The present disclosure relates to optical fiber connection assemblies, and more particularly, to optical fiber connection assembly hardware and modules for a base-8 fiber solution.
There are two dominant transmission forms used in data centers for fiber cabling today. A duplex (e.g., 2 fiber) solution uses dedicated transmit and receive optical channels paired together and a parallel multi-fiber solution (e.g., 8-fiber solutions) that transmits signals using multiple optical channels and recombines the multiple optical channels for transmitting at faster speeds. For instance, a parallel 100-Gigabit link may be transmitted along ten parallel 10-Gigabit lanes with the multiple 10-Gigabit signals being recombined from the parallel channels. Many customers desire to move back and forth between these different transmission forms at different locations in the network depending on network management requirements and link costs at different protocol speeds. Existing parallel solutions require an MTP type connector, which is designed to hold 12 fibers.
Likewise, current duplex solutions also deploy 12-fiber MPO trunk cabling along with MPO/LC breakout modules. In the duplex solutions the plurality of optical channels of the MPO connecter are broken out into individual optical channels using modules with LC connections. Consequently, all of the optical channels can be accessed as LC ports at the front of the module. However, these network solutions do not allow the flexibility to easily migrate the system from a duplex transmission to a parallel transmission solution and vice-versa. Further, fiber utilization rates for the 12-fiber optical networks can be encountered if other fiber counts are needed for the network such as 8-fiber solutions, either 4 fibers must be left dark or conversion modules must be employed, either of which may add cost, complexity and attenuation to the network systems.
Existing solutions for migration from a duplex transmission to a parallel transmission contemplate the cumbersome replacement of current MPO-LC modules with an MPO panel. However, there is also a need to easily migrate back to a duplex transmission when desired. This migration can provide challenges and result in extensive down time for the migration. For example, users are cabling cabinets in the data center space without prior knowledge if duplex or parallel transmission would be required in that cabinet (based on servers placed in that cabinet). In addition, new transceiver technology is always evolving in the market; thus a particular data rate today that might require parallel cabling could be replaced by a new duplex transceiver in the future at the same data rate. Thus, there is a need for flexibility in cabling and network infrastructure that allow the network operator an easy way to migrate between duplex and parallel transmission and vice versa at locations in the optical network.
The application discloses end-to-end solutions for 8-fiber MPO connector, not the standard 12-fiber connections used in the industry today (the MPO connector such as a MTP connector itself could be a new 8-fiber molded ferrule with only 8 holes or only load 8 fibers in the current 12 fiber connector ferrule configuration and is a BASE-8 configuration). Although the concepts are discussed relative to chassis having a 1-U rack space footprint, all of the concepts may be expanded for example to chassis having a 4-U rack space footprint with the same densities, but a quadrupling of the number of optical connections supported. It is contemplated that other dimensions of housings (e.g., 5-U, 8-U, etc.) may be used without departing from the scope of the present disclosure.
The equipment, illustrated generally in
The components and optical network solution disclosed offers several advantages compared with conventional optical network solutions having a BASE-12 configuration. For instance, the equipment disclosed provides 100% fiber utilization, and maintains link attenuation performance when converting from a duplex solution to a parallel 8 fiber solution.
The fiber optic equipment provides a simple migration path between duplex and 8-fiber parallel links, by using a small MPO increment that matches up directly with the number of transceiver channels so that the migration between duplex and parallel links for transmission can happen while disrupting fewer duplex clients during migration.
Another embodiment, illustrated generally in
An additional application for the pigtailed module is for spine and leaf architectures where often 40G ports are used to create a 10G mesh to allow for a more servers in the network. This would allow a patch field to be created and the mesh to be completed with jumpers.
Another embodiment contemplates an eight fiber pigtailed module, which can help solve two problems. The first is the desire to run parallel ports like high density duplex ports. An application example of this is the ability to run 40G ports like (4) 10G ports. One of the main challenges in the application is that the structured cabling the multi-fiber port must be broken down into duplex connectors in the structured cabling. Current applications include buying 8 fiber harnesses and plugging them into panels. This solution can be solved better by providing an 8 fiber pigtailed module that can be plugged directly into the parallel port and present as LC connectors at the piece of hardware. Each LC breakout module would represent a single parallel 4-channel parallel port (instead of the current 12f breakout panel that must represent 1.5 parallel ports, hence not a clean/logical breakout of the port).
