The present invention relates to fiber optic connectors and adapters, and more particularly, to fiber optic adapters for mating multi-fiber optic ferrule connectors and fiber optic connectors.
Modern high capacity optical systems often utilize fiber optic ribbons for inter-system connection. As there are multiple connection points in an optical path, there are needs for mating two fiber optic ferrules or a ferrule to another connector. In the mating of two fiber optic ferrules or a ferrule and a connector, the mechanical and optical alignment is paramount. Slight misalignment can result in significant signal loss, especially in the case of ferrules and connectors for multi-fiber optic ribbons and cables. Therefore, there is a need for an adapter that can hold and secure two fiber optic ferrules or a ferrule and a connector in alignment with precision. The adapter design should also allow that installation of the ferrules and connectors that is easy enough for in-field assembly. Further, the adapter should be durable in design and/or material for repeated installations and uninstallations.
According to the present invention, a fiber optic adapter for mating a multi-fiber optic ferrule connector at a second end and a multi-fiber optic connector with a push/pull tab at a first end is provided. The fiber optic adapter includes an integrated engagement device within a receptacle at a first end to secure a fiber optic connector therein, and a receptacle at a second end. An opening in second receptacle outer housing secures a latch on an outer housing of the multi-fiber optic ferrule connector. The multi-fiber optic ferrule connector comprises a housing with a plural of ferrules inserted from the front end as opposed to the rear, and the latch secures the ferrules in place, within the housing when the latch is secured in an opening of the housing. Without departing from the scope of the invention, the second receptacle may contain an integrated engagement device. The first fiber optic connector type used can differ from the second fiber optic connector type depending on the use of the engagement device or not.
An integrated or removable, replaceable engagement device has one or more flexible arms that are received and secured in a corresponding widthwise recess at a proximal end of the fiber optic connector. The arms latch the multi-fiber optic connector in place so as to secure the connector inside the receptacle of the adapter. The arms are configured to release the connector when the user pulls on a pull/push tab located at a distal end of the connector. The multi-fiber optic connector's proximal end may have a widthwise recess on a bottom or top surface, while a connector may have recess along a side to engage a similar engagement device. The multi-fiber optic connector may use a latch on the connector outer housing instead of the latch within the adapter structure or on the latch is on the engagement device.
In an alternative embodiment, the engagement device is molded into adapter housing of each receptacle. In this embodiment, the integrated engagement device is not a removable or replaceable single piece. The integrated engagement device may be ultrasonic welded onto the inner housing of the adapter or similar method to secure device within receptacle. Due to the small size of connectors, adapters and engagement devices, molding the engagement device within the adapter reduces assembly time, breakage, lost parts, and misalignment upon insertion of a connector to be secured by said device. Since each engagement device is configured to correspond to a connector type, inventory and kitting is simplified to an adapter/connector pair.
In an alternative embodiment, an adapter may be two piece comprising a front body portion housing either engagement device, and a second body portion accepting a latch on an outer housing of the multi-fiber optic ferrule connector. The two body portions are secured using existing components such as a plural of alignment sleeves press-fitted within openings in the body, snaps, or clips arranged between the body portions. Any receptacle of the portions may accept either engagement device.
In an alternative embodiment, the adapter may use a unitary or one-piece device with a plural of engagement devices. The unitary device is inserted into an adapter receptacle, and secured therein with a plural of protrusions on the exterior surface of the unitary device that are configured to engage corresponding adapter structure. The protrusions would snap in behind adapter structure and prevent movement of the unitary device upon insertion and release of a fiber optic connector.
In an alternative embodiment, an adapter portion may be preconfigured with an integrated engagement device or a unitary engagement device for each receptacle, and adapter is separable into two portions. This engagement device may be removable/replaceable or molded as one-piece with adapter housing, or a removable/replaceable unitary device with two or more engagement devices depending on the number of adapter receptacles. The proximal end of a connector is closer to a ferrule, while a distal end is closer to a boot or cable holding fiber optic glass that is contained within a ferrule. The fiber optic glass carries the information signal. An adapter has a first end and a second end. An adapter may be a single housing or unitary body.
