Information
-
Patent Grant
-
6522859
-
Patent Number
6,522,859
-
Date Filed
Tuesday, October 16, 200123 years ago
-
Date Issued
Tuesday, February 18, 200322 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 399 98
- 399 99
- 399 92
- 399 343
- 399 349
- 015 3001
- 015 345
-
International Classifications
-
Abstract
An air suction manifold device for removal of fibers/debris from the photoreceptor surface, which may otherwise attach to the development electrode wires causing a print defect(s). The device incorporating a secondary channel perpendicular to the main channel, formed by the manifold flange(s) proximity to the photoreceptor surface. The secondary channel supplying a specific volume of air at a specific mean velocity in a direction perpendicular to the flow direction of the main channel. The volume and velocity of secondary channel air being of such magnitude that it crosses the main channel gap and impinges on the photoreceptor surface, causing a zone of maximum shear stress prior to completely mixing with the main channel air. The maximum sheer stress zone resulting in improved fiber/debris removal performance from the photoreceptor surface.
Description
BACKGROUND OF THE INVENTION
This invention relates generally to electrophotographic printing, and more particularly, concerns cleaning imaging (i.e. photoreceptive, photoconductive, etc.) and bias transfer roll (BTR) surfaces using air velocity.
High velocity air streams have been used to clean photoreceptors in the past. Although several attempts have been made to clean photoreceptors and bias transfer rolls (BTRs). These devices, photoreceptors and BTRs, have used air knives to create a high velocity air stream to clean their surfaces. Such devices can consist of a plate, closely spaced to the surface to be cleaned, with narrow slots cut into it. A vacuum is applied behind the plate to cause air to flow through the slots and create a high velocity airstream across the surface being cleaned. The high velocity air flow disturbs the surface boundary layer allowing removal of particles adhered to the surface.
The problems with this approach are in the manufacture of the device and the power required to create the vacuum. The tolerances for the cleaner and the surface to be cleaned must be held closely. The orifice slot width must be uniform along its length to maintain uniform air velocities and therefore cleaning. The spacing between the plate and surface to be cleaned must also be uniform for the same reasons. This requires the plate and cleaning surface to be straight, flat and well aligned. If the surface to be cleaned is a roll, the runout of the roll and the parallelism of the roll axis to the slot axis is also important. Because of the close spacing of the cleaning plate to the surface to be cleaned and the narrow orifice slot, the resistance of the system to air flow is very high.
As a result of this high resistance to air flow, a considerable air flow is required to generate the required cleaning air velocities needed for the narrow orifice slot to clean the surface. The requirements of high pressure and air flow result in a high power usage for the system and the possibility of a noise problem.
An object of the fiber removal device which can remove fiber before fiber can interfere with development wires associated with HSD development systems thereby reducing fiber related streak defects.
There is provided an air suction manifold device for removal of fibers/debris from the photoreceptor surface, which may otherwise attach to the development electrode wires causing a print defect(s). The device incorporating a secondary channel perpendicular to the main channel, formed by the manifold flange(s) proximity to the photoreceptor surface. The secondary channel supplying a specific volume of air at a specific mean velocity in a direction perpendicular to the flow direction of the main channel. The volume and velocity of secondary channel air being of such magnitude that it crosses the main channel gap and impinges on the photoreceptor surface, causing a zone of maximum shear stress prior to completely mixing with the main channel air. The maximum sheer stress zone resulting in improved fiber/debris removal performance from the photoreceptor surface.
BRIEF DESCRIPTION OF THE DRAWINGS
Other features of the present invention will become apparent as the following description proceeds and upon reference to the drawings, in which:
FIG. 1
is a schematic of the air manifold housing of the present inventions
FIG. 2
is an enlarged side view of the air manifold housing of the present invention;
FIG. 3
is an enlarged side view of the air manifold housing having a single channel with a with flange having a rounded edge;
FIG. 4
is an enlarged side view of the air manifold housing having a single channel with a flange having a sharp edge; and
FIG. 5
is a schematic elevational view of an illustrative electrophotographic printing machine incorporating the features of the present invention therein.
While the present invention will be described in connection with a preferred embodiment thereof, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
DETAILED DESCRIPTION OF THE INVENTION
While the present invention will be described in connection with a preferred embodiment thereof, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
Inasmuch as the art of electrophotographic printing is well known, the various processing stations employed in the
FIG. 5
printing machine will be shown hereinafter schematically and their operation described briefly with reference thereto.