Components, fiber optic equipment and assemblies disclosed may also support switching between parallel and duplex links from the front side of chassis, tray or optical hardware. Again, the pigtail would extend the current MPO from the backplane and pass through the panel assembly to interconnect on the front plane to the trunk. This achieves the goal of presenting both the parallel and duplex ports at the front plane with no need to move the trunk cable connector (in the rear) when converting between duplex and parallel. In addition, no additional loss is introduced in the link.
This solution offers several advantages:
Another embodiment, illustrated generally in
The concept behind this disclosure is to create a combination duplex and parallel hybrid module that would allow a customer to transition between the different transmissions by simply moving the connector of the trunk cable between locations of the hybrid module. One alternative to this approach would be to move the MPO connector from the trunk from a MTP/LC module into an MTP panel.
The advantage of this hybrid module would be the ease of planning and cabling migration. In one chassis embodiment, each slot in the tray would have a single MPO connector dedicated to that slot position in the tray. That MPO would be loaded in the rear of the module to breakout into LC connectivity for duplex transmission (creating 4-6 duplex links) or placed in the MPO adapter at the front plane to allow for a single parallel channel. As equipment is placed in the cabinet and the data rate and transmission technology is determined, the user would move each MTP per slot either in the duplex or parallel position based on the application. Thus, the network operator does not have to replace modules with panels on Day 1 or Day 2 because both options are available in each module slot on Day 1.
Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from the description or recognized by practicing the embodiments as described in the written description and embodiments hereof, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are merely exemplary, and are intended to provide an overview or framework to understand the nature and character of the embodiments. The accompanying drawings are included to provide a further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiment(s), and together with the description serve to explain principles and operation of the various embodiments.
The application discloses BASE-8 modules, fiber optic panel assemblies, and hybrid fiber optic modules for mounting in equipment trays that can be mounted in a movable fashion to a chassis. The assemblies disclosed provide the ability to easily and quickly migrate an optical network between duplex transmission and 8-fiber parallel transmission. The BASE-8 configurations are contrary to the installed BASE-12 optical networks that are widely deployed. Further, the BASE-8 components and assemblies can improve fiber utilization rates when requiring quick and easy migration path between duplex and parallel transmission in an optical network.
Conventional solutions include replacing the current MPO/LC breakout duplex modules with MPO panels/modules when converting to 8-fiber links for parallel transmission. However, there is a need for flexibility to convert back to 2-fiber links as needed when network requirements change, such as new lower bandwidth equipment placed in cabinet, or a new technology evolving that only requires 2-fiber duplex connectivity. Hence, the ability to easily convert between duplex and 8-fiber parallel transmission systems is desired and not currently available with conventional networks. One embodiment is directed to tray for mounting fiber optic equipment having a BASE-8 configuration. For instance, the fiber optic equipment having the BASE-8 configuration could be a module, a panel assembly, a hybrid module, or other suitable fiber optic equipment.
As used herein, BASE-8 means the component supports transmission of eight optical channels and connects with 8-fiber connectors, not 12-fiber connectors. Consequently, all of the optical channels may be used for migrating between duplex and parallel transmission without having unused optical fibers. The concepts are depicted with 8-fiber ports such as MPO ports and single fiber ports such as LC ports that support single fiber connectors. Fiber optic equipment and assemblies disclosed may be secured and supported in trays, and the trays may be secured and supported in a chassis. Further, the fiber optic equipment may optionally move relative to the trays when attached thereto. Likewise, the trays may optionally move relative to the chassis when attached thereto.
This disclosure is directed to pre-terminated solutions based around using units of 8-fibers in connectors and adapters to match-up with the channels required for an 8-fiber parallel transceiver. This is in contrast to the conventional 12- and 24-fiber base solutions used in optical networks today. Included in this disclosure are trunk cables with 8-fiber units, MPO connectors or other suitable connector only populated with 8-fibers, and BASE-8 fiber optic equipment such as MPO to LC fiber optic modules, fiber optic panel assemblies and hybrid fiber optic modules.
