Fiber optic terminals and tools and methods for adjusting a split ratio of a fiber optic terminal

Information

  • Patent Grant
  • 11947167
  • Patent Number
    11,947,167
  • Date Filed
    Friday, May 20, 2022
    a year ago
  • Date Issued
    Tuesday, April 2, 2024
    29 days ago
Abstract
Fiber optic terminals, tools and methods for adjusting a split ratio of a fiber optic terminal are disclosed. In one embodiment, a tool for adjusting a split ratio of a fiber optic terminal includes an axle for insertion into a port of the fiber optic terminal, and a terminal engagement body disposed about the axle. The terminal engagement body includes a terminal engagement feature for engaging an alignment feature within the fiber optic terminal, wherein the axle is free to rotate with respect to the terminal engagement body, and a set-point indicator. The tool further includes an end piece coupled to the axle, and a plurality of set-point markers, wherein rotation of the end piece causes rotation of the axle and an alignment between one set-point marker of the plurality of set-point markers with the set-point indicator indicates the split ratio of the fiber optic terminal.
Description
FIELD

The disclosure is directed to fiber optic terminals having variable ratio couplers and tools for changing the output power level of optical outputs along with fiber optic networks using the terminals.


BACKGROUND

Optical fiber is increasingly being used for a variety of applications, including but not limited to broadband voice, video, and data transmission. As bandwidth demands increase optical fiber is migrating deeper into communication networks such as in fiber to the premises applications such as FTTx, 5G and the like. As optical fiber extends deeper into communication networks there exists a need for building more complex and flexible fiber optic networks in a quick and easy manner.


Terminals such as multiports or closures were also developed for making one or more optical connections with hardened connectors such as the OptiTap® plug connector. Prior art multiports have an input cable or input port with a plurality of receptacles mounted through a wall of the housing for protecting an indoor connector inside the housing that makes an optical connection to the external hardened connector of the branch or drop cable.


Illustratively, FIG. 1 shows a conventional fiber optic multiport 1 having an input fiber optic cable 4 carrying one or more optical fibers to indoor-type connectors inside a housing 3. The multiport 1 receives the optical fibers into housing 3 and distributes the optical fibers to receptacles 7 for connection with a hardened connector. The receptacles 7 are separate assemblies attached through a wall of housing 3 of the multiport 1. The receptacles 7 allow mating with hardened connectors attached to drop or branching cables (not shown) such as drop cables for “fiber-to-the-home” applications. During use, optical signals pass through the branch cables, to and from the fiber optic cable 4 by way of the optical connections at the receptacles 7 of multiport 1. Fiber optic cable 4 may also be terminated with a fiber optic connector 5.


Multiport 1 allows quick and easy deployment by service providers for passive optical networks. Further, multiport 1 may use a coupler or splitter inside the multiport to allow a single input optical signal to be split into multiple output channels. By way of explanation, the input fiber optic cable may have a single optical fiber that is in optical communication with a 1:N splitter for outputting N output signals. However, the power level of the input optical channel is divided among the N output signals in a passive optical network (e.g., no active components are used in the passive portion of the optical network). By way of explanation, a 1:2 coupler may split the power from the single input optical fiber as 50% power for the first output optical signal and 50% power for the second output optical signal. Other couplers may have unequal splits in the power level as desired such as splitting the power from the single input optical fiber as 80% power for the first output optical signal and 20% power for the second output optical signal depending on the requirements for the fiber optic network. Furthermore, multiports may be daisy-chained together for building more complicated fiber optic networks with further power level splits for the distribution of passive optical signals. By way of a simple explanation, an input optical signal from the central office may be able to accommodate a total split of 1:16 for the given input power level of the optical signal. An upstream multiport may have a 1:2 split with equal power levels for the two output fibers that each feed separate downstream multiports having a further 1:8 split with equal power levels, thus the single input fiber is split into 16 output signals each having an equal power level. Alternatively, a single multiport can incorporate a 1×2 splitter with unequal power split, with one output connected to a 1×N equal power splitter and the other connected to a downstream multiport.


However, conventional couplers or splitters have a fixed power level split for the output signals. This requires many individual couplers or splitters each having its own SKU, which increases both manufacturing and inventory costs. Moreover, fixed power level split does not readily allow for easy modification to the fiber optic network due to changed circumstances such as adding new customers or adapting the power levels needed for different loss budgets across the length of the passive optical network.


Consequently, there exists an unresolved need for terminals that provide quick and easily deployment for the fiber optic network in a flexible manner while also addressing concerns related to limited space, organization, or aesthetics.


SUMMARY

The disclosure is directed to fiber optic terminals (hereinafter “terminals”) and tools for adjusting a split ratio of fiber optic terminals including variable ratio couplers. The tools and the terminals with variable ratio couplers allow the power levels for the optical outputs from the variable ratio coupler to be changed as desired, thereby providing flexibility for the network operators to adapt or customize their network for their given needs.


In one embodiment, a tool for adjusting a split ratio of a fiber optic terminal includes an axle for insertion into a port of the fiber optic terminal, and a terminal engagement body disposed about the axle. The terminal engagement body includes a terminal engagement feature for engaging an alignment feature within the fiber optic terminal, wherein the axle is free to rotate with respect to the terminal engagement body, and a set-point indicator. The tool further includes an end piece coupled to the axle, and a plurality of set-point markers, wherein rotation of the end piece causes rotation of the axle and an alignment of one set-point marker of the plurality of set-point markers with the set-point indicator indicates the split ratio of the fiber optic terminal.


In another embodiment, a tool for adjusting a split ratio of a fiber optic terminal includes a housing defining a cavity, an input axle at least partially disposed within the cavity, an indicator body coupled to an end of the input axle that includes a plurality of set-point markers that are visible through the housing, and a terminal engagement feature disposed within the housing and operable to be referenced and attached to a fiber optic terminal, wherein the terminal engagement feature includes a set-point indicator that is visible through the housing. The tool further includes a first set of gears disposed on the input axle, wherein each gear of the first set of gears has a different diameter and an adjustment axle partially disposed within the cavity and including an adjustment end extending out of the cavity. The adjustment end is operable to be inserted into a port of the fiber optic terminal. The tool also includes a second set of gears disposed on the adjustment axle, wherein each gear of the second set of gears has a different diameter, and engagement of an individual gear of the first set of gears with an individual gear of the second set of gears depends on an insertion depth of the adjustment axle into the port.


In another embodiment, a tool for adjusting a split ratio of a fiber optic terminal includes a housing defining a cavity, an axle for insertion into a port of a fiber optic terminal, wherein the axle is partially disposed within the cavity, a terminal engagement body operable to reference with and attach to the fiber optic terminal, an actuator coupled to the axle, and an encoder coupled to the axle, wherein the encoder is operable to determine a rotational position of the axle. The tool further includes at least one controller that is programmed to receive calibration information having a location of set-points of a shaft of a variable ratio coupler within the fiber optic terminal, and provide a control signal to the actuator to rotate the axle to a desired set-point based at least in part on the calibration information and a position signal from the encoder.


In another embodiment, a fiber optic terminal includes a shell having a cavity, a plurality of ports including a control port having a port opening extending from an outer surface of the terminal into the cavity and defining a port passageway along a longitudinal axis, wherein the control port is operable to receive a tool, and a variable ratio coupler disposed within the cavity. The variable ratio coupler includes an optical input, a first optical output, a second optical output, and a shaft, wherein rotation of the shaft by the tool changes an output power level between the first optical output and the second optical output at a coupling region.


In another embodiment, a method of changing a split ratio of a fiber optic terminal includes inserting an axle of a tool into a control port passageway of a control port of a plurality of ports of the fiber optic terminal to engage an end of the axle with a shaft of a variable ratio coupler within a cavity of the fiber optic terminal. The method further includes rotating the axle of the tool to rotate the shaft of the variable ratio coupler to a desired set-point, wherein the desired set-point corresponds to a desired output power level between a first optical output and a second optical output of the variable ratio coupler.


In another embodiment, a variable ratio coupler for changing a split ratio of optical power for two optical fibers includes a coupler having a coupling region operable to change the split ratio of the optical power for the two optical fibers, and a shaft having an end, an end face at the end configured to receive a tool, and a plurality of detents circumferentially disposed about the end, wherein rotation of the shaft by the tool changes an output power level between the first optical output and the second optical output at a coupling region, and the plurality of detents correspond with a plurality of set-point indicators provided on the tool. The variable ratio coupler further includes a cam disposed on the shaft, wherein the cam has a shape that changes an amount of bend on the coupling region for a desired split ratio of optical power for the two optical fibers and provides for substantially equally spaced individual set-point indicators of the plurality of set-point indicators on the tool.


Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the same as described herein, including the detailed description that follows, the claims, as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description present embodiments that are intended to provide an overview or framework for understanding the nature and character of the claims. The accompanying drawings are included to provide a further understanding of the disclosure, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments and together with the description serve to explain the principles and operation.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a prior art multiport;



FIG. 2 is a schematic representation of a fiber optic network having terminals with a variable ratio coupler;



FIG. 3 is a schematic representation of the variable ratio coupler depicted in the terminals of FIG. 2;



FIG. 4 is a perspective view of an explanatory fiber optic terminal comprising a variable ratio coupler disposed within a cavity of the terminal with a control port for receiving a tool for changing an output power level between a first optical output and a second optical output;



FIG. 5 is a perspective view of another explanatory fiber optic terminal similar to the fiber optic terminal of FIG. 4, but comprising a variable ratio coupler controllable by a tool and with a different number of output connection ports;



FIG. 6 is a partially exploded view of another explanatory terminal showing further details of a specific construction for terminals;



FIG. 7 is a transparent top view of another explanatory terminal showing further details of a specific construction for terminals;



FIG. 8 is a perspective view of an explanatory tool for changing an output power level between a first optical output and a second optical output;



FIG. 9 is a perspective view of an explanatory variable ratio coupler for receiving a tool to change an output power level between a first optical output and a second optical output;



FIG. 10 is a perspective view of another explanatory variable ratio coupler for receiving a tool to change an output power level between a first optical output and a second optical output;



FIG. 11 is a front view of an explanatory shaft of a variable ratio coupler having a rotationally asymmetric feature configured as two holes in an end face of the shaft;



FIG. 12 is a front view of an explanatory cam for positioning on a shaft of a variable ratio coupler;



FIG. 13 is a front view of another explanatory cam for positioning on a shaft of a variable ratio coupler;



FIG. 14 is a top schematic view of another explanatory tool for changing an output power level between a first optical output and a second optical output that employs a gear box;



FIGS. 15 and 16 are top schematic views of another explanatory tool for changing an output power level between a first optical output and a second optical output that employs a variable adjustment ratio; and



FIG. 17 is a top schematic view of another explanatory tool for automatically changing an output power level between a first optical output and a second optical output using an actuator.





DETAILED DESCRIPTION

References will now be made in detail to the embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Whenever possible, like reference numbers will be used to refer to like components or parts.


The concepts disclosed are related to fiber optic networks, tools and fiber optic terminals having at least one variable ratio coupler with shaft for actuation by a tool for changing an output power level between a first optical output and a second optical output for a passive optical network. As used herein, “variable ratio coupler” means that the output power level may be adjusted to many different power level splits (i.e., “split ratios”) across the spectrum of output power levels so that the power level split may be tuned or changed by the user as desired in a passive operation that does not require power to be supplied to the module for its operation, and does not mean the power level may only be changed to two discrete power level splits. Consequently, the fiber optic terminals (hereinafter “terminals”) comprising the variable ratio coupler(s) (hereinafter “VRC(s)”) are well-suited for passive optical networks such as in the outside plant environment such as downstream from a central office location or the like, but other applications are possible.


In addition to the passive operation and providing a wide range of possible output power split levels, the concepts using the VRC disclosed provide a stable performance across varying conditions. Further, the terminals and networks using the VRC have a low polarization dependent loss (PDL). In other words, the polarization state of the optical signal does not adversely impact the performance of the terminals or networks. Thus, the polarization state of the optical signal is not a factor for performance or operation. By way of example, the PDL loss is about 0.5 dB or less, and may even be as low as 0.3 dB or less or 0.2 dB or less for any polarization state of the input optical signal.


Still further, terminals and networks using the VRC have a wide wavelength range for suitable performance. By way of example, the terminals and networks using VRC comprise a similar performance from about 1260 nm to about 1625 nm. Generally speaking, the terminals disclosed and explained in the exemplary embodiments are multiports, but the concepts disclosed may be used with any suitable terminal such as closures, network interface devices, wireless radios or the like having at least one variable ratio coupler with a control for changing an output power level.


The concepts disclosed advantageously provide flexibility for the network operators and also reduce manufacturing complexity and inventory concerns for manufacturers of the terminals along with network operators since the need to manufacture and stock a multitude of terminals having different fixed power split levels is not necessary. In other words, the terminals and fiber optic networks disclosed may be adjusted to have the desired power level splits at any point during their lifetime, thereby providing flexibility and adaptability to alter the fiber optic network based on moves, adds or changes to the fiber optic network. The concepts may be used with any suitable terminals and may be especially advantageous with terminals having compact form-factors. The concepts are scalable to any suitable count of input or outputs on a terminal in a variety of arrangements or constructions for building fiber optic networks.


For instance, the concepts disclosed herein are suitable for fiber optic networks such as for Fiber-to-the-Home and 5G applications and are equally applicable to other optical applications as well including indoor, industrial, wireless, or other suitable applications. The concepts disclosed herein are especially advantageous for asymmetric split fiber optic networks (e.g., fiber optic networks having one VRC with an unequal output power level split). Additionally, the concepts disclosed may be used with terminals having any suitable footprint or construction.