Embodiments of the invention are described in more detail hereinafter with reference to the drawings, in which:
In the following description, apparatuses for mating opposing multi-fiber optic connectors of differing types or the same type are set forth as preferred examples. The mating structure includes an engagement device that may be removable/replaceable within a receptacle, or integrated or permanently secure within a receptacle, both devices configure to mate with and secure a proximal end of a fiber optic connector therein. It will be apparent to those skilled in the art that modifications, including additions and/or substitutions may be made without departing from the scope and spirit of the invention. Specific details may be omitted so as not to obscure the invention; however, the disclosure is written to enable one skilled in the art to practice the teachings herein without undue experimentation.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Without departing from the scope of the invention, a figure number 220 with a designation such as 220a, the figure number 220 is the element, in this case an integrated engagement device, while 220a is also an integrated engagement device but copy of duplicate demonstrating expansion of the invention. A designation of 220a.1 means a duplicate of an engagement device but on an opposite side of another 220a.2 engagement device, for example in
An ordinarily skilled person in the art can appreciate that by following the principal of the present invention, a version of the adapter for mating a multi-fiber optic ferrule connector with another multi-fiber optic ferrule connector can be derived without departing from the scope and spirit of the invention. Although the embodiments of the present invention described herein are related to multi-fiber optic applications, the present invention can be adapted to single fiber optic applications. Specific details may be omitted so as not to obscure the invention; however, the disclosure is written to enable one skilled in the art to practice the teachings herein without undue experimentation.
The foregoing description of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to the practitioner skilled in the art.
The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated.
This application claims the benefit of provisional application 62/658,806 filed on Apr. 17, 2018, under 35 U.S.C. sec. 119(e), and this application is also claiming priority as continuation-in-part of U.S. patent application Ser. No. 15/979,596, entitled “Fiber Optic Receptacle with Integrated Device Therein”, filed on May 15, 2018, which also claims priority to 62/658,806 filed on Apr. 17, 2018, and U.S. patent application Ser. No. 15/979,596, also claims priority as a continuation-in-part of U.S. non-Provisional application Ser. No. 15/881,309 filed on Jan. 26, 2018, entitled Modular Connector and Adapter Devices,” now U.S. Pat. No. 10,185,100 patented on Jan. 22, 2019, which claims priority to U.S. Provisional Application No. 62/457,150, filed on Feb. 9, 2017, entitled “Optical Fiber Connector,” and to U.S. Provisional Application No. 62/546,920 filed Aug. 17, 2017, entitled “Narrow Width Adapters and Connectors with Modular Latching Arm,” and to U.S. Provisional Application No. 62/452,147, filed Jan. 30, 2017, entitled “Narrow Width Adapters and Connectors with Modular Latching Arm,” and to U.S. Provisional No. 62/581,961 filed Nov. 6, 2017, entitled “Narrow Width Adapters and Connectors with Modular Latching Arm,” each of which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4150790 | Otter | Apr 1979 | A |
