprising a housing comprising an inner housing and an outer housing along with at least one securing feature. The inner housing comprises at least one connection port having an optical connector opening extending from an outer surface of the inner housing into a cavity and defining a connection port passageway, and at least one securing feature passageway. The at least one securing feature being associated with the connection port passageway, and the at least one securing feature comprises a bore and a locking feature, where a portion of the at least one securing feature translates from a retain position to an open position as a suitable fiber optic connector is inserted into the at least one connection port.
A still further aspect of the disclosure is directed to a port module insert comprising a housing comprising an inner housing and an outer housing along with at least one securing feature. The inner housing comprises at least one connection port having an optical connector opening extending from an outer surface of the inner housing into a cavity and defining a connection port passageway, and at least one securing feature passageway. The at least one securing feature being associated with the connection port passageway, wherein a portion of the at least one securing feature is disposed within a portion of the at leak one securing feature passageway, and the at least one securing feature comprises a securing member and an actuator, and the at least one securing member is capable of translating within a portion of the cavity. The securing member translates from a retain position to an open position as a suitable fiber optic connector is inserted into the at least one connection port.
The disclosure also discloses methods of making port module inserts. One method of making a port module insert comprises of the steps of providing a housing having an inner housing and an outer housing along with at least one securing feature. The inner housing comprises at least one connection port having an optical connector opening extending from an outer surface of the inner housing into a cavity and defining a connection port passageway, and at least one securing feature passageway. The method includes assembling at least one securing feature being so it is associated with the connection port passageway, wherein a portion of the at least one securing feature is disposed within a portion of the at least one securing feature passageway. Other methods for making port module inserts as disclosed herein are also contemplated.
Another method of making a port module insert comprises the steps of providing a housing having an inner housing and an outer housing along with at least one securing feature. The inner housing comprises at least one connection port having an optical connector opening extending from an outer surface of the inner housing into a cavity and defining a connection port passageway, and at least one securing feature passageway. The method includes assembling at least one securing feature being so it is associated with the connection port passageway, wherein a portion of the at least one securing feature is disposed within a portion of the at least one securing feature passageway. The method also includes assembling at least one securing feature resilient member for biasing a portion of the at least one securing feature.
The devices can have any suitable construction such as disclosed herein such a connection port that is keyed for inhibiting a non-compliant connector from being inserted and potentially causing damage to the device.
Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the same as described herein, including the detailed description that follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description present embodiments that are intended to provide an overview or framework for understanding the nature and character of the claims. The accompanying drawings are included to provide a further understanding of the disclosure, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments and together with the description serve to explain the principles and operation.
Reference will now be made in detail to the embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Whenever possible, like reference numbers will be used to refer to like components or parts.
The concepts for the devices disclosed herein are suitable for providing at least one optical connection for indoor, outdoor or other environments as desired. Generally speaking, the devices disclosed and explained in the exemplary embodiments are fiber optic port module inserts (hereinafter “port module insert”), but the concepts disclosed may be used with any suitable device as appropriate. As used herein, the term “port module insert” means any device comprising a first connection port for receiving a fiber optic connector and making an optical connection configured as a modular assembly. Consequently, the port module insert that can be mounted into the opening of a suitable device as a module for making optical connections to the device. In one embodiment, the port module insert has a first connection port for receiving and securing an external fiber optic connector, and the first connection port is aligned with an adapter for making an optical connection between external fiber optic connector and a connector received in the adapter. Thus, the port module insert may be used in a variety of devices such as mounted to an external wall of the device for providing modular assembly of devices with different port counts, thereby providing further flexibility to the network provider. The port module insert comprises a securing feature associated with the at least one connection port for securing and releasing the external fiber optic connector.
The concepts disclosed advantageously allow compact form-factors for the port module inserts. The securing features disclosed herein for the port module insert engage directly with a portion of connector without conventional structures like prior art devices that require the turning of a coupling nut, bayonet or the like. As used herein, “securing feature” excludes threads and features that cooperate with bayonets on a connector. Thus, the devices disclosed may allow connection port to be closely spaced and may result in small devices since the room and structure needed for turning a threaded coupling nut or bayonet is not necessary. The compact form-factors may allow the placement of the port module insert into a variety of devices in in indoor, outdoor, buried, aerial, industrial or other applications while advantageously providing a device having at least one connection port with a robust and reliable optical connection in a removable and replaceable manner.
The port module inserts disclosed are simple and elegant in their designs. The devices disclosed comprise at least one connection port and a securing feature associated with the connection port that is suitable for retaining an external fiber optic connector received by the connection port. A keying portion of the connection port may cooperates with a key on a complimentary external fiber optic connector to inhibit damage to the connection port by inhibiting the insertion of a non-compliant connector while also ensuring the correct rotational alignment to secure the fiber optic connector. The keying portion may also aid the user during blind insertion of the connector into the connection port of the device to determine the correct rotational orientation with respect to the connection port when a line of sight is not possible or practical for alignment. The keying portion may be an additive keying portion to the primitive geometric round shape of the connection port passageway such as a male key. However, the concepts for the connection ports of devices may be modified for different connector designs without a keying portion as well.
The concepts disclosed advantageously allow the quick and easy connection and retention by inserting the fiber optic connectors directly into the connection port of the port module insert without the need or space considerations for turning a threaded coupling nut or bayonet for retaining the external fiber optic connector, Generally speaking, the securing features disclosed for use with port module inserts herein may comprise one or more components with at least one component translating for releasing or securing the external fiber optic connector to the device. As used herein, the term “securing feature” excludes threaded portions or features for securing a bayonet disposed on a connector.
Since the connector footprint used with the devices disclosed does not require the bulkiness of a coupling nut or bayonet, the fiber optic connectors used with the devices disclosed herein may also be significantly smaller than conventional fiber optic connectors.
The devices disclosed comprise a securing feature for directly engaging with a suitable portion of a connector housing of the external fiber optic connector or the like for securing an optical connection with the device. Different variations of the concepts are discussed in further detail below. The structure for securing the fiber optic connectors in the port module insert provides a quick-connect feature. The concepts disclosed advantageously allow a scalable and relatively dense and organized array of connection ports in a relatively small form-factor while still being rugged for demanding environments.
The concepts disclosed herein are suitable for optical distribution networks such as for Fiber-to-the-Home or 5G applications, but are equally applicable to other optical applications as well including indoor, automotive, industrial, wireless, or other suitable applications. Additionally, the concepts disclosed may be used with any suitable fiber optic connector footprint that cooperates with the securing feature of the port module insert. Various designs, constructions, or features for devices are disclosed in more detail as discussed herein and may be modified or varied as desired.
More specifically, the inner housing 21A comprises at least one connection port 36 having an optical connector opening 38 extending from an outer surface 34 of the inner housing 21A into a cavity 16 and defining a connection port passageway 33. The inner housing 21A also comprises at least one securing feature passageway 45. In this embodiment, the port module insert 100 comprises a securing feature 10 comprising an actuator 10A and a securing member 10M. The actuator 10A is used for releasing the external fiber optic connector from the connection port 36 as discussed herein.
The securing feature 10 is associated with the connection port passageway 33 for cooperating with the external fiber optic connector 10. A portion of the securing feature 10 may translate for releasing or securing the external fiber optic connector 10. One or more securing feature passageways 45 may extend from the outer surface 34 of port module insert 100. Respective securing features 10 are associated with the connection port passageways 33 and may have a portion of the securing feature 10 disposed within a portion of the securing feature passageway 45 of the port module insert 100.
Optical connections to the port module inserts 100 are made by inserting one or more suitable external fiber optic connectors 1 into the connection port passageway 33 of the connection port 36 as desired. Specifically, the connection port passageway 33 is configured for receiving a suitable external fiber optic connector 1 (hereinafter connector) of a fiber optic cable assembly (hereinafter cable assembly). Each connection port passageway 33 or connection port 36 is associated with a securing feature 10 for retaining (e.g., securing) connector 10 in the port module insert 100. The securing feature 10 advantageously allows the user to make a quick and easy optical connection at the connection port 36 of port module inserts 100 by pushing the connector 1 into the connection port 36 until it is secured. The securing feature 10 may operate for providing a connector release feature when actuated such as by pushing inward.
Specifically, the external connector 1 may be retained within the respective connection port 36 of the device by pushing and fully-seating the connector 1 within the connection port 236 as shown in
Securing feature 10 may be designed for holding a minimum pull-out force for connector 1. In some embodiments, the pull-out force may be selected to release the connector 1 before damage is done to the device or the connector 1. By way of example, the securing feature 10 associated with the connection port 36 may require a pull-out force of about 50 pounds (about 220N) before the connector 1 would release likewise, the securing feature 10 may provide a side pull-out force for connector 1 for inhibiting damage as well. By way of example, the securing feature 10 associated with the connection port 36 may provide a side pull-out force of about 25 pounds (about 110N) before the connector 1 would release. Of course, other pull-out forces such as 75 pounds (about 330N) or 100 (about 440N) pounds are possible along with other side pull-out forces.
Cavity 16 is sized for receiving a portion of the securing feature 10M. Securing feature is biased relative to the inner housing 21A to the retain position for securing the external connector 1 as discussed herein. Securing feature 10M comprises a bore 10B that is aligned with the connection port 36, and the bore 10B is sized and shaped to receive a portion of the external connector 1 therethrough and secure and release the same such as shown in
Inner housing 21A may comprise one or more retention features 21RF for assembling and securing the inner housing 21A with the outer housing 21B. In this embodiment, retention features 21RF are a first and second cantilevered latch arms that extend from a flange 21FL of the inner housing 21a toward the rear end 21R. Retention features 21A are configured to cooperate with complementary retention features on the outer housing 21B. In this embodiment, the latch arms cooperate with the windows 21W on the outer housing 21B for securing the inner housing 21A with the outer housing 21B. Additionally, inner housing 21A comprises slots 21S disposed at near the front and rear ends 21F, 21R for aligning the inner housing 21A in the correct orientation for assembly with the outer housing 21B. Specifically, the slots 21S align and cooperate with one or more complimentary rails 21BRL (
Inner housing 21A may also comprise a threaded portion 21T for securing a coupling nut 80 and securing the port module insert to wall of a device. Specifically, the wall of the device is captured between the flange 21FL and the coupling nut 80 when mounted.