Although VRC fiber optic terminals are desirable, providing the mechanisms to adjust the split ratio of the VRC in each fiber optic terminal may undesirably increase the cost of the fiber optic terminal. For example, more parts need to be fabricated and incorporated into the fiber optic terminal, thus increasing its cost of manufacture. Embodiments of the present disclosure reduce the overall cost to manufacture a fiber optic terminal having a VRC by including at least some of the mechanics for adjusting the split ratio of VRCs into a separate tool. Thus, a single tool may be used to adjust the split ratio of many fiber optic terminals. For example, the set-point display may be incorporated into the tool itself, as well as the mechanical means to adjust a coupling region of the VRC.


The embodiments described herein also enable a manufacturer of telecommunications equipment to replace multiple SKUs, each representing a terminal with a non-variable coupler with a fixed tap ratio, with a single SKU number for the fiber optic terminal having a VRC. This further reduces the costs to manufacture, purchase and manage fiber optic terminals incorporating couplers.


Various designs, constructions, or features for fiber optic networks, tools and terminals are disclosed in more detail as discussed herein and may be modified or varied as desired.



FIG. 2 shows a schematic view of an explanatory fiber optic network 11 such as for a passive fiber-to-the-home (FTTH) network comprising a first terminal 200 having a VRC; however, the concepts may be used with other networks such as a PON, FTTx or 5G networks. As depicted, a first optical link 10a (e.g., a first fiber optic cable) is an input optical link connected to a central office CO at a first end and a second end is in optical communication with the optical input OI of the first terminal 200. A first end of a second optical link 10b (e.g., a second optical cable) is an output optical link of terminal 200 and is in optical communication with the first optical output (OT1) of the terminal 200 as depicted. A second end of the second optical link 10b is in optical communication with the optical input OI of a second terminal 200′. A first end of a third optical link 10c (e.g., a third optical cable) is an output optical link of terminal 200′ and is in optical communication with the first optical output (OT1) of the terminal 200′ as depicted. A second end of the third optical link 10c feeds into the optical input OI of a third terminal 200″. A first end of a fourth optical link 10d (e.g., a fourth optical cable) is an output optical link of terminal 200″. The fiber optic network 11 splits the power level launched from the CO at the respective terminals 200, 200′ and 200″ for the distribution of optical signals to the fiber optic network 11.


Terminals 200, 200′ and 200″ are schematically depicted in FIG. 2 each of which comprises a shell 210 having a cavity 216 with a portion of the respective VRCs being disposed within the respective cavities 216. The terminals 200, 200′ and 200″ also comprise at least one input connection port 236, and a plurality of ports 260. The VRCs each also comprise the optical input (OI), the first optical output (OT1), the second optical output (OT2) and a control (CTL) for changing an output power level between the first optical output (OT1) and the second optical output (OT2) as depicted. The input connection port 236 may comprise a port opening 238 extending from an outer surface (234) of the terminal 200 into the cavity 216 and defines a port passageway 233 along a longitudinal axis. In this embodiment, terminals 200, 200′ and 200″ of fiber optic network 11 comprise the same configuration as depicted; however, the VRCs are adjusted with different output power level split between the respective first optical output (OT1) and second optical output (OT2) using the control (CTL). As described in more detail below, the control (CTL) may be adjusted using a tool, and further the control (CTL) may be provided within one of the optical ports of the terminal 200, 200′, 200″. The output power level split for the VRC may be asymmetric or not depending on the desired output power levels.


By way of explanation, fiber optic network 11 distributes the signal from the second optical output (OT2) from the respective VRCs to each local neighborhood where the bandwidth of the optical output is shared by multiple subscribers. For instance, terminal 200 may have its VRC adjusted to a 90/10 split of the power received from the central office (CO) (minus losses) with 90% of the input power being directed to the first optical output (OT1) and 10% of the input power being directed to the second optical output (OT2) for the distribution of optical signals to its local neighborhood. Thereafter, terminal 200′ receives 90% of the power transmitted to its optical input (OI) (minus losses such as connector losses, transmission losses, etc.), and may have its VRC adjusted to a 75/25 split of the power received at its optical input (OI) with 75% of the input power to terminal 200′ being directed to its first optical output (OT1) and 25% of the input power being directed to its second optical output (OT2) for the distribution of optical signals to its local neighborhood. Terminal 200″ that receives 75% of the power from the optical output (OT1) of terminal 200′ at the optical input (OI) may have its VRC adjusted to a 50/50 split of the power received with 50% of the input power being directed to the first optical input (OT1) and 50% of the input power being directed to the second optical output (OT2) for the distribution of optical signals to its local neighborhood. This representative fiber optic network 11 allows the desired power levels to be transmitted to the local neighborhoods, while transmitting the remaining power downstream in the fiber optic network 11 as desired. Moreover, the output power level split ratios within the terminals 200, 200′ and 200″ may be easily and quickly adjusted by the network operator as needed for moves, adds or changes in the fiber optic network 11 as desired, thereby providing flexibility and adaptability that is lacking in conventional fiber optic networks.



FIG. 3 is a schematic representation of the VRC depicted in terminals 200, 200′ and 200″. As depicted, VRC comprises an optical input (OI) that has its output power level split between the first optical output (OT1) and the second optical output (OT2) at a coupling region (CR), with the control (CTL) for changing the output power level between the first and second outputs (OT1,OT2). The coupler may be a planar lightwave circuit (PLC) or multiclad coupler (MC) as known in the art, but other suitable structures may be used. The optical input (OI) and the optical outputs (OT1, OT2) are optical waveguides such as optical fibers that may be in optical communication with the respective input and outputs of the planar lightwave circuit or other type of device. Control (CTL) may be actuated (e.g., by use of a tool) for changing the output power level between the first optical output (OT1) and the second optical output (OT2) by any suitable means at the coupling region (CR).


The coupling region (CR) is the region where a portion of the first optical waveguide of the first optical output (OT1) and a portion of the second optical waveguide of the second optical output (OT2) are in optical (e.g., intimate) contact for allowing the changing of the output power level of the optical signals transmitted by the first optical output (OT1) and the second optical output (OT2). More specifically, the control (CTL) is configured for individually moving a portion of the first optical waveguide of the first optical output (OT1) (or alternatively moving a portion of the second optical waveguide of the second optical output (OT2)) at the coupling region (CR) as represented by the horizontal line with the arrows on the ends. The individual movement of the first or second optical waveguide with the control (CTL) may bend, deflect or change the geometry between the portion of the first optical waveguide of the first optical output (OT1) and the portion of the second optical waveguide of the second optical output (OT2) at the coupling region (CR) (i.e., an amount of deflection of the coupling region) for changing the output power level of the optical signals transmitted by the first optical output (OT1) and the second optical output (OT2). In further embodiments, the portion of the first optical waveguide and the portion of the second optical waveguide are fused together at the coupling region (CR) and the coupling ratio may be changed, for example, by bending the fused region. Other constructions are possible for the coupling region (CR) for changing the output power level of the optical signals transmitted by the first optical output (OT1) and the second optical output (OT2). For instance, other embodiments may change the index of refraction of the materials in or around the coupling region (CR). It should be understood that embodiments described herein are not limited by the method of changing the coupling ratio, such as those described in U.S. Pat. No. 7,627,214, for example.


Explanatory terminals 200 are depicted in FIGS. 4-6 comprising a VRC having a portion disposed within a cavity 216 of shell 210 with a control (CTL) provided through a port. FIG. 4 depicts terminal 200 comprising at least one input connection port 236 and at least one pass-through output connection port 260PT to the right of input connection port 236. This terminal 200 comprises two pass-through output connection ports 260PT as shown for the first optical output (OT1) and the second optical output (OT2). Input connection port 236 and pass-through output connection ports 260PT are suitable for receiving respective external fiber optic connectors 100 of the optical link 10.


In the embodiment of FIG. 4, the shell 210 includes a control port 260CTL for receiving a tool to adjust the VRC within the shell. Various control ports 260CTL and VRCs are described in detail below.



FIG. 5 depicts another explanatory terminal 200 that comprises at least one input connection port 236 and a pass-through connection port 260PT. In this construction, the terminal 200 comprises an optical link 10a configured as a fiber optic cable that is secured to the input connection port 236 as a tether cable and optically connected to the optical input (OI) of the VRC. In other words, the fiber optic cable is not intended to be removable from the input connection port 236. The other end of the tether cable may be terminated with a suitable fiber optic for optical connectivity to the fiber optic network.


On the other hand, the pass-through connection port 260PT of terminal 200 of FIG. 5 is in optical communication with the first optical output (OT1) of the VRC. Terminal 200 of FIG. 5 also comprises a second coupler (C2) in optical communication with the second optical output (OT2) of the VRC such as schematically depicted in FIG. 2. The second optical coupler (C2) comprises a plurality of second coupler outputs (C201-C20x), and the second coupler outputs (C201-C20x) are in optical communication with a plurality of optical connection ports 260. More specifically, the second coupler outputs may comprise optical fibers extending from a PLC that are optically connected or terminated with respective fiber optic connectors 252 disposed within the cavity 216 of the terminal and are aligned with the respective port 260 for optical connection with the terminal 200. Terminal 200 of FIG. 5 comprises six output connection ports 260, but terminals 200 may use any suitable number of output connection ports as desired. The output connection ports 260 may be optically connected to drop cables having a suitable connector for routing the optical signals toward the subscribers.


In the embodiment of FIG. 5, the control port 260CTL is provided as an optical port opening such that it is within an array of output connection ports 260. Such a placement for the 260CTL may be advantageous because special shells do not need to be molded specifically for terminals including a VRC. Thus, one SKU number may be provided for shells intended for variable split ratio terminals and for shells intended for fixed split ratio terminals. As described in more detail below, the split ratio of the terminal 200 is adjusted by inserting a tool into the control port 260CTL. Another advantage of the embodiment shown by FIG. 5 is that the same plugs can be used for the control port 260CTL as the output connection ports 260.


In further explanation the terminal 200 of FIGS. 4-6 comprises a shell 210 with a cavity 216 along with a securing feature 310 comprising a securing member 310M associated with the port passageway 233 (FIG. 4). The input connection port 236, and pass-through connection ports 260PT each comprise a port opening extending from an outer surface of the terminal 200 into the cavity 216 of the terminal 200 and each port respectively defines a port passageway along a longitudinal axis. Each port 236, 260PT has a respective securing member 310M associated with the port. Each securing member 310M comprises a bore 310B suitable for receiving and securing a portion of the housing 20 of the fiber optic connector of the respective optical link such as depicted with the input optical link 10a inserted into the input connection port 236. Likewise, the output connection ports 260 where used may have a similar construction as described for the input connection port 236 and pass-through connection ports 260PT. Terminals 200 may also advantageously use the securing members 310M for releasably connecting the external fiber optic connectors 100 of the optical links in the respective connection ports using an actuator 310A of securing feature 310.


As stated above, the split ratio provided by a variable ratio coupler within the terminal is adjusted by a tool that is inserted into the cavity 216 of the shell 210. FIG. 6 illustrates a VRC 450 within the cavity 216 according to one embodiment. The VRC 450 is accessible by a control port 260CTL that is configured as an output port and is in an array of output ports 260. The control port 260CTL is defined by a passageway extending from an edge of the shell 210 into the cavity. As described in more detail below, the control port 260CTL is operable to receive a tool that engages a shaft 452. FIG. 5 illustrates an example tool 400 positioned in a control port 260CTL. Rotation of the tool 400 causes rotation of the shaft 452, which in turn causes the coupling region within the VRC 450 to bend. The bending of the coupling region changes the output power level of optical outputs OT1 and OT2 and thus changes the split ratio between optical outputs OT1 and OT2.



FIG. 5 illustrates a tool 400 inserted into a control port 260CTL. Particularly, the tool 400 comprises an axle 402 and an end piece, which is configured as a knob 401 in the illustrated embodiment. The user inserts the axle 402 into the passageway of the control port 260CTL until it engages the VRC. The user then applies a rotational force to the knob 401, which rotates the axle 402 and a shaft of the VRC to change the split ratio as described in more detail below.



FIG. 7 illustrates a partially transparent top view of a terminal 200 showing internal components of the terminal 200. Rather than a rear connector 252 at port #12, the terminal includes a VRC 450 at port #12. When inserted into the control port 260CTL (i.e., port 12), the tool 400 engages the VRC 450 and enables the user to change the split ratio of the terminal 200 accordingly.



FIG. 8 illustrates a non-limiting example of a tool 400 for adjusting a split ratio of a terminal 200. The example tool 400 includes an axle 402 for insertion into a port (i.e., a control port 260CTL) of a fiber optic terminal. An end 407 of the axle 402 is rotationally asymmetric such that it is insertable into the VRC in only one rotational orientation. The phrase “rotationally asymmetric” means a component has only one rotational orientation with respect to another component. In the embodiment of FIG. 8, the end 407 includes a peak edge 409 such that the peak edge may only be inserted into a similarly shaped notch within the VRC.