4327964 | Haesley et al. | May 1982 | A |
4478473 | Frear | Oct 1984 | A |
4762388 | Tanaka et al. | Aug 1988 | A |
4764129 | Jones et al. | Aug 1988 | A |
4840451 | Sampson et al. | Jun 1989 | A |
4872736 | Myers et al. | Oct 1989 | A |
4979792 | Weber et al. | Dec 1990 | A |
5041025 | Haitmanek | Aug 1991 | A |
D323143 | Ohkura et al. | Jan 1992 | S |
5212752 | Stephenson et al. | May 1993 | A |
5265181 | Chang | Nov 1993 | A |
5289554 | Cubukciyan et al. | Feb 1994 | A |
5317663 | Beard et al. | May 1994 | A |
5335301 | Newman et al. | May 1994 | A |
5348487 | Marazzi et al. | Sep 1994 | A |
5444806 | deMarchi et al. | Aug 1995 | A |
5481634 | Anderson et al. | Jan 1996 | A |
5506922 | Grois et al. | Apr 1996 | A |
5521997 | Rovenolt et al. | May 1996 | A |
5570445 | Chou et al. | Oct 1996 | A |
5588079 | Tanabe et al. | Dec 1996 | A |
5684903 | Kyomasu et al. | Nov 1997 | A |
5687268 | Stephenson et al. | Nov 1997 | A |
5781681 | Manning | Jul 1998 | A |
5887095 | Nagase | Mar 1999 | A |
5937130 | Amberg et al. | Aug 1999 | A |
5956444 | Duda et al. | Sep 1999 | A |
5971626 | Knodell et al. | Oct 1999 | A |
6041155 | Anderson et al. | Mar 2000 | A |
6049040 | Biles et al. | Apr 2000 | A |
6134370 | Childers et al. | Oct 2000 | A |
6178283 | Weigel | Jan 2001 | B1 |
6193420 | Sikorski, Jr. | Feb 2001 | B1 |
RE37080 | Stephenson et al. | Mar 2001 | E |
6206577 | Hall, III et al. | Mar 2001 | B1 |
6206581 | Driscoll et al. | Mar 2001 | B1 |
6227717 | Ott et al. | May 2001 | B1 |
6238104 | Yamakawa et al. | May 2001 | B1 |
6247849 | Liu | Jun 2001 | B1 |
6364537 | Maynard | Apr 2002 | B1 |
6447170 | Takahashi et al. | Sep 2002 | B1 |
6461054 | Iwase | Oct 2002 | B1 |
6471412 | Belenkiy et al. | Oct 2002 | B1 |
6471414 | Carberry | Oct 2002 | B2 |
6478472 | Anderson et al. | Nov 2002 | B1 |
6551117 | Poplawski et al. | Apr 2003 | B2 |
6579014 | Melton et al. | Jun 2003 | B2 |
6634801 | Waldron et al. | Oct 2003 | B1 |
6648520 | McDonald et al. | Nov 2003 | B2 |
6682228 | Rathnam | Jan 2004 | B2 |
6685362 | Burkholder | Feb 2004 | B2 |
6695486 | Falkenberg | Feb 2004 | B1 |
6854894 | Yunker et al. | Feb 2005 | B1 |
6872039 | Baus et al. | Mar 2005 | B2 |
6935789 | Gross, III | Aug 2005 | B2 |
7008117 | Kiani et al. | Mar 2006 | B2 |
7091421 | Kukita et al. | May 2006 | B2 |
7090406 | Melton et al. | Aug 2006 | B2 |
7090407 | Melton et al. | Aug 2006 | B2 |
7111990 | Melton et al. | Sep 2006 | B2 |
7113679 | Melton et al. | Sep 2006 | B2 |
7114984 | Shirk et al. | Oct 2006 | B2 |
D533504 | Lee | Dec 2006 | S |
D534124 | Taguchi | Dec 2006 | S |
7150567 | Luther et al. | Dec 2006 | B1 |
7153041 | Mine et al. | Dec 2006 | B2 |
7198409 | Smith et al. | Apr 2007 | B2 |
7207724 | Gurreri | Apr 2007 | B2 |