As best depicted in
As best depicted in
Securing feature 10 comprises a securing member 10M capable of translating in a transverse direction with respect to the connection port 36. On the other hand, actuator 10A has a portion that is capable of translating within securing feature passageway 45 that is generally aligned with the connection port 36. The cooperation of the actuator 10A and the securing member 10M allow the movement of the actuator 10A in the direction aligned with the connection port 36 to be transformed into movement of the securing member 10M in a direction that is transverse to the connection port 36. However, the securing features 10 disclosed herein may take many different constructions or configurations.
The transformation of the direction of movement in the securing feature 10 is enabled by a wedge 10W disposed on the securing member 10M as shown in
In this embodiment, the securing feature 10 comprises a bore 10B that is aligned with the least one connection port passageway 33 when assembled. Bore 10B is sized for receiving a suitable connector 10 therethrough for securing the same for optical connectivity. Bores or openings through the securing feature 10 may have any suitable shape or geometry for cooperating with its respective connector. For instance, the bore may have any suitable shape desired including locking features on the surface of the bore for engaging with a connector for securing the same.
Securing feature 10 comprises a locking feature 10L. Locking feature 10L is disposed on securing member 10M and cooperates with a portion of the connector 1 when it is fully-inserted into the connection port 36 for securing the same. Specifically, the connector housing of connector 1 may have a cooperating geometry that engages the locking feature 10L.
In this embodiment, locking feature 10L is disposed within bore 10B. Specifically, locking feature 10L comprises a ramp in this embodiment. The ramp is integrally formed at a portion of the bore 10B with the ramp angling up when looking into the connection port 36. The ramp allows the connector 1 to push and translate the securing member 10M downward against the securing feature resilient member 10R as the connector 1 is inserted in the connection port 36. Ramp may have any suitable geometry such as a retention surface such as a ledge at the backside or the ramp may lead to a flat portion before the retention surface. Once the locking feature 10L of the securing feature 10 is aligned with the cooperating geometry of the of connector 1, then the securing feature 10 translates so that the locking feature 10L engages complementary feature of connector 1.
Details of the locking feature 10L are best shown in the cross-sectional view of
As best shown in
The securing feature 10 translates from a retain position (RP) to an open position (OP) as a suitable connector 1 is inserted into the connection port 36. Once connector 10 is fully inserted into connector passageway 33, then the securing feature 10M automatically moves to the retain position (RP) since it is biased upwards to the retain position. This advantageously allows a plug and play connectivity of the connectors 1 with port module insert 100 without having to turn a coupling nut or a bayonet like conventional devices. Thus, connections to the port module insert may be made faster and in positions that may be awkward with relative ease.
As shown, adapter assembly 30 is aligned with the connection port passageway 33 of connection port 36 when assembled. Adapter assembly 230A is suitable for aligning the ferrule of connector 1 inserted into connection port 36 with the rear connector 52 that may be received in the adapter assembly 30. Consequently, rear connector 52 disposed with a closure, multiport or other device may be optically mated with the external connector 1. Adapter assembly 30 may also comprise a ferrule sleeve (not visible) if desired. If used, ferrule sleeve receives a portion of the respective ferrule of connector 1 for precision alignment. The adapter assembly 30 is biased forward by resilient member 30R and allows the adapter assembly 30 to “float”.
Actuator 10A provides a follower or cam surface that engages with the wedge 10W of securing member 10M. The follower or cam surface may be disposed within a longitudinal groove of actuator 10A for allowing nesting of the components and a more compact form-factor or not. Actuator 10A also includes a push-button (not numbered) at the front end and a post (not numbered) at a rear end for receiving the resilient member 10AR. The push-button at the front end may have a notch 10AN for nesting the position of the actuator 10A and allowing the external connector to be inserted into the connection port 36.
Further details of the actuator 10A and are discussed next in relation to
Port module insert or housings 21 may have any suitable shape, design or configuration as desired such as non-round.
Port module inserts may have still other constructions using the concepts disclosed. By way of example,
Port module insert 100″ comprises securing features 10 comprising actuators 10A and a common securing member 10M. Specifically, securing member 10M comprises a spring clip that may be elastically deformed by actuators 10A when pushed (or upon insertion of a suitable connector 10 into connection port 36) and the securing member 10M springs back to engage a suitable portion of external connector 1 such as locking feature of connector housing when the actuator 10A is released or when connector 1 is fully-seated within the connection port 36. As best shown in
Any of the port module inserts 100 may also have one or more dust caps (not shown) for protecting the connection port 36 from dust, dirt or debris entering the port module insert or interfering with the optical performance. Thus, when the user wishes to make an optical connection to the port module insert, the appropriate dust cap is removed and then connector 1 of cable assembly may be inserted into the respective connection port 36 for making an optical connection to the port module insert. Dust caps may use similar release and retain features as the connectors 1. By way of explanation, when the actuator 10A is pushed inward, the dust cap is released and may be removed. Moreover, the interface between the connection ports 36 and the dust cap or connector 1 may be sealed using appropriate geometry and/or a sealing element such as an O-ring or gasket on the connector or dust cap. If the port module insert 100 is intended for indoor applications, then the weatherproofing may not be required.
To make identification of the connection ports or easier for the user, a marking indicia may be used such as text or color-coding for the connection ports 36 of port module inserts.
The present application also discloses methods for making port module inserts. One method of making a port module insert comprises the steps of providing a housing having an inner housing and an outer housing along with at least one securing feature. The inner housing comprises at least one connection port having an optical connector opening extending from an outer surface of the inner housing into a cavity and defining a connection port passageway, and at least one securing feature passageway. The method includes assembling at least one securing feature being so it is associated with the connection port passageway, wherein a portion of the at least one securing feature is disposed within a portion of the at least one securing feature passageway. Other methods for making port module inserts as disclosed herein are also contemplated.