The tool 400 further includes a terminal engagement body 403 disposed about the axle 402. The axle 402 is free to at least partially rotate about the terminal engagement body 403. The terminal engagement body 403 includes a terminal engagement feature 404 for engaging a corresponding alignment feature of the terminal 200. In the illustrated embodiment, the terminal engagement feature 404 is configured as a notch that is operable to engage an alignment feature configured as a protrusion, such as a ledge or a post. FIG. 4 illustrates an example alignment feature 213 configured as a ridge-like protrusion within the passageway defined by the control port 260CTL. Thus, the terminal engagement feature 404 and the alignment feature 213 cooperate to index the terminal engagement body 403 to a known position with respect to the terminal 200 and thus the VRC. It should be understood that other configurations for the terminal engagement feature 404 and the alignment feature 213 are possible.


Referring once again to FIG. 8 the terminal engagement feature 404 further comprises a set-point portion 405 that includes a set-point indicator 406. The set-point indicator 406 is referenced to the terminal engagement feature 404. As a non-limiting example, the set-point indicator 406 is aligned with the terminal engagement feature 404 along a longitudinal axis of the tool 400. The illustrated set-point indicator 406 is a ridge formed within the set-point portion 405. However, in other embodiments the set-point indicator 406 may be a marking, for example (e.g., an arrow, a line, a circle, etc.).


The tool 400 also includes an end piece configured as a knob 401 that is rigidly coupled to the axle 402. Rigidly coupled means that the knob 401 is not free to rotate with respect to the axle 402. The knob 401 has the function of providing a means for the user to rotate the tool 400 as well as providing a read-out of the current set-point of the terminal 200. Although FIG. 8 illustrates the end piece as a knob 401, embodiments are not limited thereto.


The knob 401 includes a plurality of set-point markers 408 that indicate which set-point (i.e., what split ratio) the terminal 200 is presently set at. In the illustrated embodiment, the set-point markers 408 comprise lines and associated numbers indicating the set-point. Embodiments are not limited to any particular marker for the set-point markers. For example, in another embodiment, the numbers may be replaced by the actual split ratio of the particular set point (e.g., 90/10, 75/25, and the like).


The terminal engagement body 403 is also free to rotate with respect to the knob 401 because the knob 401 is rigidly coupled to the axle. The knob 401 may be rotatably coupled to the terminal engagement body 403 by any manner. In the illustrated embodiment, the knob 401 includes an arcuate slot 411 extending from a face of the knob 401 into a passageway defined by the knob 401. An attachment feature 410 extends from an end face of the terminal engagement body 403 that is disposed within the passageway of the knob 401. The attachment feature 410 extends through the slot and prevents the knob 401 from being pulled away from the terminal engagement body 403. As a non-limiting example, a small screw may be applied to the attachment feature 410 after the attachment feature is positioned through the slot 411 to prevent the knob 401 from being separated from the terminal engagement body 403. The attachment feature 410 and the slot 411 prevent longitudinal movement of the knob 401 while allowing rotational movement of the knob 401 and axle 402 with respect to the terminal engagement body 403. Attachment feature 410 also provides limit on the rotational amount of knob 401 and said feature is not typically separable in normal use.


Upon insertion of the tool 400 into a control port 260CTL, the terminal engagement feature 404 engages the alignment feature 213 (FIG. 4) associated with the terminal 200. This orients the terminal engagement feature 404 to a proper and known position with respect to the terminal 200. Thus, the set-point indicator 206 is in a measurement position with respect to the terminal.


As the user continues to insert the tool 400 into the control port 260CTL, the end 407 of the axle 402 reaches a shaft 452 (FIG. 9) of the VRC. Because the end 407 of the axle 402 is rotationally asymmetric, it can only be inserted into the shaft 452 of the VRC in one rotational orientation. The user may need to rotate the knob 401 to find the proper orientation of the axle 402 with respect to the shaft 452. Once the axle 402 is properly seated in the shaft 452, the user may turn the knob 401, which also turns the axle 402 and the shaft 452, to align the desired set-point marker of the plurality of set-point markers 408 to the set-point indicator 406. It should be understood that all possible embodiments of the shaft 407 are not shown but the concept is to discourage tampering by using a shape which though available from vendors in the telecom space is not commonly available to members of the public.


Referring now to FIG. 9, a non-limiting example of a VRC 450 is illustrated. The VRC 450 includes a housing 451 that defines a cavity in which the internal components are disposed. It should be understood that embodiments are not limited to the particular VRC 450 illustrated by FIG. 9, and that VRCs of the present disclosure may include different components or differently arranged components.


The VRC 450 includes a shaft 452 extending into the cavity defined by the housing 451. The shaft 452 includes an end face 454 that is accessible through an opening of the housing 451. The end face 454 is on a set-point portion 453 of the shaft 452. The shaft 452 further includes a cam 458, as described in more detail below. The shaft 452 further includes a rotationally asymmetric feature so that the axle 402 may be coupled to the shaft 452 in only one rotational position. In the illustrated embodiment, the rotationally asymmetric feature is a single hole 469 or opening that is rotationally asymmetric. The hole 469 is circular in shape but also includes a peak edge notch that is configured to receive a peak edge of the axle 402 in only one orientation. Embodiments are not limited to any particular rotationally asymmetric feature


The VRC 450 further includes a flexure 460 that is held down on one side by a bias member 459 configured as a spring. The other side of the flexure 460 contacts a surface of the cam 458. An end 462 of the flexure 460 that is opposite from the end 461 that contacts the shaft 452 is rigidly coupled to the housing 451. An amount of bend on the coupling region (CR) imparted by the flexure 460 determines the amount of optical power that is provided to a first output OT1 and to a second output OT2 and thus determines the split ratio. The cam 458 is designed such that different positions on the surface of the cam 458 provide differing amounts of bend on the coupling region (CR).


The set-point portion 453 includes a plurality of detents 455 on its surface. Each detent corresponds to a particular set-point marker on the knob 401 and thus a specific set-point ratio (e.g., 90/10, 75/25 etc.). Thus, the plurality of detents 455 correspond to a plurality of set-points of the VRC 450. The VRC 450 further includes a plunger 456 that is biased toward the set-point portion 453 by a bias member 457, such as a coil spring. As the shaft 452 is turned by the tool 400, the plunger 456 is seated and then exits the detents 455. The plunger 456 and the detents 455 may provide haptic feedback to the user so that the user knows when the plunger 456 is properly seated in a detent 455 (e.g., a click or a vibration may be felt by the user through the tool 400 when the plunger 456 enters a detent 455). Further, it will require more force by the user to turn the knob 401 to cause the plunger 456 to exit the detent 455 as compared to when the plunger 456 is not present within a detent 455. In other words, a resistance to rotate the tool 400 is increased when the plunger 456 is within a detent 455 to move the plunger 456 out of the detent 455. Additionally, the placement of the plunger 456 within a detent 455 ensures that shaft 452 is locked at the desired rotational position and set-point.


The detents 455 may be fabricated on the shaft 452 using a calibration bench setup. For example, optical power may be input into the optical input and optical power sensors may be coupled to each of the fibers for the first output OT1 and the second output OT2. The shaft 452 is turned until the desired split ratio between the first output OT1 and the second output OT2 is achieved. A detent may be drilled or otherwise fabricated while the shaft is at this position for the desired set-point. The shaft may continue to be rotated until additional desired set-points are found and corresponding detents fabricated. This post-assembly fabrication of the detents allows variations in the performance of the coupler, its position in the package and the dimensions of the package to be accommodated.



FIG. 10 illustrates portions of another VRC 400′ having a shaft 452′ with a different configuration for the rotationally asymmetric end face 454′. In this example, the rotationally asymmetric feature is defined by three holes 469A′, 469B′ and 469C′ that are asymmetrically disposed about the end face 454′. The three holes 469A′, 469B′ and 469C′ are configured to receive three prongs (see FIG. 14) in only one rotational orientation.



FIG. 11 illustrates another example end face 454″ of a shaft 452″ having two holes, a large central hole 469A″ (i.e., a first hole) and a smaller outer hole 469B″ (i.e., a second hole). The two holes define the rotationally asymmetric feature as a two-pronged axle can mate with the shaft 452″ in only one rotational orientation. The outer hole 469B″ can be machined into the end face after a set of detents has been drilled in a calibration stage. Thus, the azimuthal position of the hole 469B″ can be chosen to make the rotational position of the tool axle 407 accommodate any part-to-part variation in the detent positions with respect to the cam shaft 452″.


Embodiments are not limited to any specific type of rotationally asymmetric feature. As another example, the end face of a shaft may comprise a circular opening with a notch, similar to old skeleton keyholes. In this example, the tool has a center prong (i.e., a first prong) and a paddle (i.e., a second prong), wherein the center prong extends beyond the paddle. Thus, the tool of this example is shaped as a skeleton key. The center prong aligns the tool with the center of the shaft (and thus the cam of the shaft), and the paddle enables the tool to rotate the shaft.



FIGS. 12 and 13 illustrate two non-limiting example cams 458, 458′ provided on a shaft 452. It should be understood that the cam may take on any shape so long as it provides the desired set-points of the VRC, and that embodiments are not limited by any cam shape.


In the design of the cam 458 shown in FIG. 12, the cam profile changes linearly with that of the cam rotation angle and based on the deflection characteristics of couplers. The cam 458 of FIG. 12 has a linearized cam design, which is divided into three zones A, B and C. In each of these zones, the radius changes uniformly but the rate of change and nature of change is different in the three zones. As an example, for a multiclad 1×2 coupler made from similar fibers, the nature of tap change may be given as follows: (1) In zone A, tap changes from 96% to 50% for 40 degrees of cam rotation, (2) in zone B, tap changes from 50% to 2%, and finally (3) in zone C tap changes from 2% to 96% again.


Referring to FIG. 13, the linearized cam is limited to only two zones, A and B. As an example, in zone A, the tap value changes from 96% to 50%, in zone B, the tap value changes from 50% to 2%. The range of rotation in zone A is 40 degrees whereas that in zone B is 320 degrees. For this cam profile, the initial 0 to 40 degrees of the cam rotation (denoted as zone A), is used to bring the tap to 50% from the initial value of 96%. As the primary objective of the VRC is to change the tap in the range of 50% to 2%, maximum angular space for cam rotation is dedicated to this tap range. The shaft 452 does not need to rotate a full 360 degrees and hence a stop may be put at the very end of the zone of the cam profile, which allows 50% to 2% tap change, over 40 degrees to 360 degrees of cam rotation (denoted by zone B), providing a total range of 320 degrees for the useful tap range. As described above, the two linearized cam designs of FIGS. 12 and 13 enable the useful range of tap change from 50% to 2% over a cam rotation angle range of 280 to 320 degrees for the oversized eccentric cams 458 and 458′, respectively. This will in turn also improve the resolution of the tap states, given by the inter detent distance on the set-point portion 453 shown in FIG. 9. It should also be noted that the cam does not need to have zone A, whose main function is to bring the undeflected coupler to 50% tap which is the starting point of the operating regime. Instead, the entire arc space may be devoted to zone B to expand the resolution and maximize inter tap distances for drilled holes and dial indicators. Following the linearized cam designs described above, the cam profile can be constructed such that the resulting holes for the detents corresponding to the different tap states/split ratios are substantially equally spaced. This enables the plurality of set-point markers 408 to be evenly spaced, such as shown in FIG. 8.


In some embodiments, more information is encoded mechanically in the depth of the rotationally asymmetric feature drilled or otherwise provided in the end face 454 of the shaft 452. This depth can be varied gradually or in discrete increments, for example, according to the spacing of the detents 455 in the particular VRC. To avoid unbalanced forces when the tool 400 engages with the shaft 452, one option may be to use a centered hole of the rotationally asymmetric feature for the depth information. It is possible to decouple the longitudinal positions of the different parts of the tool 400 that engage with holes in the end face 454 (e.g., prongs 560 as shown in FIG. 14 below), for example, by using co-axial elements that can slide over each other.


If the axle 402 of the tool 400 is biased (e.g., spring-loaded) or otherwise pushed into the hole(s) of the end face 454 until it reaches the bottom of the hole(s), the axle 402 will be in a longitudinal position that depends on the insertion depth. This feature may be exploited to match the tool labeling to the detent positions more accurately than with just the azimuthal orientation of the tool 400.


Referring now to FIG. 14, a non-limiting example tool 500 that utilizes insertion depth is illustrated. In this example, a “gear box” is used to give two or more different rotation rates of the tool axle for a given rotation of a second axle that carries the indicator labels, as described in more detail below.


The tool 500 includes a housing 570 defining a cavity 571 in which interior components are disposed. The tool 500 further includes a terminal engagement member 503 that is rigidly coupled to the housing 570 or is integral with the housing itself (i.e., a part of the housing 570). The terminal engagement member 503 includes a terminal engagement feature 504 that functions as described above with respect to the terminal engagement body 403 and terminal engagement feature 404 of FIG. 8.


The tool 500 further includes an input axle 520 partially disposed within the cavity 571 and that extends out of the housing for user access. An end piece, which is configured as a knob 501 is provided on an end of the input axle 520. The knob 501 enables a user to turn the input axle 520. An indicator body 508 is rigidly coupled to an end of the input axle 520. The indicator body 508 includes a plurality of set-point markers 507 that are visible through the housing 570. In an example, the housing 570 may include a window or an opening (not shown) so that the plurality of set-point markers 507 are visible. As a further example, the window may include a lens so that the plurality of set-point markers 507 are magnified and more visible to the user.


A set-point indicator 506 is provided on housing 570, or on some component that is rigidly coupled to the housing 570. In the illustrated embodiment, the set-point indicator 506 is configured as an arrow; however, embodiments are not limited thereto.


