1. Field of the Invention
The present invention concerns a tool that facilitates paying out a cable from a spool or drum while the cable is installed at a user's premises.
2. Discussion of the Known Art
Installations of fiber optic cabling at a user's premises typically required winding a predetermined length of cable on a reel, and then pulling a free end of the cable off of the reel and down a riser shaft. The free end of the cable is then terminated in a building entrance box for connection with an outside cable from a service provider. It will be understood that such a procedure normally requires at least two technicians or installers, that is, one person to hold the reel as the cable is unwound, and another person to pull the cable down the shaft.
Commonly owned U.S. Provisional Patent Application No. 60/880,169 ('169 application) filed Jan. 13, 2007, and U.S. Utility patent application Ser. No. 11/728,785 ('785 application) filed Mar. 27, 2007, disclose a multi-dwelling unit (MDU) entrance or “drop” box wherein a fiber optic cable may be prewound about a spool or drum region of the box. The drop box also features an integral tube having a passage whose axis coincides with that of the drum region. Thus, an installer may insert a screwdriver or other elongate tool in the tube passage and, while holding the tool in one hand, use the other hand to pull the cable off of the drum region while the drop box pivots freely on the tool. All relevant portions of the mentioned '169 and '785 applications are incorporated by reference.
Whether the cable is prewound on the above mentioned drop box or on a separate spool or drum, installers typically must pull the cable around corners or between floors at the user's premises. Routing the cable away from the location of the drop box or spool therefore requires at least two persons so as to avoid undesirable bending or breaking of the cable or its fibers, i.e., one person to hold the box or spool in place as the cable unwinds, and one or more other persons to pull and route the cable carefully over a desired path at the premises. The typical installation process is therefore time consuming and labor intensive.
Accordingly, there is a need for a tool that enables a single installer to unwind a fiber optic cable easily from a spool or drop box at a user's premises, and to route the cable over a desired path away from the location of the spool or box without damaging the cable or the fibers it contains.
According to the invention, a spooling tool for paying out a desired length of cable from a cable drop box having a spool region, includes a base plate and an elongate arbor having a first end and a second end. The arbor is constructed and arranged to be secured to the base plate in the vicinity of the first end of the arbor, wherein the arbor is held substantially perpendicular to the base plate. The arbor is dimensioned for insertion through an axial passage in the drop box so that the box pivots about the arbor. A cap arrangement at the second end of the arbor includes a drag mechanism arranged to apply a frictional force on the box sufficient to inhibit the box from free wheeling on the arbor.
According to another aspect of the invention, a spooling tool for paying out a desired length of cable from a drop box or an associated spool on which the cable is wound, includes a base plate having a first major surface and a second major surface opposite the first major surface. A stud is fixed at a bottom end to the base plate and has a top end that projects a certain height above the first major surface of the plate. An elongate arbor has one end formed to engage the top end of the stud so that the arbor is supported substantially perpendicular to the base plate, and the arbor is dimensioned to be inserted through an axial passage in the drop box so that the box pivots on the arbor when a cable is unwound from the box or the associated spool. A cap mechanism is arranged at an opposite end of the arbor to retain the box and to apply a drag on the box sufficient to inhibit free wheeling of the box or the associated spool.
Other features and advantages of the invention will now be described in conjunction with the accompanying drawing and the appended claims.
In the drawing:
The base plate 14 may be generally “D” or rectangularly shaped and formed, for example, from zinc plated 16 gauge cold rolled steel (0.060 inch thick), aluminum, or equivalent rigid and durable sheet material. As shown in
A lower end of the arbor 18 is dimensioned and formed for insertion in the bore in the top end 17 of the stud 16. For example, the lower end of the arbor 18 and the stud bore may be threaded so that the arbor 18 can engage the stud 16 firmly and be supported perpendicular to the upper major surface 15 of the base plate 14 as in
A cap mechanism 20, shown in
Specifically, the base plate 14 may be placed on the floor near a location where the drop box 10 is to be mounted permanently at the premises. The box 10 is then placed horizontally on the base plate 14 so that the stud 16 is seated in a bottom surface of the box and is aligned with the axial passage that extends through the box. The arbor 18 is inserted vertically through the top opening of the axial passage to engage the stud, and thus acts as a spindle about which the box pivots as a cable is unwound from the drum region of the box. The friction material 22 then acts to restrain the base plate 14 from being dragged or sliding on the floor when an unwound portion of the cable is pulled remotely by an installer in order to route the cable over a desired path at a user's premises.