Another method of making a port module insert comprises the steps of providing a housing having an inner housing and an outer housing along with at least one securing feature. The inner housing comprises at least one connection port having an optical connector opening extending from an outer surface of the inner housing into a cavity and defining a connection port passageway, and at least one securing feature passageway. The method includes assembling at least one securing feature being so it is associated with the connection port passageway, wherein a portion of the at least one securing feature is disposed within a portion of the at least one securing feature passageway. The method also includes assembling at least one securing feature resilient member for biasing a portion of the at least one securing feature.
The methods disclosed may further include steps or features as disclosed herein for making port module inserts where the securing feature may translate between an open position and a retain position. The method may include translating the securing feature for moving the securing feature to the open position and the securing feature 310 is biased to retain position RP.
Although the disclosure has been illustrated and described herein with reference to explanatory embodiments and specific examples thereof, it will be readily apparent to those of ordinary skill in the art that other embodiments and examples can perform similar functions and/or achieve like results. For instance, the connection port module insert may be configured as individual sleeves that are inserted into a passageway of a device, thereby allowing the selection of different configurations of connector ports for a device to tailor the device to the desired external connector. All such equivalent embodiments and examples are within the spirit and scope of the disclosure and are intended to be covered by the appended claims. It will also be apparent to those skilled in the art that various modifications and variations can be made to the concepts disclosed without departing from the spirit and scope of the same. Thus, it is intended that the present application cover the modifications and variations provided they come within the scope of the appended claims and their equivalents.
This application is a continuation of International Application No. PCT/US218/040126 filed Jun. 28, 2018, which claims the benefit of priority to U.S. Application Nos. 62/526,195 filed on Jun. 28, 2017; Ser. No. 16/018,918 filed on Jun. 26, 2018; Ser. No. 16/018,988 filed on Jun. 26, 2018; and Ser. No. 16/019,008 filed Jun. 26, 2018; the content of which is relied upon and incorporated herein by reference in entirety. This application also claims the benefit of priority under 35 USC § 365 of International Patent Application Serial Nos. PCT/US2017/064092 filed on Nov. 30, 2017; PCT/US2017/064095 filed on Nov. 30, 2017; PCT/US2018/039484 filed on Jun. 26, 2018; PCT/US2018/039485 filed on Jun. 26, 2018; and PCT/US2018/039494 filed on Jun. 26, 2018; all designating the United States of America, and the content of which is relied upon and incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3792284 | Kaelin | Feb 1974 | A |
3912362 | Hudson | Oct 1975 | A |
4148557 | Garvey | Apr 1979 | A |
4167303 | Bowen et al. | Sep 1979 | A |
4168109 | Dumire | Sep 1979 | A |
4336977 | Monaghan et al. | Jun 1982 | A |
4373777 | Borsuk et al. | Feb 1983 | A |
4413880 | Forrest et al. | Nov 1983 | A |
4423922 | Porter | Jan 1984 | A |
4440471 | Knowles | Apr 1984 | A |
4461537 | Raymer et al. | Jul 1984 | A |
4547937 | Collins | Oct 1985 | A |
4615581 | Morimoto | Oct 1986 | A |
4634858 | Gerdt et al. | Jan 1987 | A |
4688200 | Poorman et al. | Aug 1987 | A |
4690563 | Barton et al. | Sep 1987 | A |
4711752 | Deacon et al. | Dec 1987 | A |
4723827 | Shaw et al. | Feb 1988 | A |
4741590 | Caron | May 1988 | A |
4842363 | Margolin et al. | Jun 1989 | A |
4844570 | Tanabe | Jul 1989 | A |
4877303 | Caldwell et al. | Oct 1989 | A |
4944568 | Danbach et al. | Jul 1990 | A |
4979792 | Weber et al. | Dec 1990 | A |
5007860 | Robinson et al. | Apr 1991 | A |
5067783 | Lampert | Nov 1991 | A |
5073042 | Mulholland et al. | Dec 1991 | A |
5076656 | Briggs et al. | Dec 1991 | A |
5085492 | Kelsoe et al. | Feb 1992 | A |
5088804 | Grinderslev | Feb 1992 | A |
5091990 | Leung et al. | Feb 1992 | A |
5131735 | Berkey et al. | Jul 1992 | A |
5142602 | Cabato et al. | Aug 1992 | A |
5146519 | Miller et al. | Sep 1992 | A |
5155900 | Grois et al. | Oct 1992 | A |
5210810 | Darden et al. | May 1993 | A |
5212752 | Stephenson et al. | May 1993 | A |
5224187 | Davisdon | Jun 1993 | A |
5231685 | Hanzawa et al. | Jul 1993 | A |
5245683 | Belenkiy et al. | Sep 1993 | A |
5276750 | Manning | Jan 1994 | A |
5317663 | Beard et al. | May 1994 | A |
5321917 | Franklin et al. | Jun 1994 | A |
5375183 | Edwards et al. | Dec 1994 | A |
5381494 | O'Donnell et al. | Jan 1995 | A |
5390269 | Palecek et al. | Feb 1995 | A |
5408570 | Cook et al. | Apr 1995 | A |
5425121 | Cooke et al. | Jun 1995 | A |
5452388 | Rittle et al. | Sep 1995 | A |
5519799 | Murakami et al. | May 1996 | A |
5553186 | Allen | Sep 1996 | A |
5557696 | Stein | Sep 1996 | A |
5569050 | Lloyd | Oct 1996 | A |
5588077 | Woodside | Dec 1996 | A |
5600747 | Yamakawa et al. | Feb 1997 | A |
5603631 | Kawahara et al. | Feb 1997 | A |
5608828 | Coutts et al. | Mar 1997 | A |
5631993 | Cloud et al. | May 1997 | A |
5647045 | Robinson et al. | Jul 1997 | A |
5673346 | Iwano et al. | Sep 1997 | A |
5694507 | Walles | Dec 1997 | A |
5748821 | Schempp et al. | May 1998 | A |
5761359 | Chudoba et al. | Jun 1998 | A |
5781686 | Robinson et al. | Jul 1998 | A |
5782892 | Castle et al. | Jul 1998 | A |
5790740 | Cloud et al. | Aug 1998 | A |
5791918 | Pierce | Aug 1998 | A |
5796895 | Jennings et al. | Aug 1998 | A |
RE35935 | Cabato et al. | Oct 1998 | E |
5818993 | Chudoba et al. | Oct 1998 | A |
5857050 | Jiang et al. | Jan 1999 | A |
5862290 | Burek et al. | Jan 1999 | A |
5883999 | Cloud et al. | Mar 1999 | A |
5884000 | Cloud et al. | Mar 1999 | A |
5884001 | Cloud et al. | Mar 1999 | A |
5884002 | Cloud et al. | Mar 1999 | A |
5884003 | Cloud et al. | Mar 1999 | A |
5887099 | Csipkes et al. | Mar 1999 | A |
5920669 | Knecht et al. | Jul 1999 | A |
5925191 | Stein et al. | Jul 1999 | A |
5926596 | Edwards et al. | Jul 1999 | A |
5960141 | Sasaki et al. | Sep 1999 | A |
5961344 | Rosales et al. | Oct 1999 | A |
5971626 | Knodell et al. | Oct 1999 | A |
RE36592 | Giebel et al. | Feb 2000 | E |
6030129 | Rosson | Feb 2000 | A |
6035084 | Haake et al. | Mar 2000 | A |
6045270 | Weiss et al. | Apr 2000 | A |
6094517 | Yuuki | Jul 2000 | A |
6108482 | Roth | Aug 2000 | A |
6112006 | Foss | Aug 2000 | A |
6179482 | Takizawa et al. | Jan 2001 | B1 |
6193421 | Tamekuni et al. | Feb 2001 | B1 |
RE37079 | Stephenson et al. | Mar 2001 | E |
RE37080 | Stephenson et al. | Mar 2001 | E |
6200040 | Edwards et al. | Mar 2001 | B1 |
6206581 | Driscoll et al. | Mar 2001 | B1 |
6220762 | Kanai et al. | Apr 2001 | B1 |
6224268 | Manning et al. | May 2001 | B1 |
6224270 | Nakajima et al. | May 2001 | B1 |
6293710 | Lampert et al. | Sep 2001 | B1 |
6298190 | Waldron et al. | Oct 2001 | B2 |
6356390 | Hall, Jr. | Mar 2002 | B1 |
6375363 | Harrison et al. | Apr 2002 | B1 |
6402388 | Imazu et al. | Jun 2002 | B1 |
6404962 | Hardwick et al. | Jun 2002 | B1 |
6409391 | Chang | Jun 2002 | B1 |
6427035 | Mahony | Jul 2002 | B1 |
6428215 | Nault | Aug 2002 | B1 |
6466725 | Battey et al. | Oct 2002 | B2 |
6496641 | Mahony | Dec 2002 | B1 |
6522804 | Mahony | Feb 2003 | B1 |
6533468 | Nakajima et al. | Mar 2003 | B2 |
6536956 | Luther et al. | Mar 2003 | B2 |
6542652 | Mahony | Apr 2003 | B1 |
6554489 | Kent et al. | Apr 2003 | B2 |
6625375 | Mahony | Sep 2003 | B1 |
6629782 | McPhee et al. | Oct 2003 | B2 |
6672774 | Theuerkorn et al. | Jan 2004 | B2 |
6678442 | Gall et al. | Jan 2004 | B2 |
6695489 | Nault | Feb 2004 | B2 |
6702475 | Giobbio et al. | Mar 2004 | B1 |
6738555 | Cooke et al. | May 2004 | B1 |
6748146 | Parris | Jun 2004 | B2 |
6771861 | Wagner et al. | Aug 2004 | B2 |
6789950 | Loder et al. | Sep 2004 | B1 |
6841729 | Sakabe et al. | Jan 2005 | B2 |
6856748 | Elkins et al. | Feb 2005 | B1 |
6877906 | Mizukami et al. | Apr 2005 | B2 |
6880219 | Griffioen et al. | Apr 2005 | B2 |