A first set of gears 522 is disposed on the input axle. In the non-limiting example of FIG. 14, the first set of gears 522 includes a first gear 522A and a second gear 522B having different diameters. Rotation of the input axle 520 causes rotation of the first set of gears 522.


The tool 500 further includes an adjustment axle 502 partially disposed within the cavity 571 and partially extending out of the housing 570 and cavity 571. The adjustment axle 502 is free to rotate with respect to the housing 570 and the terminal engagement member 503, as well as linearly translate along direction A. The adjustment axle 502 has an adjustment end having a rotationally asymmetric feature 560 configured to mate with the rotationally asymmetric feature (not shown in FIG. 14 but see FIG. 10) of a shaft 552 of a terminal. In the illustrated embodiment the rotationally asymmetric feature 560 is provided by a first prong 561A, a second prong 561B, and a third prong 561C. A depth of insertion of the adjustment axle 502 into the shaft 552 may depend on the length of one or more of the first prong 561A, the second prong 561B, and the third prong 561C and the depth of one or more of the corresponding holes on the shaft 552.


A second set of gears 512 is disposed on the adjustment axle 502 such that the second set of gears 512 rotates when the adjustment axle 502 rotates. In the non-limiting example of FIG. 14, the second set of gears 512 includes a first gear 512A and a second gear 512B having different diameters.


When the user mates the tool 500 to the terminal, the terminal engagement feature 504 may engage an alignment feature of the terminal. For example, the terminal engagement member 503 may be disposed within a control port (not shown in FIG. 14) such that the terminal engagement feature 504 mates with an alignment feature 213 within the control port 260CTL as described above and shown in FIG. 4, for example. The adjustment axle 502 is also partially inserted into the control port. The adjustment end 560 of the adjustment axle 502 is inserted into the shaft 552 at an insertion depth. The insertion depth dictates a lateral movement and position of the adjustment axle 502. At a shallow first insertion depth, the adjustment axle 502 is at a first position such that the first gear 512A of the second set of gears 512 engages the first gear 522A of the first set of gears 522. The user may rotate the knob 501 to rotate the input axle 520 and the first set of gears 522 and the indicator body 508. Rotation of the first gear 522A of the first set of gears 522 causes rotation of the first gear 512A of the second set of gears 512 and the adjustment axle 502. Rotation of the adjustment axle 502 causes rotation of the shaft 552 to the desired detent and set-point. Rotation of the adjustment axle 502 is provided at a first rotation rate due to the gear ratio provided by the first gears 512A, 522A.


At a deep, second insertion depth, the adjustment axle 502 is at a second position such that the second gear 512B of the second set of gears 512 engages the second gear 522B of the first set of gears 522. Rotation of the knob 501 causes rotation of the adjustment axle 502 at a second rotation rate due to the gear ratio provided by the second gears 512B, 522B.


In the embodiment of FIG. 14, the reference angular position should be maintained between the two axles so that the zero point is the same for all gear sets. One solution is to have a zeroing step, such as before the tool is inserted, where the input axle is rotated to a defined position and the adjustment axle is released from its gearing to the input axle and rotated to its own defined position.


Insertion depth may also be used in other ways, for example, by changing the scale of the set point markers 507. FIGS. 15 and 16 illustrate another tool 600 that uses insertion depth of the tool 600 into a shaft 652 of a terminal (not shown in FIGS. 15 and 16) to change the scale of split ratio adjustment. The example tool 600 generally comprises an axle 602 having an end with a rotationally asymmetric feature 660 which, in the illustrated embodiment, is configured as a first prong 661A, a second prong 661B, and a third prong 661C. The rotationally asymmetric feature 660 is configured to be inserted into the shaft 652 over a range of depths depending on the depth of one or more holes in the shaft.


The tool 600 further comprises an end piece configured as a knob 601 that is coupled to an end of the axle 602, a terminal engagement body 605 having a set-point indicator 606, and an indicator body 608 comprising a plurality of set-point markers 607. FIG. 15 shows the terminal engagement body 605 in shadow lines while FIG. 16 shows the terminal engagement body 605 in solid lines. In some embodiments, the indicator body 608 is rigidly coupled to the axle 602 such that it rotates along with the axle 602. The axle 602 and the indicator body 608 are free to rotate with respect to the terminal engagement body 605. Further the axle 602 and the indicator body 608 are free to laterally translate along longitudinal direction as indicated by arrow A.


The terminal engagement body 605 is configured to engage the terminal such that it is referenced to the terminal. A terminal engagement feature 604 may be provided on the terminal engagement body 605 to engage a corresponding feature on the terminal (not shown). For example the terminal engagement feature 604 may extend past the edge of the indicator body 608 so that it may be inserted into a control port and engage an alignment feature, such as an alignment feature 213 as shown in FIG. 4. In other embodiments, the indicator body 608 is referenced to the terminal and the terminal engagement body 605 is free to rotate with respect to the indicator body 608.


As shown in FIGS. 15 and 16, a separation distance ds between the lines of the plurality of set-point markers 607 monotonically changes from one end of the indicator body 608 to the other. In the illustrated embodiment, the separation distance ds increases in a direction away from the knob 601. Thus, the different separation distances ds provide for different scales of adjustment of the split ratio of the terminal to be displayed. It should be understood that in other embodiments the separation distances ds decrease with insertion depth. The desired scale of adjustment is set by manufacturing a depth of the hole(s) in the shaft 652. In this manner, the same tool may be used to adjust the split ratio of terminals having different scales of adjustment.


In use, the user will insert the axle 602 into the control port of a terminal such that the rotationally asymmetric feature 660 is inserted into the shaft 652 of the terminal, and the terminal engagement feature 604 engages a corresponding alignment feature of the terminal. The axle 602 and the indicator body 608 slide forward with respect to the terminal engagement body 605. An amount of movement of the axle 602 and the indicator body 608 relative to the terminal engagement body 605 is dictated by an insertion depth of the axle 602 into the shaft 652. Movement of the axle 602 and the indicator body 608 along the direction of arrow A causes the plurality of set-point markers 607 to be exposed. The deeper the insertion depth, the more of the lines of the plurality of set-point markers 607 are exposed. In the illustrated example, the deeper the insertion depth, the smaller the separation distance ds. A smaller insertion depth (i.e., a shaft with shallow hole(s) for receiving the axle 602) encodes the fact that it takes more rotation of the tool 600 to go from one set-point to another than a shaft with a larger insertion depth (i.e., a shaft with deep hole(s) for receiving the axle 602). The depth of the hole that receives the axle of axle component capable of moving along axis A will be determined from the positions of the detent set, and the hole machined into the end face of the shaft after these positions have been found.


In other embodiments, the indicator body 608 may remain completely beneath the terminal engagement body 605. In such embodiments, the terminal engagement body 605 may include an opening or a window (e.g., a slit) through which the lines of the plurality of set-point markers 607 are visible. The window may have a magnifying lens for magnification, for example.


Referring now to FIG. 17, an example automated tool 700 for adjusting a split ratio of a fiber optic terminal is illustrated. The automated tool 700 does not require a user to physically turn the axle to make the split ratio adjustment. Rather, an actuator 790, such as a small motor, performs the adjustment automatically.


The tool 700 generally comprises an axle 702 having a rotationally asymmetric feature 760 and an actuator 790 configured to rotate the axle 702. The axle 702 and the actuator 790 are disposed within a housing 761 such that the axle 702 extends outside of the house 761 so that it may be inserted into a control port of a terminal. The housing 761 may include a terminal engagement body 703 or feature for referencing the tool 700 to a terminal, as described above.


Calibration information for the VRC of the terminal to which the tool 700 will be mated is obtained by the tool 700. The calibration information includes at least information relating to the locations of the set-points provided by the detents positioned on the shaft of the VRC. During fabrication of the VRC, the precise locations of the set-point (i.e., the detents) may be recorded and then later provided to the tool 700. In some embodiments, the tool 700 includes a read-out display and an input control 794 that a user may utilize to determine which set-point the terminal is presently set at, and to input a desired set-point. The tool 700 further includes an encoder or some other device that provides feedback by a position signal regarding an angular position of the axle 702. The encoder may be incorporated into the actuator 790, for example. During operation, the user may input a desired set-point. The tool 700 is programmed (e.g, using a controller 793 and instructions stored on non-transitory computer readable memory) to determine the current angular position of the axle 702, to determine the angular position of the desired set-point from the calibration information, and then rotate the axle 702 to tune the shaft of the VRC to the precise location of the desired set-point. A controller 793 may provide a control signal to the actuator 790 such that the actuator 790 moves to the desired position, for example.


The calibration information may be obtained in a variety of ways. In one example, the tool is equipped with an optical sensor 791 that is capable of scanning a marker, such as a code, on the housing of the terminal, or on the shaft of the VRC. The code may be a color code, a bar code, a matrix code, or a QR code, for example. The tool 700 may then look up the calibration information based on the scanned code. For example, the code may provide a link to a device file stored at a remote server (i.e., the cloud) that provides metadata, calibration data and/or links to instructional data for installation. In another example, the terminal may include an RFID tag that may be interrogated by an RFID scanner of the tool 700 for passing the calibration information, or a reference number that references the calibration information.


The calibration information may be provided in a table stored locally in memory in the tool 700. In another example, a communication module 792 may be configured to communicate with an external network, such as the Internet, to pull the calibration information of the scanned code from a remote server.


In other embodiments, the tool 700 does not include an optical sensor. Rather, a communication module 792 is operable to communicate with a computing device, such as a mobile phone. The user may scan a marker (e.g., a code) using the computing device, and the computing device may pull the calibration information from a remote server via a communication network. In another example, the user may enter the serial number of the terminal, or scan the serial number of the terminal, to retrieve the calibration information from the remote server. The computing device may then transmit the calibration information to the tool 700 by way of the communication module 792.


In some embodiments, the communication module 792 may communicate the current set-point of the terminal to the remote server to facilitate record-keeping.


For the purposes of describing and defining the present invention it is noted that the terms “approximately” and “substantially” are utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. The terms “approximately” and “substantially” are also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.


It is noted that recitations herein of a component of the present invention being “configured” in a particular way, “configured” to embody a particular property, or function in a particular manner, are structural recitations as opposed to recitations of intended use. More specifically, the references herein to the manner in which a component is “configured” denotes an existing physical condition of the component and, as such, is to be taken as a definite recitation of the structural characteristics of the component.


It is noted that one or more of the following claims utilize the term “wherein” as a transitional phrase. For the purposes of defining the present invention, it is noted that this term is introduced in the claims as an open-ended transitional phrase that is used to introduce a recitation of a series of characteristics of the structure and should be interpreted in like manner as the more commonly used open-ended preamble term “comprising.”


Although the disclosure has been illustrated and described herein with reference to explanatory embodiments and specific examples thereof, it will be readily apparent to those of ordinary skill in the art that other embodiments and examples can perform similar functions and/or achieve like results. For instance, the connection port insert may be configured as individual sleeves that are inserted into a passageway of a device, thereby allowing the selection of different configurations of connector ports for a device to tailor the device to the desired external connector. All such equivalent embodiments and examples are within the spirit and scope of the disclosure and are intended to be covered by the appended claims. It will also be apparent to those skilled in the art that various modifications and variations can be made to the concepts disclosed without departing from the spirit and scope of the same. Thus, it is intended that the present application cover the modifications and variations provided they come within the scope of the appended claims and their equivalents.

Claims
  • 1. A fiber optic terminal comprising: a shell comprising a cavity;a plurality of ports comprising a control port having a port opening extending from an outer surface of the terminal into the cavity and defining a port passageway along a longitudinal axis, wherein the control port is operable to receive a tool; anda variable ratio coupler disposed within the cavity, the variable ratio coupler comprising an optical input, a first optical output, a second optical output, and a shaft, wherein rotation of the shaft by the tool changes an output power level between the first optical output and the second optical output at a coupling region.
  • 2. A fiber optic terminal according to claim 1, wherein the plurality of ports further comprises: at least one input connection port; anda pass-through output connection port.
  • 3. A fiber optic terminal according to claim 1, wherein the shaft comprises an end face, and the end face further comprises one or more features such that the end face is rotationally asymmetric with respect to the tool.
  • 4. A fiber optic terminal according to claim 3, wherein the end face further comprises a first hole for receiving a first prong of the tool and a second hole for receiving a second prong of the tool, and the first hole and the second hole are asymmetrically arranged on the end face of the shaft.
  • 5. A fiber optic terminal according to claim 1, wherein the shaft comprises a plurality of detents circumferentially arranged on a surface of the shaft, and the plurality of detents correspond to a plurality of set-points for the output power level between the first optical output and the second optical output.
  • 6. A fiber optic terminal according to claim 5, wherein: the variable ratio coupler further comprises: a cam positioned on a portion of the shaft; anda flexure comprising a first end that contacts a portion of the cam and a second end that is held immobile in the variable ratio coupler; anda coupler, wherein each end of the coupler is mounted to a different end of the flexure;rotation of the shaft causes the cam to change an amount of bend on the coupling region thereby changing the output power level between the first optical output and the second optical output at the coupling region.
  • 7. A fiber optic terminal according to claim 6, wherein rotation of the cam changes an amount of deflection on the first end of the flexure which also changes an amount of deflection on the coupling region.
  • 8. A fiber optic terminal according to claim 6, wherein a shape of the cam is such that the flexure changes the amount of bend on the coupling region for a desired power level between the first optical output and the second optical output when the plunger is positioned within a desired detent of the plurality of detents and provides for substantially equally spaced set-point indicators on the tool.
  • 9. A fiber optic terminal according to claim 1, wherein the plurality of ports are provided in an array at an end face of the shell.
  • 10. A method of changing a split ratio of a fiber optic terminal, the method comprising: inserting an axle of a tool into a control port passageway of a control port of a plurality of ports of the fiber optic terminal to engage an end of the axle with a shaft of a variable ratio coupler within a cavity of the fiber optic terminal; androtating the axle of the tool to rotate the shaft of the variable ratio coupler to a desired set-point, wherein the desired set-point corresponds to a desired output power level between a first optical output and a second optical output of the variable ratio coupler.
  • 11. A method according to claim 10, wherein the first optical output is provided at a first output connection port of the plurality of ports and the second optical output is provided at a second output connection port of the plurality of ports.
  • 12. A method according to claim 10, wherein the plurality of ports extend from an outer surface of a shell of the fiber optic terminal into the cavity defined by the shell.
  • 13. A method according to claim 12, wherein: the shaft comprises a plurality of detents circumferentially arranged on a surface of the shaft, and the plurality of detents correspond to a plurality of set-points for an output power level between the first optical output and the second optical output;the desired set-point is an individual one of the plurality of set-points.
  • 14. A method according to claim 13, wherein a resistance to rotate the tool is increased when a plunger is within the individual detent of the plurality of detents.
  • 15. A method according to claim 10, further comprising scanning a marker on the fiber optic terminal to obtain calibration information, wherein rotating the axle of the tool is performed by an actuator within the tool such that the axle stops rotating at the desired set-point automatically based on the calibration information.
  • 16. A method according to claim 15, wherein the scanning of the marker is performed by the tool.
  • 17. A method according to claim 15, wherein the scanning of the marker is performed by a computing device.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority of U.S. Provisional Application Ser. No. 63/193,186 filed on May 26, 2021, the content of which is relied upon and incorporated herein by reference in its entirety.