As seen in
In
As shown at the bottom of
In the embodiment of
Once a cable drop box or a drop box with an attached cable spool is seated on the stud 16′, the distal end of the release device shaft 84 is inserted through the passage opening 50 atop the drop box, and is urged into the bore opening in the stud 16′ while the user depresses the handle button 88. When the washer 92 on the shaft 84 contacts the top of the drop box and the spring 90 urges the washer 92 against the box to impart a certain drag, the button 88 is released and the locking pins 86 at the distal end of the shaft deploy radially outward to engage, e.g., an annular ring or groove on the inner circumference of the stud 16′. Thus, the shaft 84 is locked from being withdrawn axially out of the stud 16′ while the desired drag is applied to the drop box and any associated cable spool.
As disclosed herein, the inventive spooling tool allows a fiber optic cable to be unwound from a drop box or an associated spool on an as-needed basis by a single installer, and without causing damage to the cable. The tool keeps the cable organized and features a mechanism that controls the speed of cable pay out and inhibits free wheeling of the drop box or spool on the tool. The base plate of the tool may also be configured to provide an installer with mounting and template information to aid in locating the drop box at the user's premises, and to prevent interference with surrounding objects while the cable is unwound.
While preferred embodiments of the invention are described herein, those skilled in the art will understand that various modifications may be made without departing from the spirit and scope of the invention as defined by the appended claims. For example, The arbor 18 may be fixed initially at a bottom end to the base plate 14 such as, for example, via a press fit into an opening in the plate, welding, or nut fasteners. The arbor may then have such a length so that after a drop box is set to pivot on the arbor, a top end of the arbor protrudes a sufficient distance above the box to allow a drag mechanism similar to the cap mechanism 20 to be threaded, press fit or otherwise clamped to the top end of the arbor after placing one or more compression elements 19 (e.g., a spring and a washer) on the arbor.
This application claims priority under 35 U.S.C. §119(e) of co-pending U.S. Provisional Patent Application No. 60/945,611 filed Jun. 22, 2007, and entitled “Fiber Optic Rapid Spooling Tool”.
Number | Name | Date | Kind |
---|---|---|---|
2613041 | Cantrell | Oct 1952 | A |
3079099 | Blain | Feb 1963 | A |
3612424 | Friedel | Oct 1971 | A |
3857526 | Dischert | Dec 1974 | A |
4336911 | Fairchild | Jun 1982 | A |
4666102 | Colbaugh et al. | May 1987 | A |
4726179 | Smith et al. | Feb 1988 | A |
5261625 | Lanoue | Nov 1993 | A |
5564645 | Lissoni | Oct 1996 | A |
5638481 | Arnett | Jun 1997 | A |
6398149 | Hines et al. | Jun 2002 | B1 |
6698317 | Machovsky | Mar 2004 | B1 |
6745971 | Renzoni | Jun 2004 | B1 |
6786669 | Tsui et al. | Sep 2004 | B2 |
7079745 | Weinert et al. | Jul 2006 | B1 |
20080011782 | Sidman | Jan 2008 | A1 |
20080170831 | Hendrickson et al. | Jul 2008 | A1 |
20080292261 | Kowalczyk et al. | Nov 2008 | A1 |
20090074370 | Kowalczyk et al. | Mar 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20080315030 A1 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
60945611 | Jun 2007 | US |