6908233 | Nakajima et al. | Jun 2005 | B2 |
6916120 | Zimmel et al. | Jul 2005 | B2 |
6944387 | Howell et al. | Sep 2005 | B2 |
6962445 | Zimmel et al. | Nov 2005 | B2 |
6970629 | Lail et al. | Nov 2005 | B2 |
6983095 | Reagan et al. | Jan 2006 | B2 |
7013074 | Battey et al. | Mar 2006 | B2 |
7044650 | Tran et al. | May 2006 | B1 |
7052185 | Rubino et al. | May 2006 | B2 |
7088899 | Reagan et al. | Aug 2006 | B2 |
7103255 | Reagan et al. | Sep 2006 | B2 |
7103257 | Donaldson et al. | Sep 2006 | B2 |
7118283 | Nakajima et al. | Oct 2006 | B2 |
7118284 | Nakajima et al. | Oct 2006 | B2 |
7120347 | Blackwell, Jr. et al. | Oct 2006 | B2 |
7146089 | Reagan et al. | Dec 2006 | B2 |
7150567 | Luther et al. | Dec 2006 | B1 |
7171102 | Reagan et al. | Jan 2007 | B2 |
7195403 | Oki et al. | Mar 2007 | B2 |
7200317 | Reagan et al. | Apr 2007 | B2 |
7201518 | Holmquist | Apr 2007 | B2 |
7213975 | Khemakhem et al. | May 2007 | B2 |
7213980 | Oki et al. | May 2007 | B2 |
7228047 | Szilagyi et al. | Jun 2007 | B1 |
7232260 | Takahashi et al. | Jun 2007 | B2 |
7236670 | Lail et al. | Jun 2007 | B2 |
7260301 | Barth et al. | Aug 2007 | B2 |
7261472 | Suzuki et al. | Aug 2007 | B2 |
7266265 | Gall et al. | Sep 2007 | B2 |
7266274 | Elkins et al. | Sep 2007 | B2 |
7277614 | Cody et al. | Oct 2007 | B2 |
7279643 | Morrow et al. | Oct 2007 | B2 |
7292763 | Smith et al. | Nov 2007 | B2 |
7302152 | Luther et al. | Nov 2007 | B2 |
7318677 | Dye | Jan 2008 | B2 |
7326091 | Nania et al. | Feb 2008 | B2 |
7330629 | Cooke et al. | Feb 2008 | B2 |
7333708 | Blackwell, Jr. et al. | Feb 2008 | B2 |
7336873 | Lail et al. | Feb 2008 | B2 |
7341382 | Dye | Mar 2008 | B2 |
7346256 | Marrs et al. | Mar 2008 | B2 |
7349605 | Noonan et al. | Mar 2008 | B2 |
7357582 | Oki et al. | Apr 2008 | B2 |
7366416 | Ramachandran et al. | Apr 2008 | B2 |
7394964 | Tinucci et al. | Jul 2008 | B2 |
7397997 | Ferris et al. | Jul 2008 | B2 |
7400815 | Mertesdorf et al. | Jul 2008 | B2 |
7407332 | Oki et al. | Aug 2008 | B2 |
7428366 | Mullaney et al. | Sep 2008 | B2 |
7444056 | Allen et al. | Oct 2008 | B2 |
7454107 | Miller et al. | Nov 2008 | B2 |
7463803 | Cody et al. | Dec 2008 | B2 |
7469091 | Mullaney et al. | Dec 2008 | B2 |
7477824 | Reagan et al. | Jan 2009 | B2 |
7480437 | Ferris et al. | Jan 2009 | B2 |
7484898 | Katagiyama et al. | Feb 2009 | B2 |
7485804 | Dinh et al. | Feb 2009 | B2 |
7489849 | Reagan et al. | Feb 2009 | B2 |
7492996 | Kowalczyk et al. | Feb 2009 | B2 |
7520678 | Khemakhem et al. | Apr 2009 | B2 |
7539387 | Mertesdorf et al. | May 2009 | B2 |
7539388 | Mertesdorf et al. | May 2009 | B2 |
7542645 | Hua et al. | Jun 2009 | B1 |
7559702 | Fujiwara et al. | Jul 2009 | B2 |
7565055 | Lu et al. | Jul 2009 | B2 |
7568845 | Caveney et al. | Aug 2009 | B2 |
7572065 | Lu et al. | Aug 2009 | B2 |
7591595 | Lu et al. | Sep 2009 | B2 |
7614797 | Lu et al. | Nov 2009 | B2 |
7621675 | Bradley | Nov 2009 | B1 |
7627222 | Reagan et al. | Dec 2009 | B2 |
7628545 | Cody et al. | Dec 2009 | B2 |
7628548 | Benjamin et al. | Dec 2009 | B2 |
7646958 | Reagan et al. | Jan 2010 | B1 |
7653282 | Blackwell, Jr. et al. | Jan 2010 | B2 |
7654747 | Theuerkorn et al. | Feb 2010 | B2 |
7654748 | Kuffel et al. | Feb 2010 | B2 |
7658549 | Elkins et al. | Feb 2010 | B2 |
7661995 | Nania et al. | Feb 2010 | B2 |
7677814 | Lu et al. | Mar 2010 | B2 |
7680388 | Reagan et al. | Mar 2010 | B2 |
7708476 | Liu | May 2010 | B2 |
7709733 | Plankell | May 2010 | B1 |
7712971 | Lee et al. | May 2010 | B2 |
7722262 | Caveney et al. | May 2010 | B2 |
7726998 | Siebens | Jun 2010 | B2 |
7738759 | Parikh et al. | Jun 2010 | B2 |
7740409 | Bolton et al. | Jun 2010 | B2 |
7742117 | Lee et al. | Jun 2010 | B2 |
7742670 | Benjamin et al. | Jun 2010 | B2 |
7744286 | Lu et al. | Jun 2010 | B2 |
7744288 | Lu et al. | Jun 2010 | B2 |
7747117 | Greenwood et al. | Jun 2010 | B2 |
7751666 | Parsons et al. | Jul 2010 | B2 |
7753596 | Cox | Jul 2010 | B2 |
7762726 | Lu et al. | Jul 2010 | B2 |
7785019 | Lewallen et al. | Aug 2010 | B2 |
7805044 | Reagan et al. | Sep 2010 | B2 |
7806599 | Margolin et al. | Oct 2010 | B2 |
7820090 | Morrow et al. | Oct 2010 | B2 |
7844158 | Gronvall et al. | Nov 2010 | B2 |
7844160 | Reagan et al. | Nov 2010 | B2 |
7869681 | Battey et al. | Jan 2011 | B2 |
RE42094 | Barnes et al. | Feb 2011 | E |
7881576 | Melton et al. | Feb 2011 | B2 |
7889961 | Cote et al. | Feb 2011 | B2 |
7891882 | Kuffel et al. | Feb 2011 | B2 |
7903923 | Gronvall et al. | Mar 2011 | B2 |
7903925 | Cooke et al. | Mar 2011 | B2 |
7933517 | Ye et al. | Apr 2011 | B2 |
7938670 | Nania et al. | May 2011 | B2 |
7941027 | Mertesdorf et al. | May 2011 | B2 |
7959361 | Lu et al. | Jun 2011 | B2 |
8002476 | Caveney et al. | Aug 2011 | B2 |
8005335 | Reagan et al. | Aug 2011 | B2 |
8023793 | Kowalczyk et al. | Sep 2011 | B2 |
8025445 | Rambow et al. | Sep 2011 | B2 |
8041178 | Lu et al. | Oct 2011 | B2 |
8052333 | Kuffel et al. | Nov 2011 | B2 |
8055167 | Park et al. | Nov 2011 | B2 |
8083418 | Fujiwara et al. | Dec 2011 | B2 |
8111966 | Holmberg et al. | Feb 2012 | B2 |
8137002 | Lu et al. | Mar 2012 | B2 |
8147147 | Khemakhem et al. | Apr 2012 | B2 |
8157454 | Ito et al. | Apr 2012 | B2 |
8164050 | Ford et al. | Apr 2012 | B2 |
8202008 | Lu et al. | Jun 2012 | B2 |
8213761 | Gronvall et al. | Jul 2012 | B2 |
8218935 | Reagan et al. | Jul 2012 | B2 |
8224145 | Reagan et al. | Jul 2012 | B2 |
8229263 | Parris et al. | Jul 2012 | B2 |
8231282 | Kuffel et al. | Jul 2012 | B2 |
8238706 | Kachmar | Aug 2012 | B2 |
8238709 | Solheid et al. | Aug 2012 | B2 |
8249450 | Conner | Aug 2012 | B2 |
8256971 | Caveney et al. | Sep 2012 | B2 |
8267596 | Theuerkorn | Sep 2012 | B2 |
RE43762 | Smith et al. | Oct 2012 | E |
8301003 | De et al. | Oct 2012 | B2 |
8301004 | Cooke et al. | Oct 2012 | B2 |
8317411 | Fujiwara et al. | Nov 2012 | B2 |
8348519 | Kuffel et al. | Jan 2013 | B2 |
8363999 | Mertesdorf et al. | Jan 2013 | B2 |
8376629 | Cline et al. | Feb 2013 | B2 |
8376632 | Blackburn et al. | Feb 2013 | B2 |
8402587 | Sugita et al. | Mar 2013 | B2 |
8408811 | De et al. | Apr 2013 | B2 |
8414196 | Lu et al. | Apr 2013 | B2 |
8466262 | Siadak et al. | Jun 2013 | B2 |
8472773 | De Jong | Jun 2013 | B2 |
8480312 | Smith et al. | Jul 2013 | B2 |
8494329 | Nhep et al. | Jul 2013 | B2 |
8496384 | Kuffel et al. | Jul 2013 | B2 |
8506173 | Lewallen et al. | Aug 2013 | B2 |
8520996 | Cowen et al. | Aug 2013 | B2 |
8534928 | Cooke et al. | Sep 2013 | B2 |
8536516 | Ford et al. | Sep 2013 | B2 |
8556522 | Cunningham | Oct 2013 | B2 |
8573855 | Nhep | Nov 2013 | B2 |
8591124 | Griffiths et al. | Nov 2013 | B2 |
8622627 | Elkins et al. | Jan 2014 | B2 |
8622634 | Arnold et al. | Jan 2014 | B2 |
8635733 | Bardzilowski | Jan 2014 | B2 |
8662760 | Cline et al. | Mar 2014 | B2 |
8668512 | Chang | Mar 2014 | B2 |
8678668 | Cooke et al. | Mar 2014 | B2 |
8687930 | McDowell et al. | Apr 2014 | B2 |
8702324 | Caveney et al. | Apr 2014 | B2 |
8714835 | Kuffel et al. | May 2014 | B2 |
8727638 | Lee et al. | May 2014 | B2 |
8737837 | Conner et al. | May 2014 | B2 |
8755663 | Makrides-Saravanos et al. | Jun 2014 | B2 |
8758046 | Pezzetti et al. | Jun 2014 | B2 |
8770861 | Smith et al. | Jul 2014 | B2 |
8770862 | Lu et al. | Jul 2014 | B2 |
8837894 | Holmberg et al. | Sep 2014 | B2 |
8864390 | Chen et al. | Oct 2014 | B2 |
8870469 | Kachmar | Oct 2014 | B2 |
8879883 | Parikh et al. | Nov 2014 | B2 |
8882364 | Busse et al. | Nov 2014 | B2 |
8917966 | Thompson et al. | Dec 2014 | B2 |
8974124 | Chang | Mar 2015 | B2 |
8992097 | Koreeda et al. | Mar 2015 | B2 |
8998502 | Benjamin et al. | Apr 2015 | B2 |
8998506 | Pepin et al. | Apr 2015 | B2 |
9011858 | Siadak et al. | Apr 2015 | B2 |
9039293 | Hill et al. | May 2015 | B2 |
9075205 | Pepe et al. | Jul 2015 | B2 |
9146364 | Chen et al. | Sep 2015 | B2 |
9151906 | Kobayashi et al. | Oct 2015 | B2 |
9151909 | Chen et al. | Oct 2015 | B2 |
9158074 | Anderson et al. | Oct 2015 | B2 |
9158075 | Benjamin et al. | Oct 2015 | B2 |
9182567 | Mullaney | Nov 2015 | B2 |
9188759 | Conner | Nov 2015 | B2 |