US Referenced Citations (875)
Number Name Date Kind
3792284 Kaelin Feb 1974 A
3912362 Hudson Oct 1975 A
4148557 Garvey Apr 1979 A
4167303 Bowen et al. Sep 1979 A
4168109 Dumire Sep 1979 A
4336977 Monaghan et al. Jun 1982 A
4373777 Borsuk et al. Feb 1983 A
4413880 Forrest et al. Nov 1983 A
4423922 Porter Jan 1984 A
4440471 Knowles Apr 1984 A
4461537 Raymer et al. Jul 1984 A
4547937 Collins Oct 1985 A
4615581 Morimoto Oct 1986 A
4634858 Gerdt et al. Jan 1987 A
4688200 Poorman et al. Aug 1987 A
4690563 Barton et al. Sep 1987 A
4711752 Deacon et al. Dec 1987 A
4723827 Shaw et al. Feb 1988 A
4741590 Caron May 1988 A
4842363 Margolin et al. Jun 1989 A
4844570 Tanabe Jul 1989 A
4877303 Caldwell et al. Oct 1989 A
4944568 Danbach et al. Jul 1990 A
4979792 Weber et al. Dec 1990 A
5007860 Robinson et al. Apr 1991 A
5011251 Miller et al. Apr 1991 A
5067783 Lampert Nov 1991 A
5073042 Mulholland et al. Dec 1991 A
5076656 Briggs et al. Dec 1991 A
5085492 Kelsoe et al. Feb 1992 A
5088804 Grinderslev Feb 1992 A
5091990 Leung et al. Feb 1992 A
5131735 Berkey et al. Jul 1992 A
5142602 Cabato et al. Aug 1992 A
5146519 Miller et al. Sep 1992 A
5155900 Grois et al. Oct 1992 A
5162397 Descamps et al. Nov 1992 A
5210810 Darden et al. May 1993 A
5212752 Stephenson et al. May 1993 A
5224187 Davisdon Jun 1993 A
5231685 Hanzawa et al. Jul 1993 A
5245683 Belenkiy et al. Sep 1993 A
5263239 Ziemek Nov 1993 A
5268979 Weidman Dec 1993 A
5276750 Manning Jan 1994 A
5317663 Beard et al. May 1994 A
5321917 Franklin et al. Jun 1994 A
5339372 Miller et al. Aug 1994 A
5375183 Edwards et al. Dec 1994 A
5381494 O'Donnell et al. Jan 1995 A
5390269 Palecek et al. Feb 1995 A
5408570 Cook et al. Apr 1995 A
5425121 Cooke et al. Jun 1995 A
5452388 Rittle et al. Sep 1995 A
5519799 Murakami et al. May 1996 A
5553186 Allen Sep 1996 A
5557696 Stein Sep 1996 A
5569050 Lloyd Oct 1996 A
5588077 Woodside Dec 1996 A
5600747 Yamakawa et al. Feb 1997 A
5603631 Kawahara et al. Feb 1997 A
5608828 Coutts et al. Mar 1997 A
5631993 Cloud et al. May 1997 A
5647045 Robinson et al. Jul 1997 A
5673346 Iwano et al. Sep 1997 A
5694507 Walles Dec 1997 A
5748821 Schempp et al. May 1998 A
5761359 Chudoba et al. Jun 1998 A
5781686 Robinson et al. Jul 1998 A
5782892 Castle et al. Jul 1998 A
5790740 Cloud et al. Aug 1998 A
5791918 Pierce Aug 1998 A
5796895 Jennings et al. Aug 1998 A
RE35935 Cabato et al. Oct 1998 E
5818993 Chudoba et al. Oct 1998 A
5857050 Jiang et al. Jan 1999 A
5862290 Burek et al. Jan 1999 A
5883999 Cloud et al. Mar 1999 A
5884000 Cloud et al. Mar 1999 A
5884001 Cloud et al. Mar 1999 A
5884002 Cloud et al. Mar 1999 A
5884003 Cloud et al. Mar 1999 A
5887099 Csipkes et al. Mar 1999 A
5920669 Knecht et al. Jul 1999 A
5925191 Stein et al. Jul 1999 A
5926596 Edwards et al. Jul 1999 A
5960141 Sasaki et al. Sep 1999 A
5961344 Rosales et al. Oct 1999 A
5971626 Knodell et al. Oct 1999 A
RE36592 Giebel et al. Feb 2000 E
6030129 Rosson Feb 2000 A
6035084 Haake et al. Mar 2000 A
6045270 Weiss et al. Apr 2000 A
6094517 Yuuki Jul 2000 A
6108482 Roth Aug 2000 A
6112006 Foss Aug 2000 A
6179482 Takizawa et al. Jan 2001 B1
6193421 Tamekuni et al. Feb 2001 B1
RE37079 Stephenson et al. Mar 2001 E
RE37080 Stephenson et al. Mar 2001 E
6200040 Edwards et al. Mar 2001 B1
6206581 Driscoll et al. Mar 2001 B1
6224268 Manning et al. May 2001 B1
6224270 Nakajima et al. May 2001 B1
6293710 Lampert et al. Sep 2001 B1
6298190 Waldron et al. Oct 2001 B2
6321013 Hardwick et al. Nov 2001 B1
6356390 Hall, Jr. Mar 2002 B1
6375363 Harrison et al. Apr 2002 B1
6404962 Hardwick et al. Jun 2002 B1
6409391 Chang Jun 2002 B1
6427035 Mahony Jul 2002 B1
6428215 Nault Aug 2002 B1
6466725 Battey et al. Oct 2002 B2
6496641 Mahony Dec 2002 B1
6522804 Mahony Feb 2003 B1
6533468 Nakajima et al. Mar 2003 B2
6536956 Luther et al. Mar 2003 B2
6542652 Mahony Apr 2003 B1
6554489 Kent et al. Apr 2003 B2
6625375 Mahony Sep 2003 B1
6629782 Mcphee et al. Oct 2003 B2
6672774 Theuerkorn et al. Jan 2004 B2
6678442 Gall et al. Jan 2004 B2
6695489 Nault Feb 2004 B2
6702475 Giobbio et al. Mar 2004 B1
6738555 Cooke et al. May 2004 B1
6748146 Parris Jun 2004 B2
6771861 Wagner et al. Aug 2004 B2
6789950 Loder et al. Sep 2004 B1
6841729 Sakabe et al. Jan 2005 B2
6856748 Elkins et al. Feb 2005 B1
6877906 Mizukami et al. Apr 2005 B2
6880219 Griffioen et al. Apr 2005 B2
6908233 Nakajima et al. Jun 2005 B2
6916120 Zimmel et al. Jul 2005 B2
6944387 Howell et al. Sep 2005 B2
6962445 Zimmel et al. Nov 2005 B2
6970629 Lail et al. Nov 2005 B2
6983095 Reagan et al. Jan 2006 B2
7013074 Battey et al. Mar 2006 B2
7044650 Tran et al. May 2006 B1
7052185 Rubino et al. May 2006 B2
7088899 Reagan et al. Aug 2006 B2
7103255 Reagan et al. Sep 2006 B2
7103257 Donaldson et al. Sep 2006 B2
7118283 Nakajima et al. Oct 2006 B2
7118284 Nakajima et al. Oct 2006 B2
7120347 Blackwell et al. Oct 2006 B2
7146089 Reagan et al. Dec 2006 B2
7150567 Luther et al. Dec 2006 B1
7171102 Reagan et al. Jan 2007 B2
7195403 Oki et al. Mar 2007 B2
7200317 Reagan et al. Apr 2007 B2
7201518 Holmquist Apr 2007 B2
7213975 Khemakhem et al. May 2007 B2
7213980 Oki et al. May 2007 B2
7228047 Szilagyi et al. Jun 2007 B1
7232260 Takahashi et al. Jun 2007 B2
7236670 Lail et al. Jun 2007 B2
7260301 Barth et al. Aug 2007 B2
7261472 Suzuki et al. Aug 2007 B2
7266265 Gall et al. Sep 2007 B2
7266274 Elkins et al. Sep 2007 B2
7277614 Cody et al. Oct 2007 B2
7279643 Morrow et al. Oct 2007 B2
7292763 Smith et al. Nov 2007 B2
7302152 Luther et al. Nov 2007 B2
7318677 Dye Jan 2008 B2
7326091 Nania et al. Feb 2008 B2
7330629 Cooke et al. Feb 2008 B2
7333708 Blackwell et al. Feb 2008 B2
7336873 Lail et al. Feb 2008 B2
7341382 Dye Mar 2008 B2
7346256 Marrs et al. Mar 2008 B2
7349605 Noonan et al. Mar 2008 B2
7357582 Oki et al. Apr 2008 B2
7366416 Ramachandran et al. Apr 2008 B2
7394964 Tinucci et al. Jul 2008 B2
7397997 Ferris et al. Jul 2008 B2
7400815 Mertesdorf et al. Jul 2008 B2
7407332 Oki et al. Aug 2008 B2
7428366 Mullaney et al. Sep 2008 B2
7444056 Allen et al. Oct 2008 B2
7454107 Miller et al. Nov 2008 B2
7463803 Cody et al. Dec 2008 B2
7469091 Mullaney et al. Dec 2008 B2
7477824 Reagan et al. Jan 2009 B2
7480437 Ferris et al. Jan 2009 B2
7484898 Katagiyama et al. Feb 2009 B2
7485804 Dinh et al. Feb 2009 B2
7489849 Reagan et al. Feb 2009 B2
7492996 Kowalczyk et al. Feb 2009 B2
7512304 Gronvall et al. Mar 2009 B2
7520678 Khemakhem et al. Apr 2009 B2
7539387 Mertesdorf et al. May 2009 B2
7539388 Mertesdorf et al. May 2009 B2
7542645 Hua et al. Jun 2009 B1
7559702 Fujiwara et al. Jul 2009 B2
7565055 Lu et al. Jul 2009 B2
7568845 Caveney et al. Aug 2009 B2
7572065 Lu et al. Aug 2009 B2
7591595 Lu et al. Sep 2009 B2
7614797 Lu et al. Nov 2009 B2
7621675 Bradley Nov 2009 B1
7627214 Conner et al. Dec 2009 B2
7627222 Reagan et al. Dec 2009 B2
7628545 Cody et al. Dec 2009 B2
7628548 Benjamin et al. Dec 2009 B2
7646958 Reagan et al. Jan 2010 B1
7653282 Blackwell et al. Jan 2010 B2
7654747 Theuerkorn et al. Feb 2010 B2
7654748 Kuffel et al. Feb 2010 B2
7658549 Elkins et al. Feb 2010 B2
7661995 Nania et al. Feb 2010 B2
7677814 Lu et al. Mar 2010 B2
7680388 Reagan et al. Mar 2010 B2
7708476 Liu May 2010 B2
7709733 Plankell May 2010 B1
7712971 Lee et al. May 2010 B2
7722262 Caveney et al. May 2010 B2
7726998 Siebens Jun 2010 B2
7738759 Parikh et al. Jun 2010 B2
7740409 Bolton et al. Jun 2010 B2
7742117 Lee et al. Jun 2010 B2
7742670 Benjamin et al. Jun 2010 B2
7744286 Lu et al. Jun 2010 B2
7744288 Lu et al. Jun 2010 B2
7747117 Greenwood et al. Jun 2010 B2
7751666 Parsons et al. Jul 2010 B2
7753596 Cox Jul 2010 B2
7762726 Lu et al. Jul 2010 B2
7785019 Lewallen et al. Aug 2010 B2
7805044 Reagan et al. Sep 2010 B2
7806599 Margolin et al. Oct 2010 B2
7820090 Morrow et al. Oct 2010 B2
7844158 Gronvall et al. Nov 2010 B2
7844160 Reagan et al. Nov 2010 B2
7869681 Battey et al. Jan 2011 B2
RE42094 Barnes et al. Feb 2011 E
7881576 Melton et al. Feb 2011 B2
7889961 Cote et al. Feb 2011 B2
7891882 Kuffel et al. Feb 2011 B2
7903923 Gronvall et al. Mar 2011 B2
7903925 Cooke et al. Mar 2011 B2
7933517 Ye et al. Apr 2011 B2
7938670 Nania et al. May 2011 B2
7941027 Mertesdorf et al. May 2011 B2
7959361 Lu et al. Jun 2011 B2
8002476 Caveney et al. Aug 2011 B2
8005335 Reagan et al. Aug 2011 B2
8023793 Kowalczyk et al. Sep 2011 B2
8025445 Rambow et al. Sep 2011 B2
8041178 Lu et al. Oct 2011 B2
8052333 Kuffel et al. Nov 2011 B2
8055167 Park et al. Nov 2011 B2
8083418 Fujiwara et al. Dec 2011 B2
8111966 Holmberg et al. Feb 2012 B2
8137002 Lu et al. Mar 2012 B2
8147147 Khemakhem et al. Apr 2012 B2
8157454 Ito et al. Apr 2012 B2
8164050 Ford et al. Apr 2012 B2
8202008 Lu et al. Jun 2012 B2
8213761 Gronvall et al. Jul 2012 B2
8218935 Reagan et al. Jul 2012 B2
8224145 Reagan et al. Jul 2012 B2
8229263 Parris et al. Jul 2012 B2
8231282 Kuffel et al. Jul 2012 B2
8238706 Kachmar Aug 2012 B2
8238709 Solheid et al. Aug 2012 B2