Generally speaking, a module will include an enclosure having an internal chamber, whereas a panel assembly will not have an enclosure. A fiber harness is typically installed into the internal chamber of the module for protecting the same. Panel assemblies may be used for optical connection such as a fiber optic panel assembly comprising a front panel disposed at a front end with a linear array of fiber optic adapters arranged in a width direction in the front panel in a BASE-8 configuration. Further, the BASE-8 fiber optic equipment such as the fiber optic panel assembly or module may compactly mount into a tray using ⅙ of the tray width or less. In another embodiment, the fiber optic panel assembly has a first and second multi-fiber adapter disposed at a front end of the fiber optic panel assembly and at least one pass-through channel at the rear side. Another piece of fiber optic equipment is the hybrid fiber optic module that supports connections for eight LC connections and an 8-fiber MPO connection at the front end, and which provides a quick and easy migration node in the network.
Module 10 has an enclosure (not numbered) with an internal cavity. The harness has a plurality of optical fibers optically connected between the linear array of fiber optic adapters 18 and a rear side of the fiber optic assembly. For instance, a MPO adapter 16 is disposed at rear end 14 suitable for connection with an 8-fiber connector of a trunk cable. However, other variations of module 10 are possible such as a pigtail extending from rear end 14 for optical connection such as shown by the module 10′ in
Module 10 also has rails 22 for attaching it to a tray as discussed below. Module may also optionally have a lever 24 for selectively removing it from and securing it to a tray. For instance, a latch (not numbered) is disengaged by pushing lever 24 inward to release the latch (not numbered) from a support rail of the tray. To facilitate pushing the lever 24 inwards, a finger hook (not numbered) is provided adjacent to or proximate lever 24 so the lever 24 can easily be squeezed, drawing lever 24 toward the finger hook, thereby laterally displacing latch relative to a corresponding securing mechanism associated with the support rail of the tray and allowing the module to be slidably disengaged from the tray.
Tray 100 comprises a base 102 for supporting a plurality of BASE-8 fiber optic equipment. For instance, the tray can include module 10 and/or panel assembly 400 (
Base 102 is configured to support at least five (5) pieces of BASE-8 fiber optic equipment in a width W direction. Tray 100 has a height H of ⅓ U-Space or less. The tray may support a connection density of greater than thirty-two (32) fiber optic connections, at least forty (40) fiber optic connections, and forty-eight (48) fiber optic connections per ⅓ U-space with a BASE-8 configuration.
As depicted in
According to one embodiment chassis 300 may have a standard height of 1-U space for an equipment rack and has mounting structure for securing the same to a rack. According to other embodiments, chassis may have a height suitable for mounting in a different size, such as 2-U or 4-U space for an equipment rack. Chassis 300 has a ⅓ U-Space for the individual trays 100. As shown, in
BASE-8 modules allow for the same LC duplex density to be achieved as BASE-12 trays and chassis, but advantageously allow for 8 fiber MPO's to be utilized to allow for 100% fiber utilization for migration from duplex to 8-fiber parallel transmission when using panels and MPO jumpers.
The industry solutions on the market today either require conversion modules to take the widely deployed BASE-12 and BASE-24 fiber solutions down to eight fiber increments or the use of MPO pass through panels which do not allow all of the fibers to be utilized. The embodiments and concepts disclosed herein solve the fiber count mismatch of existing structured cabling solutions with a BASE-12 configuration and provide a matched fiber count for cooperation with the transceivers. Thus, the embodiments and concepts disclosed herein allow for high-density, easy transitions along with low attenuation solutions.
The concepts disclosed include other BASE-8 fiber optic equipment that may be used in trays for providing the network operator more flexibility and ability to modify the optical network and make migrations of transmission protocols.
Panel assembly 400 can have other features such as finger access cutouts 420 in the panel for allowing access below the panel assembly 400 to install BASE-8 connectors to adapters 420. Pass-through channel 410 may have a cut-out 411 so that a cable can be placed into the panel assembly 400 from the top side. Further, the pass-through channel 410 may extend to the front end 402 of the panel assembly and may include a second cut-out 411 for placing cables into the panel assembly 400 from the top side. Panel assembly 400 may further include ribs for structural support, panel rails 422 for mounting in the tray, a lever 424 or other suitable structure or features. Panel assembly can be configured as a simple panel or it can have a housing 401 extending between a front panel 412 and the rear end 404 of panel assembly 400 as shown. It is possible for the housing 401 to include an enclosure if desired to form a module.