9207410 | Lee et al. | Dec 2015 | B2 |
9207421 | Conner | Dec 2015 | B2 |
9213150 | Matsui et al. | Dec 2015 | B2 |
9223106 | Coan et al. | Dec 2015 | B2 |
9239441 | Melton et al. | Jan 2016 | B2 |
9268102 | Daems et al. | Feb 2016 | B2 |
9274286 | Caveney et al. | Mar 2016 | B2 |
9279951 | McGranahan et al. | Mar 2016 | B2 |
9285550 | Nhep et al. | Mar 2016 | B2 |
9297974 | Valderrabano et al. | Mar 2016 | B2 |
9297976 | Hill et al. | Mar 2016 | B2 |
9310570 | Busse et al. | Apr 2016 | B2 |
9316791 | Durrant et al. | Apr 2016 | B2 |
9322998 | Miller | Apr 2016 | B2 |
9360640 | Ishigami et al. | Jun 2016 | B2 |
9383539 | Hill et al. | Jul 2016 | B2 |
9400364 | Hill et al. | Jul 2016 | B2 |
9405068 | Graham et al. | Aug 2016 | B2 |
9417403 | Mullaney et al. | Aug 2016 | B2 |
9423584 | Coan et al. | Aug 2016 | B2 |
9435969 | Lambourn et al. | Sep 2016 | B2 |
9442257 | Lu | Sep 2016 | B2 |
9450393 | Thompson et al. | Sep 2016 | B2 |
9459412 | Katoh | Oct 2016 | B2 |
9482819 | Li et al. | Nov 2016 | B2 |
9482829 | Lu et al. | Nov 2016 | B2 |
9513451 | Corbille et al. | Dec 2016 | B2 |
9535229 | Ott et al. | Jan 2017 | B2 |
9541711 | Raven et al. | Jan 2017 | B2 |
9557504 | Holmberg et al. | Jan 2017 | B2 |
9684138 | Lu | Jan 2017 | B2 |
9581775 | Kondo et al. | Feb 2017 | B2 |
9588304 | Durrant et al. | Mar 2017 | B2 |
9612407 | Kobayashi et al. | Apr 2017 | B2 |
9618704 | Dean et al. | Apr 2017 | B2 |
9618718 | Islam | Apr 2017 | B2 |
9624296 | Siadak et al. | Apr 2017 | B2 |
9625660 | Daems et al. | Apr 2017 | B2 |
9638871 | Bund et al. | May 2017 | B2 |
9645331 | Kim | May 2017 | B1 |
9645334 | Ishii et al. | May 2017 | B2 |
9651741 | Isenhour et al. | May 2017 | B2 |
9664862 | Lu et al. | May 2017 | B2 |
9678285 | Hill et al. | Jun 2017 | B2 |
9678293 | Coan et al. | Jun 2017 | B2 |
9684136 | Cline et al. | Jun 2017 | B2 |
9696500 | Barnette et al. | Jul 2017 | B2 |
9711868 | Scheucher | Jul 2017 | B2 |
9720193 | Nishimura | Aug 2017 | B2 |
9733436 | Van et al. | Aug 2017 | B2 |
9739951 | Busse et al. | Aug 2017 | B2 |
9762322 | Amundson | Sep 2017 | B1 |
9766416 | Kim | Sep 2017 | B1 |
9772457 | Hill et al. | Sep 2017 | B2 |
9804343 | Hill et al. | Oct 2017 | B2 |
9810855 | Cox et al. | Nov 2017 | B2 |
9810856 | Graham et al. | Nov 2017 | B2 |
9829658 | Nishimura | Nov 2017 | B2 |
9829668 | Coenegracht et al. | Nov 2017 | B2 |
9851522 | Reagan et al. | Dec 2017 | B2 |
9857540 | Ahmed et al. | Jan 2018 | B2 |
9864151 | Lu | Jan 2018 | B2 |
9878038 | Siadak et al. | Jan 2018 | B2 |
9885841 | Pepe et al. | Feb 2018 | B2 |
9891391 | Watanabe | Feb 2018 | B2 |
9905933 | Scheucher | Feb 2018 | B2 |
9910236 | Cooke et al. | Mar 2018 | B2 |
9921375 | Compton et al. | Mar 2018 | B2 |
9927580 | Bretz et al. | Mar 2018 | B2 |
9933582 | Lin | Apr 2018 | B1 |
9939591 | Mullaney et al. | Apr 2018 | B2 |
9964713 | Barnette et al. | May 2018 | B2 |
9964715 | Lu | May 2018 | B2 |
9977194 | Waldron et al. | May 2018 | B2 |
9977198 | Bund et al. | May 2018 | B2 |
9983374 | Li et al. | May 2018 | B2 |
10007068 | Hill et al. | Jun 2018 | B2 |
10031302 | Ji et al. | Jul 2018 | B2 |
10036859 | Daems et al. | Jul 2018 | B2 |
10038946 | Smolorz | Jul 2018 | B2 |
10042136 | Reagan et al. | Aug 2018 | B2 |
10061090 | Coenegracht | Aug 2018 | B2 |
10073224 | Tong et al. | Sep 2018 | B2 |
10094986 | Barnette et al. | Oct 2018 | B2 |
10101538 | Lu et al. | Oct 2018 | B2 |
10107968 | Tong et al. | Oct 2018 | B2 |
10109927 | Scheucher | Oct 2018 | B2 |
10114176 | Gimblet et al. | Oct 2018 | B2 |
10126508 | Compton et al. | Nov 2018 | B2 |
10180541 | Coenegracht et al. | Jan 2019 | B2 |
10209454 | Isenhour et al. | Feb 2019 | B2 |
10215930 | Mullaney et al. | Feb 2019 | B2 |
10235184 | Walker | Mar 2019 | B2 |
10261268 | Theuerkorn | Apr 2019 | B2 |
10268011 | Courchaine et al. | Apr 2019 | B2 |
10288820 | Coenegracht | May 2019 | B2 |
10317628 | Van et al. | Jun 2019 | B2 |
10324263 | Bund et al. | Jun 2019 | B2 |
10338323 | Lu et al. | Jul 2019 | B2 |
10353154 | Ott et al. | Jul 2019 | B2 |
10353156 | Hill et al. | Jul 2019 | B2 |
10359577 | Dannoux et al. | Jul 2019 | B2 |
10371914 | Coan et al. | Aug 2019 | B2 |
10379298 | Dannoux et al. | Aug 2019 | B2 |
10386584 | Rosson | Aug 2019 | B2 |
10401575 | Daily et al. | Sep 2019 | B2 |
10401584 | Coan et al. | Sep 2019 | B2 |
10409007 | Kadar-Kallen et al. | Sep 2019 | B2 |
10422962 | Coenegracht | Sep 2019 | B2 |
10422970 | Holmberg et al. | Sep 2019 | B2 |
10429593 | Baca et al. | Oct 2019 | B2 |
10429594 | Dannoux et al. | Oct 2019 | B2 |
10434173 | Siadak et al. | Oct 2019 | B2 |
10439295 | Scheucher | Oct 2019 | B2 |
10444442 | Takano et al. | Oct 2019 | B2 |
10451811 | Coenegracht et al. | Oct 2019 | B2 |
10451817 | Lu | Oct 2019 | B2 |
10451830 | Szumacher et al. | Oct 2019 | B2 |
10488597 | Parikh et al. | Nov 2019 | B2 |
10495822 | Nhep | Dec 2019 | B2 |
10502916 | Coan et al. | Dec 2019 | B2 |
10520683 | Nhep | Dec 2019 | B2 |
10539745 | Kamada et al. | Jan 2020 | B2 |
10578821 | Ott et al. | Mar 2020 | B2 |
10585246 | Bretz et al. | Mar 2020 | B2 |
10591678 | Mullaney et al. | Mar 2020 | B2 |
10605998 | Rosson | Mar 2020 | B2 |
10606006 | Hill et al. | Mar 2020 | B2 |
10613278 | Kempeneers et al. | Apr 2020 | B2 |
10620388 | Isenhour et al. | Apr 2020 | B2 |
10656347 | Kato | May 2020 | B2 |
10677998 | Van et al. | Jun 2020 | B2 |
10680343 | Scheucher | Jun 2020 | B2 |
10712516 | Courchaine et al. | Jul 2020 | B2 |
10739534 | Murray et al. | Aug 2020 | B2 |
10746939 | Lu et al. | Aug 2020 | B2 |
10761274 | Pepe et al. | Sep 2020 | B2 |
10782487 | Lu | Sep 2020 | B2 |
10802236 | Kowalczyk et al. | Oct 2020 | B2 |
10830975 | Vaughn et al. | Nov 2020 | B2 |
10852498 | Hill et al. | Dec 2020 | B2 |
10852499 | Cooke et al. | Dec 2020 | B2 |
10859771 | Nhep | Dec 2020 | B2 |
10859781 | Hill et al. | Dec 2020 | B2 |
10962731 | Coenegracht | Mar 2021 | B2 |
10976500 | Ott et al. | Apr 2021 | B2 |
11061191 | Van Baelen et al. | Jul 2021 | B2 |
20010002220 | Throckmorton et al. | May 2001 | A1 |
20010012428 | Nakajima et al. | Aug 2001 | A1 |
20020012502 | Farrar et al. | Jan 2002 | A1 |
20020064364 | Battey et al. | May 2002 | A1 |
20020076165 | Childers et al. | Jun 2002 | A1 |
20020079697 | Griffioen et al. | Jun 2002 | A1 |
20020081077 | Nault | Jun 2002 | A1 |
20020122634 | Miyake et al. | Sep 2002 | A1 |
20020131721 | Gaio et al. | Sep 2002 | A1 |
20020159745 | Howell et al. | Oct 2002 | A1 |
20020172477 | Quinn et al. | Nov 2002 | A1 |
20030031447 | Nault | Feb 2003 | A1 |
20030059181 | Jackman et al. | Mar 2003 | A1 |
20030063866 | Melton et al. | Apr 2003 | A1 |
20030080555 | Griffioen et al. | May 2003 | A1 |
20030086664 | Moisel et al. | May 2003 | A1 |
20030123813 | Ravasio et al. | Jul 2003 | A1 |
20030128936 | Fahrnbauer et al. | Jul 2003 | A1 |
20030165311 | Wagman et al. | Sep 2003 | A1 |
20030201117 | Sakabe et al. | Oct 2003 | A1 |
20030206705 | McAlpine et al. | Nov 2003 | A1 |
20030210875 | Wagner et al. | Nov 2003 | A1 |
20040057676 | Doss et al. | Mar 2004 | A1 |
20040057681 | Quinn et al. | Mar 2004 | A1 |
20040072454 | Nakajima et al. | Apr 2004 | A1 |
20040076377 | Mizukami et al. | Apr 2004 | A1 |
20040076386 | Nechitailo | Apr 2004 | A1 |
20040086238 | Finona et al. | May 2004 | A1 |
20040096162 | Kocher et al. | May 2004 | A1 |
20040157499 | Nania et al. | Aug 2004 | A1 |
20040206542 | Gladd et al. | Oct 2004 | A1 |
20040240808 | Rhoney et al. | Dec 2004 | A1 |
20040247251 | Rubino et al. | Dec 2004 | A1 |
20040262023 | Morrow et al. | Dec 2004 | A1 |
20050019031 | Ye et al. | Jan 2005 | A1 |
20050036744 | Caveney et al. | Feb 2005 | A1 |
20050036786 | Ramachandran et al. | Feb 2005 | A1 |
20050053342 | Melton et al. | Mar 2005 | A1 |
20050084215 | Grzegorzewska et al. | Apr 2005 | A1 |
20050105873 | Reagan et al. | May 2005 | A1 |
20050123422 | Lilie | Jun 2005 | A1 |
20050129379 | Reagan et al. | Jun 2005 | A1 |
20050163448 | Blackwell et al. | Jul 2005 | A1 |
20050175307 | Battey et al. | Aug 2005 | A1 |