8249450 Conner Aug 2012 B2
8256971 Caveney et al. Sep 2012 B2
8267596 Theuerkorn Sep 2012 B2
RE43762 Smith et al. Oct 2012 E
8301003 De et al. Oct 2012 B2
8301004 Cooke et al. Oct 2012 B2
8317411 Fujiwara et al. Nov 2012 B2
8348519 Kuffel et al. Jan 2013 B2
8363999 Mertesdorf et al. Jan 2013 B2
8376629 Cline et al. Feb 2013 B2
8376632 Blackburn et al. Feb 2013 B2
8402587 Sugita et al. Mar 2013 B2
8408811 De et al. Apr 2013 B2
8414196 Lu et al. Apr 2013 B2
8466262 Siadak et al. Jun 2013 B2
8472773 De Jong Jun 2013 B2
8480312 Smith et al. Jul 2013 B2
8494329 Nhep et al. Jul 2013 B2
8496384 Kuffel et al. Jul 2013 B2
8506173 Lewallen et al. Aug 2013 B2
8520996 Cowen et al. Aug 2013 B2
8534928 Cooke et al. Sep 2013 B2
8536516 Ford et al. Sep 2013 B2
8556522 Cunningham Oct 2013 B2
8573855 Nhep Nov 2013 B2
8591124 Griffiths et al. Nov 2013 B2
8622627 Elkins et al. Jan 2014 B2
8622634 Arnold et al. Jan 2014 B2
8635733 Bardzilowski Jan 2014 B2
8662760 Cline et al. Mar 2014 B2
8668512 Chang Mar 2014 B2
8678668 Cooke et al. Mar 2014 B2
8687930 Mcdowell et al. Apr 2014 B2
8702324 Caveney et al. Apr 2014 B2
8714835 Kuffel et al. May 2014 B2
8727638 Lee et al. May 2014 B2
8737837 Conner et al. May 2014 B2
8755663 Makrides-Saravanos et al. Jun 2014 B2
8758046 Pezzetti et al. Jun 2014 B2
8770861 Smith et al. Jul 2014 B2
8770862 Lu et al. Jul 2014 B2
8837894 Holmberg et al. Sep 2014 B2
8864390 Chen et al. Oct 2014 B2
8870469 Kachmar Oct 2014 B2
8879883 Parikh et al. Nov 2014 B2
8882364 Busse et al. Nov 2014 B2
8917966 Thompson et al. Dec 2014 B2
8974124 Chang Mar 2015 B2
8992097 Koreeda et al. Mar 2015 B2
8998502 Benjamin et al. Apr 2015 B2
8998506 Pepin et al. Apr 2015 B2
9011858 Siadak et al. Apr 2015 B2
9039293 Hill et al. May 2015 B2
9075205 Pepe et al. Jul 2015 B2
9146364 Chen et al. Sep 2015 B2
9151906 Kobayashi et al. Oct 2015 B2
9151909 Chen et al. Oct 2015 B2
9158074 Anderson et al. Oct 2015 B2
9158075 Benjamin et al. Oct 2015 B2
9182567 Mullaney Nov 2015 B2
9188759 Conner Nov 2015 B2
9207410 Lee et al. Dec 2015 B2
9207421 Conner Dec 2015 B2
9213150 Matsui et al. Dec 2015 B2
9223106 Coan et al. Dec 2015 B2
9239441 Melton et al. Jan 2016 B2
9268102 Daems et al. Feb 2016 B2
9274286 Caveney et al. Mar 2016 B2
9279951 Mcgranahan et al. Mar 2016 B2
9285550 Nhep et al. Mar 2016 B2
9297974 Valderrabano et al. Mar 2016 B2
9297976 Hill et al. Mar 2016 B2
9310570 Busse et al. Apr 2016 B2
9316791 Durrant et al. Apr 2016 B2
9322998 Miller Apr 2016 B2
9360640 Ishigami et al. Jun 2016 B2
9383539 Hill et al. Jul 2016 B2
9400364 Hill et al. Jul 2016 B2
9405068 Graham et al. Aug 2016 B2
9417403 Mullaney et al. Aug 2016 B2
9423584 Coan et al. Aug 2016 B2
9435969 Lambourn et al. Sep 2016 B2
9442257 Lu Sep 2016 B2
9450393 Thompson et al. Sep 2016 B2
9459412 Katoh Oct 2016 B2
9482819 Li et al. Nov 2016 B2
9482829 Lu et al. Nov 2016 B2
9513451 Corbille et al. Dec 2016 B2
9535229 Ott et al. Jan 2017 B2
9541711 Raven et al. Jan 2017 B2
9557504 Holmberg et al. Jan 2017 B2
9581775 Kondo et al. Feb 2017 B2
9588304 Durrant et al. Mar 2017 B2
9612407 Kobayashi et al. Apr 2017 B2
9618704 Dean, Jr. et al. Apr 2017 B2
9618718 Islam Apr 2017 B2
9624296 Siadak et al. Apr 2017 B2
9625660 Daems et al. Apr 2017 B2
9638871 Bund et al. May 2017 B2
9645331 Kim May 2017 B1
9645334 Ishii et al. May 2017 B2
9651741 Isenhour et al. May 2017 B2
9664862 Lu et al. May 2017 B2
9678285 Hill et al. Jun 2017 B2
9678293 Coan et al. Jun 2017 B2
9684136 Cline et al. Jun 2017 B2
9684138 Lu Jun 2017 B2
9696500 Barnette et al. Jul 2017 B2
9711868 Scheucher Jul 2017 B2
9720193 Nishimura Aug 2017 B2
9733436 Van et al. Aug 2017 B2
9739951 Busse et al. Aug 2017 B2
9762322 Amundson Sep 2017 B1
9766416 Kim Sep 2017 B1
9772457 Hill et al. Sep 2017 B2
9804343 Hill et al. Oct 2017 B2
9810855 Cox et al. Nov 2017 B2
9810856 Graham et al. Nov 2017 B2
9829658 Nishimura Nov 2017 B2
9829668 Claessens et al. Nov 2017 B2
9851522 Reagan et al. Dec 2017 B2
9857540 Ahmed et al. Jan 2018 B2
9864151 Lu Jan 2018 B2
9878038 Siadak et al. Jan 2018 B2
9885841 Pepe et al. Feb 2018 B2
9891391 Watanabe Feb 2018 B2
9905933 Scheucher Feb 2018 B2
9910236 Cooke et al. Mar 2018 B2
9921375 Compton et al. Mar 2018 B2
9927580 Bretz et al. Mar 2018 B2
9933582 Lin Apr 2018 B1
9939591 Mullaney et al. Apr 2018 B2
9964713 Barnette et al. May 2018 B2
9964715 Lu May 2018 B2
9977194 Waldron et al. May 2018 B2
9977198 Bund et al. May 2018 B2
9983374 Li et al. May 2018 B2
10007068 Hill et al. Jun 2018 B2
10031302 Ji et al. Jul 2018 B2
10036859 Daems et al. Jul 2018 B2
10038946 Smolorz Jul 2018 B2
10042136 Reagan et al. Aug 2018 B2
10061090 Coenegracht Aug 2018 B2
10073224 Tong et al. Sep 2018 B2
10094986 Barnette et al. Oct 2018 B2
10101538 Lu et al. Oct 2018 B2
10107968 Tong et al. Oct 2018 B2
10109927 Scheucher Oct 2018 B2
10114176 Gimblet et al. Oct 2018 B2
10126508 Compton et al. Nov 2018 B2
10180541 Coenegracht et al. Jan 2019 B2
10209454 Isenhour et al. Feb 2019 B2
10215930 Mullaney et al. Feb 2019 B2
10235184 Walker Mar 2019 B2
10261268 Theuerkorn Apr 2019 B2
10268011 Courchaine et al. Apr 2019 B2
10288820 Coenegracht May 2019 B2
10317628 Van et al. Jun 2019 B2
10324263 Bund et al. Jun 2019 B2
10338323 Lu et al. Jul 2019 B2
10353154 Ott et al. Jul 2019 B2
10353156 Hill et al. Jul 2019 B2
10359577 Dannoux et al. Jul 2019 B2
10371914 Coan et al. Aug 2019 B2
10379298 Dannoux et al. Aug 2019 B2
10386584 Rosson Aug 2019 B2
10401575 Daily et al. Sep 2019 B2
10401578 Coenegracht Sep 2019 B2
10401584 Coan et al. Sep 2019 B2
10409007 Kadar-Kallen et al. Sep 2019 B2
10422962 Coenegracht Sep 2019 B2
10422970 Holmberg et al. Sep 2019 B2
10429593 Baca et al. Oct 2019 B2
10429594 Dannoux et al. Oct 2019 B2
10434173 Siadak et al. Oct 2019 B2
10439295 Scheucher Oct 2019 B2
10444442 Takano et al. Oct 2019 B2
10451811 Coenegracht et al. Oct 2019 B2
10451817 Lu Oct 2019 B2
10451830 Szumacher et al. Oct 2019 B2
10488597 Parikh et al. Nov 2019 B2
10495822 Nhep Dec 2019 B2
10502916 Coan et al. Dec 2019 B2
10520683 Nhep Dec 2019 B2
10539745 Kamada et al. Jan 2020 B2
10578821 Ott et al. Mar 2020 B2
10585246 Bretz et al. Mar 2020 B2
10591678 Mullaney et al. Mar 2020 B2
10605998 Rosson Mar 2020 B2
10606006 Hill et al. Mar 2020 B2
10613278 Kempeneers et al. Apr 2020 B2
10620388 Isenhour et al. Apr 2020 B2
10656347 Kato May 2020 B2
10677998 Van et al. Jun 2020 B2
10680343 Scheucher Jun 2020 B2
10712516 Courchaine et al. Jul 2020 B2
10739534 Murray et al. Aug 2020 B2
10746939 Lu et al. Aug 2020 B2
10761274 Pepe et al. Sep 2020 B2
10782487 Lu Sep 2020 B2
10802236 Kowalczyk et al. Oct 2020 B2
10830967 Pimentel et al. Nov 2020 B2
10830975 Vaughn et al. Nov 2020 B2
10852498 Hill et al. Dec 2020 B2
10852499 Cooke et al. Dec 2020 B2
10859771 Nhep Dec 2020 B2
10859781 Hill et al. Dec 2020 B2
10962731 Coenegracht Mar 2021 B2
10976500 Ott et al. Apr 2021 B2
11061191 Van et al. Jul 2021 B2
11290188 Tuccio et al. Mar 2022 B2
20010002220 Throckmorton et al. May 2001 A1
20010012428 Nakajima et al. Aug 2001 A1
20020012502 Farrar et al. Jan 2002 A1
20020064364 Battey et al. May 2002 A1
20020076165 Childers et al. Jun 2002 A1
20020079697 Griffioen et al. Jun 2002 A1
20020081077 Nault Jun 2002 A1
20020122634 Miyake et al. Sep 2002 A1
20020131721 Gaio et al. Sep 2002 A1
20020159745 Howell et al. Oct 2002 A1
20020172477 Quinn et al. Nov 2002 A1
20030031447 Nault Feb 2003 A1
20030059181 Jackman et al. Mar 2003 A1
20030063866 Melton et al. Apr 2003 A1
20030080555 Griffioen et al. May 2003 A1
20030086664 Moisel et al. May 2003 A1
20030123813 Ravasio et al. Jul 2003 A1
20030128936 Fahrnbauer et al. Jul 2003 A1
20030165311 Wagman et al. Sep 2003 A1
20030201117 Sakabe et al. Oct 2003 A1
20030206705 Mcalpine et al. Nov 2003 A1
20030210875 Wagner et al. Nov 2003 A1
20040057676 Doss et al. Mar 2004 A1
20040057681 Quinn et al. Mar 2004 A1
20040072454 Nakajima et al. Apr 2004 A1
20040076377 Mizukami et al. Apr 2004 A1
20040076386 Nechitailo Apr 2004 A1
20040086238 Finona et al. May 2004 A1
20040096162 Kocher et al. May 2004 A1
20040157499 Nania et al. Aug 2004 A1
20040206542 Gladd et al. Oct 2004 A1
20040240808 Rhoney et al. Dec 2004 A1
20040247251 Rubino et al. Dec 2004 A1
20040252954 Ginocchio et al. Dec 2004 A1
20040262023 Morrow et al. Dec 2004 A1
20050019031 Ye et al. Jan 2005 A1
20050036744 Caveney et al. Feb 2005 A1
20050036786 Ramachandran et al. Feb 2005 A1
20050053342 Melton et al. Mar 2005 A1
20050084215 Grzegorzewska et al. Apr 2005 A1
20050105873 Reagan et al. May 2005 A1
20050123422 Lilie Jun 2005 A1
20050129379 Reagan et al. Jun 2005 A1
20050163448 Blackwell et al. Jul 2005 A1
20050175307 Battey et al. Aug 2005 A1
20050180697 De Marchi Aug 2005 A1
20050213890 Barnes et al. Sep 2005 A1
20050213892 Barnes et al. Sep 2005 A1
20050213899 Hurley et al. Sep 2005 A1
20050213902 Parsons Sep 2005 A1
20050213921 Mertesdorf et al. Sep 2005 A1