D543146 | Chen et al. | May 2007 | S |
7258493 | Milette | Aug 2007 | B2 |
7281859 | Mudd et al. | Oct 2007 | B2 |
D558675 | Chien et al. | Jan 2008 | S |
7315682 | En Lin et al. | Jan 2008 | B1 |
7325976 | Gurreri et al. | Feb 2008 | B2 |
7325980 | Pepe | Feb 2008 | B2 |
7329137 | Martin et al. | Feb 2008 | B2 |
7331718 | Yazaki et al. | Feb 2008 | B2 |
7354291 | Caveney et al. | Apr 2008 | B2 |
7371082 | Zimmel | May 2008 | B2 |
7387447 | Mudd et al. | Jun 2008 | B2 |
7390203 | Murano et al. | Jun 2008 | B2 |
D572661 | En Lin et al. | Jul 2008 | S |
7431604 | Waters et al. | Oct 2008 | B2 |
7463803 | Cody et al. | Dec 2008 | B2 |
7465180 | Kusuda et al. | Dec 2008 | B2 |
7507103 | Phillips et al. | Mar 2009 | B1 |
7510335 | Su et al. | Mar 2009 | B1 |
7513695 | Lin et al. | Apr 2009 | B1 |
7561775 | Lin et al. | Jul 2009 | B2 |
7591595 | Lu et al. | Sep 2009 | B2 |
7594766 | Sasser et al. | Sep 2009 | B1 |
7641398 | O'Riorden et al. | Jan 2010 | B2 |
7651361 | Henry et al. | Jan 2010 | B2 |
7695199 | Teo et al. | Apr 2010 | B2 |
7699533 | Milette | Apr 2010 | B2 |
7785018 | Jones et al. | Aug 2010 | B2 |
7824113 | Wong | Nov 2010 | B2 |
7837395 | Lin | Nov 2010 | B2 |
D641708 | Yamauchi | Jul 2011 | S |
8083450 | Smith | Dec 2011 | B1 |
8186890 | Lu | May 2012 | B2 |
8192091 | Hsu et al. | Jun 2012 | B2 |
8202009 | Lin | Jun 2012 | B2 |
8251733 | Wu | Aug 2012 | B2 |
8267595 | Lin | Sep 2012 | B2 |
8270796 | Nhep | Sep 2012 | B2 |
8408815 | Lin et al. | Apr 2013 | B2 |
8444327 | Chen | May 2013 | B2 |
8465317 | Gniadek et al. | Jun 2013 | B2 |
8556645 | Crain | Oct 2013 | B2 |
8636424 | Kuffel et al. | Jan 2014 | B2 |
8651749 | Dainese Junior et al. | Feb 2014 | B2 |
8734027 | Zoss | May 2014 | B2 |
8770863 | Cooke et al. | Jul 2014 | B2 |
8899845 | Gallegos | Dec 2014 | B2 |
8998505 | Motofuji | Apr 2015 | B2 |
9188747 | Gniadek | Nov 2015 | B2 |
9261654 | Murphy | Feb 2016 | B2 |
9297962 | Lee | Mar 2016 | B2 |
9310569 | Lee | Apr 2016 | B2 |
9411110 | Bamette et al. | Aug 2016 | B2 |
9494744 | de Jong | Nov 2016 | B2 |
9548557 | Liu | Jan 2017 | B2 |
9551842 | Theuerkom | Jan 2017 | B2 |
9568686 | Fewkes et al. | Feb 2017 | B2 |
9581768 | Baca et al. | Feb 2017 | B1 |
9588305 | Seki | Mar 2017 | B2 |
9599778 | Wong | Mar 2017 | B2 |
9618702 | Takano | Apr 2017 | B2 |
9684313 | Cline et al. | Jun 2017 | B2 |
9709753 | Chang et al. | Jul 2017 | B1 |
9726830 | Gniadek | Aug 2017 | B1 |
9739955 | Lee | Aug 2017 | B2 |
9869825 | Bailey | Jan 2018 | B2 |
9927582 | Chang et al. | Mar 2018 | B2 |
10101539 | Yang et al. | Oct 2018 | B2 |
10185099 | Chang | Jan 2019 | B2 |
10228521 | Gniadek | Mar 2019 | B2 |
10295755 | Zhou | May 2019 | B1 |
10302874 | Tong | May 2019 | B2 |
10302875 | Yang | May 2019 | B1 |
10444444 | Ma | Oct 2019 | B2 |
10520689 | Gniadek | Dec 2019 | B2 |
20020159712 | Holmquist | Oct 2002 | A1 |
20020172467 | Anderson | Nov 2002 | A1 |
20030053787 | Lee | Mar 2003 | A1 |
20030063862 | Fillion | Apr 2003 | A1 |
20030157825 | Kane | Aug 2003 | A1 |
20040052473 | Seo et al. | Mar 2004 | A1 |
20040136657 | Ngo | Jul 2004 | A1 |
20040141693 | Szilagyi et al. | Jul 2004 | A1 |
20040161958 | Togami et al. | Aug 2004 | A1 |
20040234209 | Cox et al. | Nov 2004 | A1 |