20050180697 | De Marchi | Aug 2005 | A1 |
20050213890 | Barnes et al. | Sep 2005 | A1 |
20050213892 | Barnes et al. | Sep 2005 | A1 |
20050213899 | Hurley et al. | Sep 2005 | A1 |
20050213902 | Parsons | Sep 2005 | A1 |
20050213921 | Mertesdorf et al. | Sep 2005 | A1 |
20050226568 | Nakajima et al. | Oct 2005 | A1 |
20050232550 | Nakajima et al. | Oct 2005 | A1 |
20050232552 | Takahashi et al. | Oct 2005 | A1 |
20050232567 | Reagan et al. | Oct 2005 | A1 |
20050244108 | Billman et al. | Nov 2005 | A1 |
20050271344 | Grubish et al. | Dec 2005 | A1 |
20050281510 | Vo et al. | Dec 2005 | A1 |
20050281514 | Oki et al. | Dec 2005 | A1 |
20050286837 | Oki et al. | Dec 2005 | A1 |
20050286838 | Oki et al. | Dec 2005 | A1 |
20060002668 | Lail et al. | Jan 2006 | A1 |
20060008232 | Reagan et al. | Jan 2006 | A1 |
20060008233 | Reagan et al. | Jan 2006 | A1 |
20060008234 | Reagan et al. | Jan 2006 | A1 |
20060045428 | Theuerkorn et al. | Mar 2006 | A1 |
20060045430 | Theuerkorn et al. | Mar 2006 | A1 |
20060056769 | Khemakhem et al. | Mar 2006 | A1 |
20060056770 | Schmitz | Mar 2006 | A1 |
20060088247 | Tran et al. | Apr 2006 | A1 |
20060093278 | Elkins et al. | May 2006 | A1 |
20060093303 | Reagan et al. | May 2006 | A1 |
20060093304 | Battey et al. | May 2006 | A1 |
20060098932 | Battey et al. | May 2006 | A1 |
20060120672 | Cody et al. | Jun 2006 | A1 |
20060127016 | Baird et al. | Jun 2006 | A1 |
20060133748 | Seddon et al. | Jun 2006 | A1 |
20060133758 | Mullaney et al. | Jun 2006 | A1 |
20060133759 | Mullaney et al. | Jun 2006 | A1 |
20060147172 | Luther et al. | Jul 2006 | A1 |
20060153503 | Suzuki et al. | Jul 2006 | A1 |
20060153517 | Reagan et al. | Jul 2006 | A1 |
20060165352 | Caveney et al. | Jul 2006 | A1 |
20060171638 | Dye | Aug 2006 | A1 |
20060171640 | Dye | Aug 2006 | A1 |
20060210750 | Morrow et al. | Sep 2006 | A1 |
20060233506 | Noonan et al. | Oct 2006 | A1 |
20060257092 | Lu et al. | Nov 2006 | A1 |
20060269204 | Barth et al. | Nov 2006 | A1 |
20060269208 | Allen et al. | Nov 2006 | A1 |
20060280420 | Blackwell et al. | Dec 2006 | A1 |
20070031100 | Garcia et al. | Feb 2007 | A1 |
20070036483 | Shin et al. | Feb 2007 | A1 |
20070041732 | Oki et al. | Feb 2007 | A1 |
20070047897 | Cooke et al. | Mar 2007 | A1 |
20070110374 | Oki et al. | May 2007 | A1 |
20070116413 | Cox | May 2007 | A1 |
20070127872 | Caveney et al. | Jun 2007 | A1 |
20070140642 | Mertesdorf et al. | Jun 2007 | A1 |
20070160327 | Lewallen et al. | Jul 2007 | A1 |
20070237484 | Reagan et al. | Oct 2007 | A1 |
20070263961 | Khemakhem et al. | Nov 2007 | A1 |
20070286554 | Kuffel et al. | Dec 2007 | A1 |
20080019641 | Elkins et al. | Jan 2008 | A1 |
20080020532 | Monfray et al. | Jan 2008 | A1 |
20080044145 | Jenkins et al. | Feb 2008 | A1 |
20080069511 | Blackwell et al. | Mar 2008 | A1 |
20080080817 | Melton et al. | Apr 2008 | A1 |
20080112681 | Battey et al. | May 2008 | A1 |
20080131068 | Mertesdorf et al. | Jun 2008 | A1 |
20080138016 | Katagiyama et al. | Jun 2008 | A1 |
20080138025 | Reagan et al. | Jun 2008 | A1 |
20080166906 | Nania et al. | Jul 2008 | A1 |
20080175541 | Lu et al. | Jul 2008 | A1 |
20080175542 | Lu et al. | Jul 2008 | A1 |
20080175544 | Fujiwara et al. | Jul 2008 | A1 |
20080175548 | Knecht et al. | Jul 2008 | A1 |
20080226252 | Mertesdorf et al. | Sep 2008 | A1 |
20080232743 | Gronvall et al. | Sep 2008 | A1 |
20080260344 | Smith et al. | Oct 2008 | A1 |
20080260345 | Mertesdorf et al. | Oct 2008 | A1 |
20080264664 | Dinh et al. | Oct 2008 | A1 |
20080273837 | Margolin et al. | Nov 2008 | A1 |
20090003772 | Lu et al. | Jan 2009 | A1 |
20090034923 | Miller et al. | Feb 2009 | A1 |
20090041411 | Melton et al. | Feb 2009 | A1 |
20090060421 | Parikh et al. | Mar 2009 | A1 |
20090060423 | Melton et al. | Mar 2009 | A1 |
20090067791 | Greenwood et al. | Mar 2009 | A1 |
20090067849 | Oki et al. | Mar 2009 | A1 |
20090074363 | Parsons et al. | Mar 2009 | A1 |
20090074369 | Bolton et al. | Mar 2009 | A1 |
20090123115 | Gronvall et al. | May 2009 | A1 |
20090129729 | Caveney et al. | May 2009 | A1 |
20090148101 | Lu et al. | Jun 2009 | A1 |
20090148102 | Lu et al. | Jun 2009 | A1 |
20090148103 | Lu et al. | Jun 2009 | A1 |
20090148104 | Lu et al. | Jun 2009 | A1 |
20090148118 | Gronvall et al. | Jun 2009 | A1 |
20090148120 | Reagan et al. | Jun 2009 | A1 |
20090156041 | Radle | Jun 2009 | A1 |
20090162016 | Lu et al. | Jun 2009 | A1 |
20090185835 | Park et al. | Jul 2009 | A1 |
20090190895 | Reagan et al. | Jul 2009 | A1 |
20090238531 | Holmberg et al. | Sep 2009 | A1 |
20090245737 | Fujiwara et al. | Oct 2009 | A1 |
20090245743 | Cote et al. | Oct 2009 | A1 |
20090263097 | Solheid et al. | Oct 2009 | A1 |
20090297112 | Mertesdorf et al. | Dec 2009 | A1 |
20090317039 | Blazer et al. | Dec 2009 | A1 |
20090317045 | Reagan et al. | Dec 2009 | A1 |
20100008909 | Siadak et al. | Jan 2010 | A1 |
20100014813 | Ito et al. | Jan 2010 | A1 |
20100014824 | Lu et al. | Jan 2010 | A1 |
20100014867 | Ramanitra et al. | Jan 2010 | A1 |
20100015834 | Siebens | Jan 2010 | A1 |
20100021254 | Jenkins et al. | Jan 2010 | A1 |
20100034502 | Lu et al. | Feb 2010 | A1 |
20100040331 | Khemakhem et al. | Feb 2010 | A1 |
20100040338 | Sek | Feb 2010 | A1 |
20100061685 | Kowalczyk et al. | Mar 2010 | A1 |
20100074578 | Imaizumi et al. | Mar 2010 | A1 |
20100080516 | Coleman et al. | Apr 2010 | A1 |
20100086260 | Parikh et al. | Apr 2010 | A1 |
20100086267 | Cooke et al. | Apr 2010 | A1 |
20100092129 | Conner | Apr 2010 | A1 |
20100092133 | Conner | Apr 2010 | A1 |
20100092136 | Nhep | Apr 2010 | A1 |
20100092146 | Conner et al. | Apr 2010 | A1 |
20100092169 | Conner et al. | Apr 2010 | A1 |
20100092171 | Conner | Apr 2010 | A1 |
20100129034 | Kuffel et al. | May 2010 | A1 |
20100144183 | Nania et al. | Jun 2010 | A1 |
20100172616 | Lu et al. | Jul 2010 | A1 |
20100197222 | Scheucher | Aug 2010 | A1 |
20100215321 | Jenkins | Aug 2010 | A1 |
20100220962 | Caveney et al. | Sep 2010 | A1 |
20100226615 | Reagan et al. | Sep 2010 | A1 |
20100247053 | Cowen et al. | Sep 2010 | A1 |
20100266242 | Lu et al. | Oct 2010 | A1 |
20100266244 | Lu et al. | Oct 2010 | A1 |
20100266245 | Sabo | Oct 2010 | A1 |
20100272399 | Griffiths et al. | Oct 2010 | A1 |
20100284662 | Reagan et al. | Nov 2010 | A1 |
20100290741 | Lu et al. | Nov 2010 | A1 |
20100303426 | Davis | Dec 2010 | A1 |
20100303427 | Rambow et al. | Dec 2010 | A1 |
20100310213 | Lewallen et al. | Dec 2010 | A1 |
20100322563 | Melton et al. | Dec 2010 | A1 |
20100329625 | Reagan et al. | Dec 2010 | A1 |
20110019964 | Nhep et al. | Jan 2011 | A1 |
20110047731 | Sugita et al. | Mar 2011 | A1 |
20110067452 | Gronvall et al. | Mar 2011 | A1 |
20110108719 | Ford et al. | May 2011 | A1 |
20110116749 | Kuffel et al. | May 2011 | A1 |
20110123166 | Reagan et al. | May 2011 | A1 |
20110129186 | Lewallen et al. | Jun 2011 | A1 |
20110164854 | Desard et al. | Jul 2011 | A1 |
20110262099 | Castonguay et al. | Oct 2011 | A1 |
20110262100 | Reagan et al. | Oct 2011 | A1 |
20110299814 | Nakagawa | Dec 2011 | A1 |
20110305421 | Caveney et al. | Dec 2011 | A1 |
20120008909 | Mertesdorf et al. | Jan 2012 | A1 |
20120045179 | Theuerkorn | Feb 2012 | A1 |
20120063724 | Kuffel et al. | Mar 2012 | A1 |
20120063729 | Fujiwara et al. | Mar 2012 | A1 |
20120106912 | McGranahan et al. | May 2012 | A1 |
20120106913 | Makrides-Saravanos et al. | May 2012 | A1 |
20120134629 | Lu et al. | May 2012 | A1 |
20120183268 | De Montmorillon et al. | Jul 2012 | A1 |
20120213478 | Chen et al. | Aug 2012 | A1 |
20120251063 | Reagan et al. | Oct 2012 | A1 |
20120252244 | Elkins, II et al. | Oct 2012 | A1 |
20120275749 | Kuffel et al. | Nov 2012 | A1 |
20120321256 | Caveney et al. | Dec 2012 | A1 |
20130004122 | Kingsbury | Jan 2013 | A1 |
20130020480 | Ford et al. | Jan 2013 | A1 |
20130034333 | Holmberg et al. | Feb 2013 | A1 |
20130064506 | Eberle, Jr. et al. | Mar 2013 | A1 |
20130094821 | Logan | Apr 2013 | A1 |
20130109213 | Chang | May 2013 | A1 |
20130114930 | Smith et al. | May 2013 | A1 |