20050226568 Nakajima et al. Oct 2005 A1
20050232550 Nakajima et al. Oct 2005 A1
20050232552 Takahashi et al. Oct 2005 A1
20050232567 Reagan et al. Oct 2005 A1
20050244108 Billman et al. Nov 2005 A1
20050271344 Grubish et al. Dec 2005 A1
20050281510 Vo et al. Dec 2005 A1
20050281514 Oki et al. Dec 2005 A1
20050286837 Oki et al. Dec 2005 A1
20050286838 Oki et al. Dec 2005 A1
20060002668 Lail et al. Jan 2006 A1
20060008232 Reagan et al. Jan 2006 A1
20060008233 Reagan et al. Jan 2006 A1
20060008234 Reagan et al. Jan 2006 A1
20060045428 Theuerkorn et al. Mar 2006 A1
20060045430 Theuerkorn et al. Mar 2006 A1
20060056769 Khemakhem et al. Mar 2006 A1
20060056770 Schmitz Mar 2006 A1
20060088247 Tran et al. Apr 2006 A1
20060093278 Elkins et al. May 2006 A1
20060093303 Reagan et al. May 2006 A1
20060093304 Battey et al. May 2006 A1
20060098932 Battey et al. May 2006 A1
20060120672 Cody et al. Jun 2006 A1
20060127016 Baird et al. Jun 2006 A1
20060133748 Seddon et al. Jun 2006 A1
20060133758 Mullaney et al. Jun 2006 A1
20060133759 Mullaney et al. Jun 2006 A1
20060147172 Luther et al. Jul 2006 A1
20060153503 Suzuki et al. Jul 2006 A1
20060153517 Reagan et al. Jul 2006 A1
20060165352 Caveney et al. Jul 2006 A1
20060171638 Dye Aug 2006 A1
20060171640 Dye Aug 2006 A1
20060210750 Morrow et al. Sep 2006 A1
20060233506 Noonan et al. Oct 2006 A1
20060257092 Lu et al. Nov 2006 A1
20060269204 Barth et al. Nov 2006 A1
20060269208 Allen et al. Nov 2006 A1
20060280420 Blackwell et al. Dec 2006 A1
20070031100 Garcia et al. Feb 2007 A1
20070036483 Shin et al. Feb 2007 A1
20070041732 Oki et al. Feb 2007 A1
20070047897 Cooke et al. Mar 2007 A1
20070110374 Oki et al. May 2007 A1
20070116413 Cox May 2007 A1
20070127872 Caveney et al. Jun 2007 A1
20070140642 Mertesdorf et al. Jun 2007 A1
20070160327 Lewallen et al. Jul 2007 A1
20070237484 Reagan et al. Oct 2007 A1
20070263961 Khemakhem et al. Nov 2007 A1
20070286554 Kuffel et al. Dec 2007 A1
20080019641 Elkins et al. Jan 2008 A1
20080020532 Monfray et al. Jan 2008 A1
20080044145 Jenkins et al. Feb 2008 A1
20080069511 Blackwell et al. Mar 2008 A1
20080080817 Melton et al. Apr 2008 A1
20080112681 Battey et al. May 2008 A1
20080131068 Mertesdorf et al. Jun 2008 A1
20080138016 Katagiyama et al. Jun 2008 A1
20080138025 Reagan et al. Jun 2008 A1
20080166906 Nania et al. Jul 2008 A1
20080175541 Lu et al. Jul 2008 A1
20080175542 Lu et al. Jul 2008 A1
20080175544 Fujiwara et al. Jul 2008 A1
20080175548 Knecht et al. Jul 2008 A1
20080226252 Mertesdorf et al. Sep 2008 A1
20080232743 Gronvall et al. Sep 2008 A1
20080260344 Smith et al. Oct 2008 A1
20080260345 Mertesdorf et al. Oct 2008 A1
20080264664 Dinh et al. Oct 2008 A1
20080273837 Margolin et al. Nov 2008 A1
20090003772 Lu et al. Jan 2009 A1
20090034923 Miller et al. Feb 2009 A1
20090041411 Melton et al. Feb 2009 A1
20090060421 Parikh et al. Mar 2009 A1
20090060423 Melton et al. Mar 2009 A1
20090067791 Greenwood et al. Mar 2009 A1
20090067849 Oki et al. Mar 2009 A1
20090074363 Parsons et al. Mar 2009 A1
20090074369 Bolton et al. Mar 2009 A1
20090123115 Gronvall et al. May 2009 A1
20090129729 Caveney et al. May 2009 A1
20090148101 Lu et al. Jun 2009 A1
20090148102 Lu et al. Jun 2009 A1
20090148103 Lu et al. Jun 2009 A1
20090148104 Lu et al. Jun 2009 A1
20090148118 Gronvall et al. Jun 2009 A1
20090148120 Reagan et al. Jun 2009 A1
20090162016 Lu et al. Jun 2009 A1
20090185835 Park et al. Jul 2009 A1
20090190895 Reagan et al. Jul 2009 A1
20090238531 Holmberg et al. Sep 2009 A1
20090245737 Fujiwara et al. Oct 2009 A1
20090245743 Cote et al. Oct 2009 A1
20090263097 Solheid et al. Oct 2009 A1
20090297112 Mertesdorf et al. Dec 2009 A1
20090317039 Blazer et al. Dec 2009 A1
20090317045 Reagan et al. Dec 2009 A1
20100008909 Siadak et al. Jan 2010 A1
20100014813 Ito et al. Jan 2010 A1
20100014824 Lu et al. Jan 2010 A1
20100014867 Ramanitra et al. Jan 2010 A1
20100015834 Siebens Jan 2010 A1
20100021254 Jenkins et al. Jan 2010 A1
20100034502 Lu et al. Feb 2010 A1
20100040331 Khemakhem et al. Feb 2010 A1
20100040338 Sek Feb 2010 A1
20100061685 Kowalczyk et al. Mar 2010 A1
20100074578 Imaizumi et al. Mar 2010 A1
20100080516 Coleman et al. Apr 2010 A1
20100086260 Parikh et al. Apr 2010 A1
20100086267 Cooke et al. Apr 2010 A1
20100092129 Conner Apr 2010 A1
20100092133 Conner Apr 2010 A1
20100092136 Nhep Apr 2010 A1
20100092146 Conner et al. Apr 2010 A1
20100092169 Conner et al. Apr 2010 A1
20100092171 Conner Apr 2010 A1
20100129034 Kuffel et al. May 2010 A1
20100144183 Nania et al. Jun 2010 A1
20100172616 Lu et al. Jul 2010 A1
20100197222 Scheucher Aug 2010 A1
20100215321 Jenkins Aug 2010 A1
20100220962 Caveney et al. Sep 2010 A1
20100226615 Reagan et al. Sep 2010 A1
20100232753 Parris et al. Sep 2010 A1
20100247053 Cowen et al. Sep 2010 A1
20100266242 Lu et al. Oct 2010 A1
20100266244 Lu et al. Oct 2010 A1
20100266245 Sabo Oct 2010 A1
20100272399 Griffiths et al. Oct 2010 A1
20100284662 Reagan et al. Nov 2010 A1
20100290741 Lu et al. Nov 2010 A1
20100303426 Davis Dec 2010 A1
20100303427 Rambow et al. Dec 2010 A1
20100310213 Lewallen et al. Dec 2010 A1
20100322563 Melton et al. Dec 2010 A1
20100329625 Reagan et al. Dec 2010 A1
20110019964 Nhep et al. Jan 2011 A1
20110047731 Sugita et al. Mar 2011 A1
20110067452 Gronvall et al. Mar 2011 A1
20110069932 Overton et al. Mar 2011 A1
20110108719 Ford et al. May 2011 A1
20110116749 Kuffel et al. May 2011 A1
20110123166 Reagan et al. May 2011 A1
20110129186 Lewallen et al. Jun 2011 A1
20110164854 Desard et al. Jul 2011 A1
20110262099 Castonguay et al. Oct 2011 A1
20110262100 Reagan et al. Oct 2011 A1
20110299814 Nakagawa Dec 2011 A1
20110305421 Caveney et al. Dec 2011 A1
20120008909 Mertesdorf et al. Jan 2012 A1
20120045179 Theuerkorn Feb 2012 A1
20120063724 Kuffel et al. Mar 2012 A1
20120063729 Fujiwara et al. Mar 2012 A1
20120106912 Mcgranahan et al. May 2012 A1
20120106913 Makrides-Saravanos et al. May 2012 A1
20120134629 Lu et al. May 2012 A1
20120183268 De et al. Jul 2012 A1
20120213478 Chen et al. Aug 2012 A1
20120251060 Hurley Oct 2012 A1
20120251063 Reagan et al. Oct 2012 A1
20120252244 Elkins et al. Oct 2012 A1
20120275749 Kuffel et al. Nov 2012 A1
20120321256 Caveney et al. Dec 2012 A1
20130004122 Kingsbury Jan 2013 A1
20130020480 Ford et al. Jan 2013 A1
20130034333 Holmberg et al. Feb 2013 A1
20130064506 Eberle et al. Mar 2013 A1
20130094821 Logan Apr 2013 A1
20130109213 Chang May 2013 A1
20130114930 Smith et al. May 2013 A1
20130136402 Kuffel et al. May 2013 A1
20130170834 Cho et al. Jul 2013 A1
20130209099 Reagan et al. Aug 2013 A1
20130236139 Chen et al. Sep 2013 A1
20130266562 Siadak et al. Oct 2013 A1
20130315538 Kuffel et al. Nov 2013 A1
20140016902 Pepe et al. Jan 2014 A1
20140056561 Lu et al. Feb 2014 A1
20140079356 Pepin et al. Mar 2014 A1
20140133804 Lu et al. May 2014 A1
20140133806 Hill et al. May 2014 A1
20140133807 Katoh May 2014 A1
20140133808 Hill et al. May 2014 A1
20140153876 Dendas et al. Jun 2014 A1
20140153878 Mullaney Jun 2014 A1
20140161397 Gallegos et al. Jun 2014 A1
20140205257 Durrant et al. Jul 2014 A1
20140219609 Nielson et al. Aug 2014 A1
20140219622 Coan et al. Aug 2014 A1
20140233896 Ishigami et al. Aug 2014 A1
20140241670 Barnette et al. Aug 2014 A1
20140241671 Koreeda et al. Aug 2014 A1
20140241689 Bradley et al. Aug 2014 A1
20140254987 Caveney et al. Sep 2014 A1
20140294395 Waldron et al. Oct 2014 A1
20140314379 Lu et al. Oct 2014 A1
20140328559 Kobayashi et al. Nov 2014 A1
20140341511 Daems et al. Nov 2014 A1
20140348467 Cote et al. Nov 2014 A1
20140355936 Bund et al. Dec 2014 A1
20150003787 Chen et al. Jan 2015 A1
20150003788 Chen et al. Jan 2015 A1
20150036982 Nhep et al. Feb 2015 A1
20150110451 Blazer et al. Apr 2015 A1
20150153532 Holmberg et al. Jun 2015 A1
20150168657 Islam Jun 2015 A1
20150183869 Siadak et al. Jul 2015 A1
20150185423 Matsui et al. Jul 2015 A1
20150253527 Hill et al. Sep 2015 A1
20150253528 Corbille et al. Sep 2015 A1
20150268423 Burkholder et al. Sep 2015 A1
20150268434 Barnette et al. Sep 2015 A1
20150293310 Kanno Oct 2015 A1
20150309274 Hurley et al. Oct 2015 A1
20150316727 Kondo et al. Nov 2015 A1
20150346435 Kato Dec 2015 A1
20150346436 Pepe et al. Dec 2015 A1
20160015885 Pananen et al. Jan 2016 A1
20160041346 Barnette et al. Feb 2016 A1
20160062053 Mullaney Mar 2016 A1
20160085032 Lu et al. Mar 2016 A1
20160109671 Coan et al. Apr 2016 A1
20160116686 Durrant et al. Apr 2016 A1
20160126667 Droesbeke et al. May 2016 A1
20160131851 Theuerkorn May 2016 A1
20160131857 Pimentel et al. May 2016 A1
20160139346 Bund et al. May 2016 A1
20160154184 Bund et al. Jun 2016 A1
20160161682 Nishimura Jun 2016 A1
20160161688 Nishimura Jun 2016 A1
20160161689 Nishimura Jun 2016 A1
20160187590 Lu Jun 2016 A1
20160202431 Hill et al. Jul 2016 A1
20160209599 Van et al. Jul 2016 A1
20160209602 Theuerkorn Jul 2016 A1
20160216468 Gimblet et al. Jul 2016 A1