Panel assembly 400 has at least one front panel 412 where the at least one front multi-fiber adapter 418 is disposed in the front panel. In the embodiment shown in
The MPOs from the trunk cable 101 are connected to the rear side of panel assembly 400 at the respective adapters 418 as shown. This ensures that the MTP is presented in the front plane of the housing to make it available for 8-fiber links. However, when the connectors are desired to be broken out into LC connectivity, the pigtail of module 10′ is passed through the center of the MTP panel and plugged in on the front side of the panel, thereby allowing the migration from parallel to duplex transmission in the optical network. The same connectivity can be accomplished using module 10 with a MPO jumper cable that attaches to the front side of the respective fiber optic adapter and the rear end of the module 10.
In use, the rear side of the at least one front multi-fiber adapter is configured to optically connect to a first multi-fiber optical cable extending from a rear end 404 of the panel assembly 400 toward the front end 402; and the front side of the at least one front multi-fiber adapter is configured to optically connect to a second multi-fiber optical cable extending from a rear end 404 of the panel assembly 400 toward the front end 402 and passing through the at least one pass through channel 410 such as shown on the right-side of tray 100′ using modules 10.
Other fiber optic equipment is also disclosed that are useful for BASE-8 configurations.
Hybrid module 500 has both a MPO/LC breakout portion for duplex transmission as representatively shown on the left side and the other side of hybrid module having a BASE-8 MPO adapter 418. Hybrid module 500 has a front end 502 and a rear end 504. A linear array of single fiber optical connector adapter(s) 418 are arranged in a width Wu direction at the front end 502 and each of the single fiber optical adapters having a front side and a rear side. A front multi-fiber adapter 518 is disposed at the front end 502 and the front multi-fiber adapter has a front side 518F and a rear side 518R. A rear multi-fiber adapter 516 at the rear end 504 of the module, the adapter 516 has a front side (not visible) and a rear side 516R. The front side of the adapter 516 is disposed within an internal cavity of the enclosure of hybrid module 500. A plurality of optical fibers are optically connected between a rear side of each of the array of single fiber optic adapters and the front side of the rear multi-fiber adapter. A multi-fiber connector of a trunk cable 101 can be connected to either the rear side 518R of the front multi-fiber adapter 518 to enable an optical connection with a multi-fiber connector connected to the front side 518F of the front multi-fiber connector, or to the rear side 516R of the rear multi-fiber adapter 516 to enable optical connections with a plurality of single fiber optic connectors connected to the linear array of single fiber, fiber optic connector adapters. As depicted, hybrid module 500 comprises an enclosure (not numbered) enclosing the plurality of optical fibers within the internal cavity and protecting the same. As shown, the front multi-fiber connector 518 is disposed outside the enclosure. Thus, the hybrid module supports duplex and parallel transmission with the jumper connections at the front side of the tray or chassis for easy access and if migration is necessary the multi-fiber connector of the trunk cable merely is moved to the other adapter position of the hybrid module.
The hybrid module 500 supports a linear array of single fiber optic adapters 18 being configured as eight (8) single fiber connectors. As shown, the adapters 18 are configured as LC ports, but configurations with other connector ports are possible using the concepts. Hybrid module 500 comprises a housing 501 that partially extends between the front end 502 and the rear end 504 and includes a mounting structure. For instance, hybrid module 500 may optionally include rails 522 similar to module 10. Likewise, hybrid module may optionally include a lever 524 similar to lever 24 discussed herein.
Hybrid module 500 also comprises at least one pass-through channel 510 extending from the rear side 518R of the front multi-fiber adapter 518 to the rear end 504 of the hybrid module. Hybrid module 500 may also optionally comprise at least one cable management feature proximate to the at least one pass-through channel 510, the at least one cable management feature configured to retain the fiber optic cable in the channel. Hybrid module 500 may also comprise a finger access cutout 520 for the rear side 518R of the front multi-fiber adapter. Hybrid module 500 is configured to mount into tray 600 using ¼ of a tray width Wit or less as depicted.
Module 10 may also comprise an enclosure (not numbered) with an internal cavity. The harness has a plurality of optical fibers optically connected between the linear array of fiber optic adapters 18 and a rear side of the fiber optic assembly. For instance, an MPO adapter 16 is disposed at rear end 14 suitable for connection with an 8-fiber connector of a trunk cable. However, other variations of module 10 are possible such as a pigtail extending from rear end 14 for optical connection.