20130136402 | Kuffel et al. | May 2013 | A1 |
20130170834 | Cho et al. | Jul 2013 | A1 |
20130209099 | Reagan et al. | Aug 2013 | A1 |
20130236139 | Chen et al. | Sep 2013 | A1 |
20130266562 | Siadak et al. | Oct 2013 | A1 |
20130315538 | Kuffel et al. | Nov 2013 | A1 |
20140016902 | Pepe | Jan 2014 | A1 |
20140056561 | Lu et al. | Feb 2014 | A1 |
20140079356 | Pepin et al. | Mar 2014 | A1 |
20140133804 | Lu et al. | May 2014 | A1 |
20140133806 | Hill et al. | May 2014 | A1 |
20140133807 | Katoh | May 2014 | A1 |
20140133808 | Hill et al. | May 2014 | A1 |
20140153876 | Dendas et al. | Jun 2014 | A1 |
20140153878 | Mullaney | Jun 2014 | A1 |
20140161397 | Gallegos et al. | Jun 2014 | A1 |
20140205257 | Durrant et al. | Jul 2014 | A1 |
20140219609 | Nielson et al. | Aug 2014 | A1 |
20140219622 | Coan et al. | Aug 2014 | A1 |
20140233896 | Ishigami et al. | Aug 2014 | A1 |
20140241670 | Barnette et al. | Aug 2014 | A1 |
20140241671 | Koreeda et al. | Aug 2014 | A1 |
20140241689 | Bradley et al. | Aug 2014 | A1 |
20140254987 | Caveney et al. | Sep 2014 | A1 |
20140294395 | Waldron et al. | Oct 2014 | A1 |
20140314379 | Lu et al. | Oct 2014 | A1 |
20140328559 | Kobayashi et al. | Nov 2014 | A1 |
20140341511 | Daems et al. | Nov 2014 | A1 |
20140348467 | Cote et al. | Nov 2014 | A1 |
20140355936 | Bund et al. | Dec 2014 | A1 |
20150003787 | Chen et al. | Jan 2015 | A1 |
20150003788 | Chen et al. | Jan 2015 | A1 |
20150036982 | Nhep et al. | Feb 2015 | A1 |
20150153532 | Holmberg et al. | Jun 2015 | A1 |
20150168657 | Islam | Jun 2015 | A1 |
20150183869 | Siadak et al. | Jul 2015 | A1 |
20150185423 | Matsui et al. | Jul 2015 | A1 |
20150253527 | Hill et al. | Sep 2015 | A1 |
20150253528 | Corbille et al. | Sep 2015 | A1 |
20150268423 | Burkholder et al. | Sep 2015 | A1 |
20150268434 | Barnette, Jr. et al. | Sep 2015 | A1 |
20150293310 | Kanno | Oct 2015 | A1 |
20150316727 | Kondo et al. | Nov 2015 | A1 |
20150346435 | Kato | Dec 2015 | A1 |
20150346436 | Pepe | Dec 2015 | A1 |
20160015885 | Pananen et al. | Jan 2016 | A1 |
20160041346 | Barnette et al. | Feb 2016 | A1 |
20160062053 | Mullaney | Mar 2016 | A1 |
20160085032 | Lu et al. | Mar 2016 | A1 |
20160109671 | Coan et al. | Apr 2016 | A1 |
20160116686 | Durrant et al. | Apr 2016 | A1 |
20160126667 | Droesbeke et al. | May 2016 | A1 |
20160131851 | Theuerkorn | May 2016 | A1 |
20160131857 | Pimentel et al. | May 2016 | A1 |
20160139346 | Bund et al. | May 2016 | A1 |
20160154184 | Bund et al. | Jun 2016 | A1 |
20160161682 | Nishimura | Jun 2016 | A1 |
20160161688 | Nishimura | Jun 2016 | A1 |
20160161689 | Nishimura | Jun 2016 | A1 |
20160187590 | Lu | Jun 2016 | A1 |
20160202431 | Hill et al. | Jul 2016 | A1 |
20160209599 | Van Baelen et al. | Jul 2016 | A1 |
20160209602 | Theuerkorn | Jul 2016 | A1 |
20160238810 | Hubbard et al. | Aug 2016 | A1 |
20160246019 | Ishii et al. | Aug 2016 | A1 |
20160259133 | Kobayashi et al. | Sep 2016 | A1 |
20160259134 | Daems et al. | Sep 2016 | A1 |
20160306122 | Tong et al. | Oct 2016 | A1 |
20160327754 | Hill et al. | Nov 2016 | A1 |
20170023758 | Reagan et al. | Jan 2017 | A1 |
20170045699 | Coan et al. | Feb 2017 | A1 |
20170052325 | Mullaney et al. | Feb 2017 | A1 |
20170059784 | Gniadek et al. | Mar 2017 | A1 |
20170123163 | Lu et al. | May 2017 | A1 |
20170123165 | Barnette et al. | May 2017 | A1 |
20170131509 | Xiao et al. | May 2017 | A1 |
20170139158 | Coenegracht | May 2017 | A1 |
20170168248 | Hayauchi et al. | Jun 2017 | A1 |
20170168256 | Reagan et al. | Jun 2017 | A1 |
20170170596 | Goossens et al. | Jun 2017 | A1 |
20170176252 | Marple et al. | Jun 2017 | A1 |
20170176690 | Bretz et al. | Jun 2017 | A1 |
20170182160 | Siadak et al. | Jun 2017 | A1 |
20170219782 | Nishimura | Aug 2017 | A1 |
20170235067 | Holmberg et al. | Aug 2017 | A1 |
20170238822 | Young et al. | Aug 2017 | A1 |
20170254961 | Kamada et al. | Sep 2017 | A1 |
20170254962 | Mueller-Schlomka et al. | Sep 2017 | A1 |
20170261696 | Compton et al. | Sep 2017 | A1 |
20170261698 | Compton et al. | Sep 2017 | A1 |
20170261699 | Compton et al. | Sep 2017 | A1 |
20170285275 | Hill et al. | Oct 2017 | A1 |
20170288315 | Scheucher | Oct 2017 | A1 |
20170293091 | Lu et al. | Oct 2017 | A1 |
20170336587 | Coan et al. | Nov 2017 | A1 |
20170343741 | Coenegracht et al. | Nov 2017 | A1 |
20170343745 | Rosson | Nov 2017 | A1 |
20170351037 | Watanabe et al. | Dec 2017 | A1 |
20180031774 | Van et al. | Feb 2018 | A1 |
20180079569 | Simpson | Mar 2018 | A1 |
20180081127 | Coenegracht | Mar 2018 | A1 |
20180143386 | Coan et al. | May 2018 | A1 |
20180151960 | Scheucher | May 2018 | A1 |
20180180831 | Blazer et al. | Jun 2018 | A1 |
20180224610 | Pimentel et al. | Aug 2018 | A1 |
20180239094 | Barnette et al. | Aug 2018 | A1 |
20180246283 | Pepe et al. | Aug 2018 | A1 |
20180259721 | Bund et al. | Sep 2018 | A1 |
20180329149 | Mullaney et al. | Nov 2018 | A1 |
20180372962 | Isenhour et al. | Dec 2018 | A1 |
20190004251 | Dannoux et al. | Jan 2019 | A1 |
20190004255 | Dannoux et al. | Jan 2019 | A1 |
20190004256 | Rosson | Jan 2019 | A1 |
20190004258 | Dannoux et al. | Jan 2019 | A1 |
20190011641 | Isenhour et al. | Jan 2019 | A1 |
20190018210 | Coan et al. | Jan 2019 | A1 |
20190033532 | Gimblet et al. | Jan 2019 | A1 |
20190038743 | Siadak et al. | Feb 2019 | A1 |
20190041584 | Coenegracht et al. | Feb 2019 | A1 |
20190041585 | Bretz et al. | Feb 2019 | A1 |
20190041595 | Reagan et al. | Feb 2019 | A1 |
20190058259 | Scheucher | Feb 2019 | A1 |
20190107677 | Coenegracht et al. | Apr 2019 | A1 |
20190147202 | Harney | May 2019 | A1 |
20190162910 | Gurreri | May 2019 | A1 |
20190162914 | Baca et al. | May 2019 | A1 |
20190170961 | Coenegracht et al. | Jun 2019 | A1 |
20190187396 | Finnegan et al. | Jun 2019 | A1 |
20190235177 | Lu et al. | Aug 2019 | A1 |
20190250338 | Mullaney et al. | Aug 2019 | A1 |
20190271817 | Coenegracht | Sep 2019 | A1 |
20190324217 | Lu et al. | Oct 2019 | A1 |
20190339460 | Dannoux et al. | Nov 2019 | A1 |
20190339461 | Dannoux et al. | Nov 2019 | A1 |
20190369336 | Van et al. | Dec 2019 | A1 |
20190369345 | Reagan et al. | Dec 2019 | A1 |
20190374637 | Siadak et al. | Dec 2019 | A1 |
20200012051 | Coenegracht et al. | Jan 2020 | A1 |
20200036101 | Scheucher | Jan 2020 | A1 |
20200049922 | Rosson | Feb 2020 | A1 |
20200057205 | Dannoux et al. | Feb 2020 | A1 |
20200057222 | Dannoux et al. | Feb 2020 | A1 |
20200057223 | Dannoux et al. | Feb 2020 | A1 |
20200057224 | Dannoux et al. | Feb 2020 | A1 |
20200057723 | Chirca et al. | Feb 2020 | A1 |
20200096705 | Rosson | Mar 2020 | A1 |
20200096709 | Rosson | Mar 2020 | A1 |
20200096710 | Rosson | Mar 2020 | A1 |
20200103599 | Rosson | Apr 2020 | A1 |
20200103608 | Johnson et al. | Apr 2020 | A1 |
20200110229 | Dannoux et al. | Apr 2020 | A1 |
20200110234 | Holmberg et al. | Apr 2020 | A1 |
20200116949 | Rosson | Apr 2020 | A1 |
20200116952 | Rosson | Apr 2020 | A1 |
20200116953 | Rosson | Apr 2020 | A1 |
20200116954 | Rosson | Apr 2020 | A1 |
20200116958 | Dannoux et al. | Apr 2020 | A1 |
20200116962 | Dannoux et al. | Apr 2020 | A1 |
20200124812 | Dannoux et al. | Apr 2020 | A1 |
20200132939 | Coenegracht et al. | Apr 2020 | A1 |
20200192042 | Coan et al. | Jun 2020 | A1 |
20200209492 | Rosson | Jul 2020 | A1 |
20200218017 | Coenegracht | Jul 2020 | A1 |
20200225422 | Van et al. | Jul 2020 | A1 |
20200225424 | Coenegracht | Jul 2020 | A1 |
20200241211 | Shonkwiler et al. | Jul 2020 | A1 |
20200348476 | Hill et al. | Nov 2020 | A1 |
20200371306 | Mosier et al. | Nov 2020 | A1 |
20200393629 | Hill et al. | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
2006232206 | Oct 2006 | AU |
1060911 | May 1992 | CN |
1071012 | Apr 1993 | CN |
1213783 | Apr 1999 | CN |
1646962 | Jul 2005 | CN |
1833188 | Sep 2006 | CN |
1922523 | Feb 2007 | CN |
101084461 | Dec 2007 | CN |
101195453 | Jun 2008 | CN |
201404194 | Feb 2010 | CN |
101846773 | Sep 2010 | CN |
101939680 | Jan 2011 | CN |
201704194 | Jan 2011 | CN |
102346281 | Feb 2012 | CN |
203224645 | Oct 2013 | CN |