20160238810 Hubbard et al. Aug 2016 A1
20160246019 Ishii et al. Aug 2016 A1
20160259133 Kobayashi et al. Sep 2016 A1
20160259134 Daems et al. Sep 2016 A1
20160306122 Tong et al. Oct 2016 A1
20160327754 Hill et al. Nov 2016 A1
20170023758 Reagan et al. Jan 2017 A1
20170045699 Coan et al. Feb 2017 A1
20170052325 Mullaney et al. Feb 2017 A1
20170123163 Lu et al. May 2017 A1
20170123165 Barnette et al. May 2017 A1
20170131509 Xiao et al. May 2017 A1
20170139158 Coenegracht May 2017 A1
20170168248 Hayauchi et al. Jun 2017 A1
20170168256 Reagan et al. Jun 2017 A1
20170170596 Goossens et al. Jun 2017 A1
20170176252 Marple et al. Jun 2017 A1
20170176690 Bretz et al. Jun 2017 A1
20170182160 Siadak et al. Jun 2017 A1
20170219782 Nishimura Aug 2017 A1
20170235067 Holmberg et al. Aug 2017 A1
20170238822 Young et al. Aug 2017 A1
20170254961 Kamada et al. Sep 2017 A1
20170254962 Mueller-Schlomka et al. Sep 2017 A1
20170261696 Compton et al. Sep 2017 A1
20170261698 Compton et al. Sep 2017 A1
20170261699 Compton et al. Sep 2017 A1
20170285275 Hill et al. Oct 2017 A1
20170288315 Scheucher Oct 2017 A1
20170293091 Lu et al. Oct 2017 A1
20170336587 Coan et al. Nov 2017 A1
20170343741 Coenegracht et al. Nov 2017 A1
20170343745 Rosson Nov 2017 A1
20170351037 Watanabe et al. Dec 2017 A1
20180031774 Van et al. Feb 2018 A1
20180081127 Coenegracht Mar 2018 A1
20180143386 Coan et al. May 2018 A1
20180151960 Scheucher May 2018 A1
20180180831 Blazer et al. Jun 2018 A1
20180224610 Pimentel et al. Aug 2018 A1
20180239094 Barnette et al. Aug 2018 A1
20180246283 Pepe et al. Aug 2018 A1
20180259721 Bund et al. Sep 2018 A1
20180329149 Mullaney et al. Nov 2018 A1
20180372962 Isenhour et al. Dec 2018 A1
20190004251 Dannoux et al. Jan 2019 A1
20190004255 Dannoux et al. Jan 2019 A1
20190004256 Rosson Jan 2019 A1
20190004258 Dannoux et al. Jan 2019 A1
20190011641 Isenhour et al. Jan 2019 A1
20190018210 Coan et al. Jan 2019 A1
20190033532 Gimblet et al. Jan 2019 A1
20190038743 Siadak et al. Feb 2019 A1
20190041584 Coenegracht et al. Feb 2019 A1
20190041585 Bretz et al. Feb 2019 A1
20190041595 Reagan et al. Feb 2019 A1
20190058259 Scheucher Feb 2019 A1
20190107677 Coenegracht et al. Apr 2019 A1
20190147202 Harney May 2019 A1
20190162910 Gurreri May 2019 A1
20190162914 Baca et al. May 2019 A1
20190187396 Finnegan et al. Jun 2019 A1
20190235177 Lu et al. Aug 2019 A1
20190250338 Mullaney et al. Aug 2019 A1
20190271817 Coenegracht Sep 2019 A1
20190324217 Lu et al. Oct 2019 A1
20190339460 Dannoux et al. Nov 2019 A1
20190339461 Dannoux et al. Nov 2019 A1
20190369336 Van et al. Dec 2019 A1
20190369345 Reagan et al. Dec 2019 A1
20190374637 Siadak et al. Dec 2019 A1
20200012051 Coenegracht et al. Jan 2020 A1
20200036101 Scheucher Jan 2020 A1
20200049922 Rosson Feb 2020 A1
20200057205 Dannoux et al. Feb 2020 A1
20200057222 Dannoux et al. Feb 2020 A1
20200057223 Dannoux et al. Feb 2020 A1
20200057224 Dannoux et al. Feb 2020 A1
20200057723 Chirca et al. Feb 2020 A1
20200096705 Rosson Mar 2020 A1
20200096709 Rosson Mar 2020 A1
20200096710 Rosson Mar 2020 A1
20200103599 Rosson Apr 2020 A1
20200103608 Hill et al. Apr 2020 A1
20200110229 Dannoux et al. Apr 2020 A1
20200110234 Holmberg et al. Apr 2020 A1
20200116949 Rosson Apr 2020 A1
20200116952 Rosson Apr 2020 A1
20200116953 Rosson Apr 2020 A1
20200116954 Rosson Apr 2020 A1
20200116958 Dannoux et al. Apr 2020 A1
20200116962 Dannoux et al. Apr 2020 A1
20200124812 Dannoux et al. Apr 2020 A1
20200132939 Coenegracht et al. Apr 2020 A1
20200192042 Coan et al. Jun 2020 A1
20200209492 Rosson Jul 2020 A1
20200218017 Coenegracht Jul 2020 A1
20200225422 Van et al. Jul 2020 A1
20200225424 Coenegracht Jul 2020 A1
20200241211 Shonkwiler et al. Jul 2020 A1
20200348476 Hill et al. Nov 2020 A1
20200371306 Mosier et al. Nov 2020 A1
20200393629 Hill et al. Dec 2020 A1
20210103099 Butler Apr 2021 A1
Foreign Referenced Citations (169)
Number Date Country
2006232206 Oct 2006 AU
1060911 May 1992 CN
1071012 Apr 1993 CN
1213783 Apr 1999 CN
1114839 Jul 2003 CN
1646962 Jul 2005 CN
1833188 Sep 2006 CN
1922523 Feb 2007 CN
1985205 Jun 2007 CN
101084461 Dec 2007 CN
101111790 Jan 2008 CN
101195453 Jun 2008 CN
201404194 Feb 2010 CN
101846773 Sep 2010 CN
101939680 Jan 2011 CN
201704194 Jan 2011 CN
102346281 Feb 2012 CN
202282523 Jun 2012 CN
203224645 Oct 2013 CN
203396982 Jan 2014 CN
103713362 Apr 2014 CN
104064903 Sep 2014 CN
104280830 Jan 2015 CN
104603656 May 2015 CN
105467529 Apr 2016 CN
0026553 Apr 1981 EP
0244791 Nov 1987 EP
0547788 Jun 1993 EP
0782025 Jul 1997 EP
0856751 Aug 1998 EP
0957381 Nov 1999 EP
1243957 Sep 2002 EP
1391762 Feb 2004 EP
1431786 Jun 2004 EP
1438622 Jul 2004 EP
1678537 Jul 2006 EP
1759231 Mar 2007 EP
1810062 Jul 2007 EP
2069845 Jun 2009 EP
2149063 Feb 2010 EP
2150847 Feb 2010 EP
2193395 Jun 2010 EP
2255233 Dec 2010 EP
2333597 Jun 2011 EP
2362253 Aug 2011 EP
2401641 Jan 2012 EP
2609458 Jul 2013 EP
2622395 Aug 2013 EP
2734879 May 2014 EP
2815259 Dec 2014 EP
2817667 Dec 2014 EP
2992372 Mar 2016 EP
3022596 May 2016 EP
3064973 Sep 2016 EP
3101740 Dec 2016 EP
3245545 Nov 2017 EP
3265859 Jan 2018 EP
3336992 Jun 2018 EP
3362830 Aug 2018 EP
3427096 Jan 2019 EP
3443395 Feb 2019 EP
3535614 Sep 2019 EP
3537197 Sep 2019 EP
3646074 May 2020 EP
3646079 May 2020 EP
2485754 Dec 1981 FR
61-145509 Jul 1986 JP
63-078908 Apr 1988 JP
63-089421 Apr 1988 JP
03-063615 Mar 1991 JP
03-207223 Sep 1991 JP
05-297246 Nov 1993 JP
06-320111 Nov 1994 JP
07-318758 Dec 1995 JP
08-292331 Nov 1996 JP
09-135526 May 1997 JP
09-325249 Dec 1997 JP
10-339826 Dec 1998 JP
11-064682 Mar 1999 JP
11-281861 Oct 1999 JP
11-326693 Nov 1999 JP
2001-290051 Oct 2001 JP
2003-121699 Apr 2003 JP
2003-177279 Jun 2003 JP
2005-031544 Feb 2005 JP
2005-077591 Mar 2005 JP
2005-520987 Jul 2005 JP
2006-023502 Jan 2006 JP
2006-259631 Sep 2006 JP
2006-337637 Dec 2006 JP
2007-078740 Mar 2007 JP
2007-121859 May 2007 JP
2009-265208 Nov 2009 JP
2010-152084 Jul 2010 JP
2011-033698 Feb 2011 JP
2013-156580 Aug 2013 JP
2014-085474 May 2014 JP
2014-134746 Jul 2014 JP
5537852 Jul 2014 JP
5538328 Jul 2014 JP
3207233 Nov 2016 JP
10-2013-0081087 Jul 2013 KR
2012044741 Apr 2012 NO
222688 Apr 1994 TW
0192927 Dec 2001 WO
0336358 May 2003 WO
2004061509 Jul 2004 WO
2005045494 May 2005 WO
2006009597 Jan 2006 WO
2006052420 May 2006 WO
2006113726 Oct 2006 WO
2008027201 Mar 2008 WO
2008150408 Dec 2008 WO
2008150423 Dec 2008 WO
2009042066 Apr 2009 WO
2009113819 Sep 2009 WO
2009117060 Sep 2009 WO
2009154990 Dec 2009 WO
2010092009 Aug 2010 WO
2010099141 Sep 2010 WO
2011044090 Apr 2011 WO
2011047111 Apr 2011 WO
2012027313 Mar 2012 WO
2012037727 Mar 2012 WO
2012163052 Dec 2012 WO
2013016042 Jan 2013 WO
2013122752 Aug 2013 WO
2013126488 Aug 2013 WO
2014151259 Sep 2014 WO
2014167447 Oct 2014 WO
2014179411 Nov 2014 WO
2014197894 Dec 2014 WO
2015144883 Oct 2015 WO
2015047508 Dec 2015 WO
2015197588 Dec 2015 WO
2016059320 Apr 2016 WO
2016073862 May 2016 WO
2016095213 Jun 2016 WO
2016100078 Jun 2016 WO
2016115288 Jul 2016 WO
2016156610 Oct 2016 WO
2016168389 Oct 2016 WO
2017063107 Apr 2017 WO
2017146722 Aug 2017 WO
2017155754 Sep 2017 WO
2017178920 Oct 2017 WO
2018083561 May 2018 WO
2018175123 Sep 2018 WO
2018204864 Nov 2018 WO
2019005190 Jan 2019 WO
2019005191 Jan 2019 WO
2019005192 Jan 2019 WO
2019005193 Jan 2019 WO
2019005194 Jan 2019 WO
2019005195 Jan 2019 WO
2019005196 Jan 2019 WO
2019005197 Jan 2019 WO
2019005198 Jan 2019 WO
2019005199 Jan 2019 WO
2019005200 Jan 2019 WO
2019005201 Jan 2019 WO
2019005202 Jan 2019 WO
2019005203 Jan 2019 WO
2019005204 Jan 2019 WO
2019036339 Feb 2019 WO
2019126333 Jun 2019 WO
2019195652 Oct 2019 WO
2020018657 Jan 2020 WO
2020101850 May 2020 WO
Non-Patent Literature Citations (7)
Entry
“Variable optical power splitters create new apps”, Lightwave_Mar. 1, 2005, 14 pages.
Faulkner et al. “Optical networks for local lopp applications,” J. Lightwave Technol.0733-8724 7(11), 17411751 (1989).
Liu et al., “Variable optical power splitters create new apps”, Retrieved from: https://www.lightwaveonline.com/fttx/pon-systems/article/16648432/variable-optical-power-splitters-create-new-apps, 2005, 14 pages.
Ramanitra et al. “Optical access network using a self-latching variable splitter remotely powered through an optical fiber link,” Optical Engineering 46(4) p. 45007-1-9, Apr. 2007.
Ratnam et al. “Burst switching using variable optical splitter based switches with wavelength conversion,” ICIIS 2017—Poeceedings Jan. 2018, pp. 1-6.
Wang et al. “Opto-VLSI-based dynamic optical splitter,” Electron. Lett.0013-5194 10.1049/el:20046715 40(22), 14451446 (2004).
Xiao et al. “1 xN wavelength selective adaptive optical power splitter for wavelength-division-multiplexed passive optical networks,” Optics & Laser Technology 68, pp. 160-164, May 2015.
Related Publications (1)
Number Date Country
20220381989 A1 Dec 2022 US
Provisional Applications (1)
Number Date Country
63193186 May 2021 US