20050111796 | Matasek et al. | May 2005 | A1 |
20050141817 | Yazaki et al. | Jun 2005 | A1 |
20060089049 | Sedor | Apr 2006 | A1 |
20060127025 | Haberman | Jun 2006 | A1 |
20060160429 | Dawiedczyk | Jul 2006 | A1 |
20060269194 | Luther et al. | Nov 2006 | A1 |
20060274411 | Yamauchi | Dec 2006 | A1 |
20070028409 | Yamada | Feb 2007 | A1 |
20070079854 | You | Apr 2007 | A1 |
20070098329 | Shimoji | May 2007 | A1 |
20070149062 | Long et al. | Jun 2007 | A1 |
20070232115 | Burke | Oct 2007 | A1 |
20070243749 | Wu | Oct 2007 | A1 |
20080008430 | Kewitsch | Jan 2008 | A1 |
20080044137 | Luther et al. | Feb 2008 | A1 |
20080056646 | Terakura | Mar 2008 | A1 |
20080069501 | Mudd | Mar 2008 | A1 |
20080101757 | Lin et al. | May 2008 | A1 |
20080226237 | O'Riorden et al. | Sep 2008 | A1 |
20080267566 | En Lin | Oct 2008 | A1 |
20090022457 | De Jong et al. | Jan 2009 | A1 |
20090028507 | Jones | Jan 2009 | A1 |
20090092360 | Lin et al. | Apr 2009 | A1 |
20090175580 | Chen | Jul 2009 | A1 |
20090196555 | Lin et al. | Aug 2009 | A1 |
20090214162 | O'Riorden et al. | Aug 2009 | A1 |
20090220197 | Gniadek | Sep 2009 | A1 |
20090290838 | Lin et al. | Nov 2009 | A1 |
20090290938 | Lin et al. | Nov 2009 | A1 |
20100034502 | Lu et al. | Feb 2010 | A1 |
20100247041 | Szilagyi | Sep 2010 | A1 |
20100322561 | Lin | Dec 2010 | A1 |
20110044583 | Dalton | Feb 2011 | A1 |
20110044588 | Larson et al. | Feb 2011 | A1 |
20110045683 | Foung | Feb 2011 | A1 |
20110131801 | Nelson et al. | Jun 2011 | A1 |
20110177710 | Tobey | Jul 2011 | A1 |
20110274437 | Jones | Nov 2011 | A1 |
20120099822 | Kuffel et al. | Apr 2012 | A1 |
20120155810 | Nakagawa | Jun 2012 | A1 |
20120189260 | Kowalczyk et al. | Jul 2012 | A1 |
20120269485 | Haley | Oct 2012 | A1 |
20120301080 | Gniadek | Nov 2012 | A1 |
20130071067 | Lin | Mar 2013 | A1 |
20130089995 | Gniadek | Apr 2013 | A1 |
20130094816 | Lin et al. | Apr 2013 | A1 |
20130121653 | Shitama et al. | May 2013 | A1 |
20130183012 | Cabanne Lopez et al. | Jul 2013 | A1 |
20130183018 | Holmberg | Jul 2013 | A1 |
20130195407 | Imaki | Aug 2013 | A1 |
20130216188 | Lin | Aug 2013 | A1 |
20130259429 | Czosnowski et al. | Oct 2013 | A1 |
20130322825 | Cooke et al. | Dec 2013 | A1 |
20140016901 | Lambourn | Jan 2014 | A1 |
20140016902 | Pepe | Jan 2014 | A1 |
20140023322 | Gniadek | Jan 2014 | A1 |
20140050446 | Chang | Feb 2014 | A1 |
20140133808 | Hill | May 2014 | A1 |
20140169727 | Veatch | Jun 2014 | A1 |
20140219621 | Barnette et al. | Aug 2014 | A1 |
20140226946 | Cook et al. | Aug 2014 | A1 |
20140241678 | Brinquier et al. | Aug 2014 | A1 |
20140241688 | Isenhour et al. | Aug 2014 | A1 |
20140334780 | Nguyen et al. | Nov 2014 | A1 |
20140348477 | Chang | Nov 2014 | A1 |
20150177463 | Lee | Jun 2015 | A1 |
20150301294 | Chang | Oct 2015 | A1 |
20150355417 | Takano | Oct 2015 | A1 |
20150331201 | Takano et al. | Nov 2015 | A1 |
20150378113 | Good et al. | Dec 2015 | A1 |
20160131849 | Takano | May 2016 | A1 |
20160131858 | Anderson et al. | May 2016 | A1 |
20160154190 | Lin | Jun 2016 | A1 |
20160172852 | Takano | Jun 2016 | A1 |
20160291262 | Chang | Jun 2016 | A1 |
20160195682 | Takano | Jul 2016 | A1 |