203396982 | Jan 2014 | CN |
104064903 | Sep 2014 | CN |
104280830 | Jan 2015 | CN |
0026553 | Apr 1981 | EP |
0244791 | Nov 1987 | EP |
0547788 | Jun 1993 | EP |
0782025 | Jul 1997 | EP |
0856751 | Aug 1998 | EP |
957381 | Nov 1999 | EP |
1243957 | Sep 2002 | EP |
1391762 | Feb 2004 | EP |
1431786 | Jun 2004 | EP |
1438622 | Jul 2004 | EP |
1678537 | Jul 2006 | EP |
1759231 | Mar 2007 | EP |
1810062 | Jul 2007 | EP |
2069845 | Jun 2009 | EP |
2149063 | Feb 2010 | EP |
2150847 | Feb 2010 | EP |
2193395 | Jun 2010 | EP |
2255233 | Dec 2010 | EP |
2333597 | Jun 2011 | EP |
2362253 | Aug 2011 | EP |
2401641 | Jan 2012 | EP |
2609458 | Jul 2013 | EP |
2622395 | Aug 2013 | EP |
2734879 | May 2014 | EP |
2815259 | Dec 2014 | EP |
2817667 | Dec 2014 | EP |
2992372 | Mar 2016 | EP |
3064973 | Sep 2016 | EP |
3101740 | Dec 2016 | EP |
3245545 | Nov 2017 | EP |
3265859 | Jan 2018 | EP |
3336992 | Jun 2018 | EP |
3362830 | Aug 2018 | EP |
3427096 | Jan 2019 | EP |
3443395 | Feb 2019 | EP |
3535614 | Sep 2019 | EP |
3537197 | Sep 2019 | EP |
3646074 | May 2020 | EP |
3646079 | May 2020 | EP |
2485754 | Dec 1981 | FR |
61-145509 | Jul 1986 | JP |
63089421 | Apr 1988 | JP |
63078908 | May 1988 | JP |
03-063615 | Mar 1991 | JP |
03207223 | Sep 1991 | JP |
05-297246 | Nov 1993 | JP |
06-320111 | Nov 1994 | JP |
07318758 | Dec 1995 | JP |
08292331 | Nov 1996 | JP |
09-135526 | May 1997 | JP |
09-325249 | Dec 1997 | JP |
11064682 | Mar 1999 | JP |
11-281861 | Oct 1999 | JP |
11326693 | Nov 1999 | JP |
2001290051 | Oct 2001 | JP |
2003121699 | Apr 2003 | JP |
2003177279 | Jun 2003 | JP |
2005031544 | Feb 2005 | JP |
2005077591 | Mar 2005 | JP |
2005-520987 | Jul 2005 | JP |
2006023502 | Jan 2006 | JP |
2006-259631 | Sep 2006 | JP |
2006337637 | Dec 2006 | JP |
2007078740 | Mar 2007 | JP |
2007121859 | May 2007 | JP |
2009265208 | Nov 2009 | JP |
2010152084 | Jul 2010 | JP |
2011033698 | Feb 2011 | JP |
2013156580 | Aug 2013 | JP |
2014085474 | May 2014 | JP |
05537852 | Jul 2014 | JP |
05538328 | Jul 2014 | JP |
2014134746 | Jul 2014 | JP |
3207233 | Nov 2016 | JP |
1020130081087 | Jul 2013 | KR |
0192927 | Dec 2001 | WO |
0336358 | May 2003 | WO |
2004061509 | Jul 2004 | WO |
2005045494 | May 2005 | WO |
2006009597 | Jan 2006 | WO |
2006052420 | May 2006 | WO |
2006113726 | Oct 2006 | WO |
2008027201 | Mar 2008 | WO |
2008150408 | Dec 2008 | WO |
2008150423 | Dec 2008 | WO |
2009042066 | Apr 2009 | WO |
2009113819 | Sep 2009 | WO |
2009117060 | Sep 2009 | WO |
2009154990 | Dec 2009 | WO |
2010092009 | Aug 2010 | WO |
2010099141 | Sep 2010 | WO |
2011044090 | Apr 2011 | WO |
2011047111 | Apr 2011 | WO |
2012027313 | Mar 2012 | WO |
2012037727 | Mar 2012 | WO |
2012044741 | Apr 2012 | WO |
2012163052 | Dec 2012 | WO |
2013016042 | Jan 2013 | WO |
2013122752 | Aug 2013 | WO |
2013126488 | Aug 2013 | WO |
2014151259 | Sep 2014 | WO |
2014167447 | Oct 2014 | WO |
2014179411 | Nov 2014 | WO |
2014197894 | Dec 2014 | WO |
2015144883 | Oct 2015 | WO |
2015197588 | Dec 2015 | WO |
2016059320 | Apr 2016 | WO |
2016073862 | May 2016 | WO |
2016095213 | Jun 2016 | WO |
2016100078 | Jun 2016 | WO |
2016115288 | Jul 2016 | WO |
2016156610 | Oct 2016 | WO |
2016168389 | Oct 2016 | WO |
2017063107 | Apr 2017 | WO |
2017146722 | Aug 2017 | WO |
2017155754 | Sep 2017 | WO |
2017178920 | Oct 2017 | WO |
2018083561 | May 2018 | WO |
2018175123 | Sep 2018 | WO |
2018204864 | Nov 2018 | WO |
2019005190 | Jan 2019 | WO |
2019005191 | Jan 2019 | WO |
2019005192 | Jan 2019 | WO |
2019005193 | Jan 2019 | WO |
2019005194 | Jan 2019 | WO |
2019005195 | Jan 2019 | WO |
2019005196 | Jan 2019 | WO |
2019005197 | Jan 2019 | WO |
2019005198 | Jan 2019 | WO |
2019005199 | Jan 2019 | WO |
2019005200 | Jan 2019 | WO |
2019005201 | Jan 2019 | WO |
2019005202 | Jan 2019 | WO |
2019005203 | Jan 2019 | WO |
2019005204 | Jan 2019 | WO |
2019036339 | Feb 2019 | WO |
2019126333 | Jun 2019 | WO |
2019195652 | Oct 2019 | WO |
2020101850 | May 2020 | WO |
Entry |
---|
Coaxum, L., et al., U.S. Appl. No. 62/341,947, “Fiber Optic Multiport Having Different Types of Ports for Multi-Use,” filed May 26, 2016. |
International Search Report and Written Opinion PCT/US2017/063938 dated May 14, 2018. |
International Search Report and Written Opinion PCT/US2017/063953 dated May 14, 2018. |
International Search Report and Written Opinion PCT/US2017/063991 dated May 14, 2018. |
International Search Report and Written Opinion PCT/US2017/064027 dated Oct. 9, 2018. |
International Search Report and Written Opinion PCT/US2017/064063 dated May 15, 2018. |
International Search Report and Written Opinion PCT/US2017/064071 dated May 14, 2018. |
International Search Report and Written Opinion PCT/US2017/064072 dated May 14, 2018. |
International Search Report and Written Opinion PCT/US2017/064077 dated Feb. 26, 2018. |
International Search Report and Written Opinion PCT/US2017/064084 dated Feb. 26, 2018. |
International Search Report and Written Opinion PCT/US2017/064087 dated Feb. 26, 2018. |
International Search Report and Written Opinion PCT/US2017/064092 dated Feb. 23, 2018. |
International Search Report and Written Opinion PCT/US2017/064093 dated Feb. 26, 2018. |
International Search Report and Written Opinion PCT/US2017/064095 dated Feb. 23, 2018. |
International Search Report and Written Opinion PCT/US2017/064096 dated Feb. 26, 2018. |
International Search Report and Written Opinion PCT/US2018/039019 dated Sep. 18, 2018. |
International Search Report and Written Opinion PCT/US2018/039490 dated Oct. 4, 2018. |
International Search Report and Written Opinion PCT/US2018/039494 dated Oct. 11, 2018. |
International Search Report and Written Opinion PCT/US2018/040011 dated Oct. 5, 2018. |
International Search Report and Written Opinion PCT/US2018/040104 dated Oct. 9, 2018. |
International Search Report and Written Opinion PCT/US2018/040126 dated Oct. 9, 2018. |
International Search Report and Written Opinion PCT/US2018/040130 dated Sep. 18, 2018. |
Notice of Allowance Received for U.S. Appl. No. 16/018,997 dated Oct. 4, 2018. |
Office Action Pertaining to U.S. Appl. No. 16/018,918 dated Sep. 28, 2018. |
Office Action Pertaining to U.S. Appl. No. 16/018,988 dated Oct. 31, 2018. |
Office Action Pertaining to U.S. Appl. No. 16/109,008 dated Oct. 31, 2018. |
Faulkner et al. “Optical networks for local lopp applications,” J. Lightwave Technol.0733-8724 7(11), 17411751 (1989). |
Ramanitra et al. “Optical access network using a self-latching variable splitter remotely powered through an optical fiber link,” Optical Engineering 46(4) p. 45007-1-9, Apr. 2007. |
Ratnam et al. “Burst switching using variable optical splitter based switches with wavelength conversion,” ICIIS 2017—Poeceedings Jan. 2018, pp. 1-6. |
Wang et al. “Opto-VLSI-based dynamic optical splitter,” Electron. Lett.0013-5194 10.1049/el:20046715 40(22), 14451446 (2004). |
Xiao et al. “1xN wavelength selective adaptive optical power splitter for wavelength-division-multiplexed passive optical networks,” Optics & Laser Technology 68, pp. 160-164, May 2015. |
Invitation to Pay Additional Fees of the European International Searching Authority; PCT/US2019/058316; dated Feb. 14, 2020; 12 Pgs. |
Number | Date | Country | |
---|---|---|---|
20200057222 A1 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
62526195 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2018/040126 | Jun 2018 | US |
Child | 16661987 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2018/039494 | Jun 2018 | US |
Child | PCT/US2018/040126 | US | |
Parent | 16018918 | Jun 2018 | US |
Child | PCT/US2018/039494 | US | |
Parent | 16019008 | Jun 2018 | US |
Child | 16018918 | US | |
Parent | PCT/US2018/039485 | Jun 2018 | US |
Child | 16019008 | US | |
Parent | 16018988 | Jun 2018 | US |
Child | PCT/US2018/039485 | US | |
Parent | PCT/US2018/039484 | Jun 2018 | US |
Child | 16018988 | US | |
Parent | PCT/US2017/064092 | Nov 2017 | US |
Child | PCT/US2018/039484 | US | |
Parent | PCT/US2017/064095 | Nov 2017 | US |
Child | PCT/US2017/064092 | US |