Module 10 also has rails 22 for attaching it to a tray as discussed below. Module 10 may also comprise a lever 24 for selectively removing it from and securing it to a tray. For instance, a latch (not numbered) is disengaged by pushing lever 24 inward to release the latch (not numbered) from a support rail of the tray. To facilitate actuation of the lever 24, a finger tab 1112 may be disposed on the rear of module 10 and may be positioned at a predetermined lateral distance away from lever 24. According to the exemplary embodiment shown in
During actuation of lever 24, opposably depress lever 24 and finger tab 1112 together, drawing lever 24 toward the finger tab 1112, thereby laterally displacing latch relative to a corresponding securing mechanism associated with the support rail of the tray and allowing the module to be slidably disengaged from the tray. According to some embodiments, module 10 may also include a stop tab 1110 positioned adjacent to or proximate lever 24 to provide a mechanism for limiting the lateral displacement of lever 24 to limit or reduce excess force being applied to lever 24. In some embodiments, one or more of lever 24, finger tab 1112 or stop tab 1110 may be “serrated” on one or more surfaces, providing for better grip during actuation.
Panel assembly 400 can have other features such as finger access cutouts (not explicitly shown in
Panel assembly 400 may include at least one front panel where the at least one front multi-fiber adapter 418 is disposed in the front panel. In the embodiment shown in
Tray 100 comprises a base for supporting a plurality of BASE-8 fiber optic equipment. For instance, the tray can include module 10 and/or panel assembly 400 (
Base 102 is configured to support at least five (5) pieces of BASE-8 fiber optic equipment in a width W direction. Tray 100 has a height H of ⅓ U-Space or less. The tray may support a connection density of greater than thirty-two (32) fiber optic connections, at least forty (40) fiber optic connections, and forty-eight (48) fiber optic connections per ⅓ U-space with a BASE-8 configuration.
As depicted in
It should be noted that, although certain embodiments are shown and illustrated with each tray 100 occupying the entire width of chassis, it is contemplated that the embodiments described herein contemplate embodiments in which a plurality of trays are used to populate the width of chassis. For example, rather than having three trays, each designed to occupy the width (or less) and ⅓ of the height (or less) of a 1-U chassis, the chassis may be designed to support configurations with 6 trays, each designed to occupy ½ of the width (or less) and ⅓ of the height (or less) of a 1-U chassis. In these embodiments, chassis may include one or more dividing members, positioned vertically from the top of the chassis to the bottom of the chassis disposed at approximately the horizontal mid-point of the chassis, wherein the dividing member having a plurality of guide rails to support rails on the sides of the trays. Such a design would provide flexibility to support different sizes of BASE modules in the same row. For example, one half of the row can be configured to support 3 BASE-8 modules and the other half of the row can be configured to accommodate 2 BASE-12 modules, enabling a greater degree of customization.
The concepts and fiber optic equipment disclosed provide flexibility for the network operators to modify the optical network architecture as need to migrate between duplex and parallel transmission as desired. Moreover, the trays and assemblies may be backwards compatible to fit into an installed chassis base that network operators may already be using.
Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method embodiment does not actually recite an order to be followed by its steps or it is not otherwise specifically stated in the embodiments or descriptions that the steps are to be limited to a specific order, it is no way intended that any particular order be inferred.
It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the disclosure. Since modifications combinations, sub-combinations and variations of the disclosed embodiments incorporating the spirit and substance of the disclosure may occur to persons skilled in the art, the disclosure should be construed to include everything within the scope of the appended embodiments and their equivalents.
This application is a continuation of International Application No. PCT/US15/47669, filed on Aug. 31, 2015, which claims the benefit of priority to U.S. Provisional Application Ser. Nos. 62/043,794, 62/043,797, and 62/043,802, all of which were filed on Aug. 29, 2014, and U.S. Provisional Application Ser. No. 62/132,872, which was filed on Mar. 13, 2015, the content of each of which is relied upon and incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62132872 | Mar 2015 | US | |
62043797 | Aug 2014 | US | |
62043802 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US15/47669 | Aug 2015 | US |
Child | 15445115 | US | |
Parent | 62043794 | Aug 2014 | US |
Child | PCT/US15/47669 | US |