20160259135 | Gniadek | Sep 2016 | A1 |
20160266326 | Gniadek | Sep 2016 | A1 |
20160320572 | Gniadek | Nov 2016 | A1 |
20170003458 | Gniadek | Jan 2017 | A1 |
20170276881 | Ott | Sep 2017 | A1 |
20180259717 | Takano | Sep 2018 | A1 |
20180292618 | Chang et al. | Oct 2018 | A1 |
20190195407 | Sprenger | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
2495693 | Apr 2004 | CA |
2836038 | Nov 2006 | CN |
201383588 | Jan 2010 | CN |
202600189 | Dec 2012 | CN |
202006011910 | Apr 2007 | DE |
102006019335 | Oct 2007 | DE |
1074868 | Jul 2001 | EP |
1211537 | Jun 2002 | EP |
1245980 | Oct 2002 | EP |
1566674 | Aug 2005 | EP |
2111240 | Jun 1983 | GB |
2009229545 | Oct 2009 | JP |
2009276493 | Nov 2009 | JP |
200821653 | May 2008 | TW |
200179904 | Oct 2001 | WO |
2004027485 | Apr 2004 | WO |
2008112986 | Sep 2008 | WO |
2009135787 | Nov 2009 | WO |
2010024851 | Mar 2010 | WO |
2012136702 | Oct 2012 | WO |
2012162385 | Nov 2012 | WO |
2014028527 | Feb 2014 | WO |
2014182351 | Nov 2014 | WO |
2015191024 | Dec 2015 | WO |
2016148741 | Sep 2016 | WO |
Entry |
---|
International Search Report and Written Opinion, Application No. PCT/US19/27996, dated Aug. 26, 2019, pp. 15. |
European Search Report and Written Opinion dated Mar. 3, 2015 for EP 14187661. |
European Search Report and Written Opinion dated Feb. 19, 2015 for EP 14168005. |
“Fiber Optic Connectors and Assemblies Catalog” 2009, Huber & Suhner Fiver Optics, Herisau, Switzerland, www.hubersuhner.com. |
“Fiber Optic Interconnect Solutions, Tactical Fiber Optical Connectors, Cables and Termini” 2006, Glenair, Inc., Glendale, California, www.mps-electronics.de. |
“Fiber Optic Products Catalog” Nov. 2007, Tyco Electronics Corporation, Harrisburg, Pennsylvania, www.ampnetconnect.com. |
International Search Report and Written Opinion dated Apr. 27, 2012 for PCT/US2011/058799. |
International Search Report and Written Opinion dated Aug. 27, 2012 for PCT/US2012/039126. |
International Search Report and Written Opinion dated Jan. 16, 2014 for PCT/US2013/54784. |
International Search Report and Written Opinion dated Oct. 9, 2014 for PCT/US2014/041500. |
International Search Report and Written Opinion dated May 14, 2014 for PCT/US2014/012137. |
International Search Report and Written Opinion dated Aug. 21, 2008 for PCT/US2008/057023. |
International Preliminary Report on Patentability dated Aug. 22, 2016 from related International Application No. PCT/US2015/059458, International Filing Date Nov. 6, 2015. |
International Search Report (ISR) WO2008112986 dated Sep. 15, 2009. |
ISR WO2014028527ISR dated Feb. 20, 2014. |
ISR WO2015US57610ISR dated Jan. 21, 2016. |
Non-Final Office Action, U.S. Appl. No. 15/882,343, dated Nov. 19, 2018, pp. 12. |
Non-Final Office Action, U.S. Appl. No. 15/979,596, dated Dec. 11, 2018, pp. 10. |
Number | Date | Country | |
---|---|---|---|
20190271816 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
62658806 | Apr 2018 | US | |
62581961 | Nov 2017 | US | |
62546920 | Aug 2017 | US | |
62457150 | Feb 2017 | US | |
62452147 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15979596 | May 2018 | US |
Child | 16387373 | US | |
Parent | 15881309 | Jan 2018 | US |
Child | 15979596 | US |