Referring initially to
FIG. 5
, there is shown an illustrative electrophotographic printing machine incorporating the development apparatus of the present invention therein. The electrophotographic printing machine employs a belt
10
having a photoconductive surface
12
deposited on a conductive substrate. Preferably, photoconductive surface
12
is made from selenium alloy. Conductive substrate is made preferably from an aluminum alloy that is electrically grounded. One skilled in the art will appreciate that any suitable photoconductive belt may be used. Belt
10
moves in the direction of arrow
18
to advance successive portions of photoconductive surface
12
sequentially through the various processing stations disposed of throughout the path of movement thereof. Belt
10
is entrained about stripping roller
20
, tensioning roller
22
and drive roller
24
. Drive roller
24
is mounted rotatably in engagement with belt
10
. Motor
26
rotates roller
24
to advance belt
10
in the direction of arrow
18
. Roller
22
is coupled to motor
26
by suitable means, such as a drive belt. Belt
10
is maintained in tension by a pair of springs (not shown) resiliently urging tensioning roller
22
against belt
10
with the desired spring force. Stripping roller
20
and tensioning roller
22
are mounted to rotate freely.
Initially, a portion of belt
10
passes through charging station A. At charging station A, a corona generating device, indicated generally by the reference numeral
28
charges photoconductive surface
12
to a relatively high,
20
substantially uniform potential. High voltage power supply
30
is coupled to corona generating device
28
to charge photoconductive surface
12
of belt
10
.
After photoconductive surface
12
of belt
10
is charged, the charged portion thereof is advanced through exposure station B.
At exposure station B, an original document
32
is placed face down upon a transparent platen
34
. Lamps
36
flash light rays onto original document
32
. The light rays reflected from original document
32
are transmitted through lens
38
to form a light image thereof. Lens
38
focuses this light image onto the charged portion of photoconductive surface
12
to selectively dissipate the charge thereon. This records an electrostatic latent image on photoconductive surface
12
that corresponds to the informational areas contained within original document
32
.
After the electrostatic latent image has been recorded on photoconductive surface
12
, belt
10
advances the latent image to development station C. On the way to development station C the latent image passes under fiber removal device
200
of the present invention which removes fibers adhering to the imaging surface. Alternatively fiber removal device can be positioned prior to the exposure station B.
At development station C, a developer unit, indicated generally by the reference numeral
40
, develops the latent image recorded on the photoconductive surface. Preferably, developer unit
40
includes donor roll
42
and electrode wires
44
. Electrode wires
44
are electrically biased relative to donor roll
42
to detach toner therefrom so as to form a toner powder cloud in the gap between the donor roll and the photoconductive surface. The latent image attracts toner particles from the toner powder cloud forming a toner powder image thereon. Donor roll
42
is mounted, at least partially, in the chamber of developer housing. The chamber in developer housing stores a supply of developer material. In one embodiment the developer material is a single component development material of toner particles, whereas in another the developer material includes at least toner and carrier.
With continued reference to
FIG. 5
, after the electrostatic latent image is developed, belt
10
advances the toner powder Image to transfer station D. A copy sheet
54
is advanced to transfer station D by sheet feeding apparatus. Preferably, sheet feeding apparatus includes a feed roll
58
contacting the uppermost sheet of stack
60
into chute
66
. Chute
66
directs the advancing sheet of support material into contact with photoconductive surface
12
of belt
10
in a timed sequence so that the toner powder image developed thereon contacts the advancing sheet at transfer station D. Transfer station D includes a corona generating device
64
which sprays ions onto the back side of sheet
54
. This attracts the toner powder image from photoconductive surface
12
to sheet
54
. After transfer, sheet
54
continues to move in the direction of arrow onto a conveyor (not shown) that advances sheet
54
to fusing station E.
Fusing station E includes a fuser assembly, indicated generally by the reference numeral
68
, which permanently affixes the transferred powder image to sheet
54
. Fuser assembly
68
includes a heated fuser roller
70
and a back-up roller
72
. Sheet
54
passes between fuser roller
70
and back-up roller
72
with the toner powder image contacting fuser roller. In this manner, the toner powder image is permanently affixed to sheet
54
. After fusing, sheet
54
advances through chute
74
to catch tray
75
for subsequent removal from the printing machine by the operator.
After the copy sheet is separated from photoconductive surface
12
of belt
10
, the residual toner particles adhering to photoconductive surface
12
are removed therefrom at cleaning station F. Cleaning station F includes a rotatably mounted fibrous brush
78
in contact with photoconductive surface
12
. The particles are cleaned from photoconductive surface
12
by the rotation of brush
78
In contact therewith. Subsequent to cleaning, a discharge lamp (not shown) floods photoconductive surface
12
with light to dissipate any residual electrostatic charge remaining thereon prior to the charging thereof for the next successive imaging cycle.
Reference is now made to the drawings where the showings are for the purpose of illustrating a preferred embodiment of the invention and not for limiting same. Referring now to
FIG. 1
, fiber removal device which shows tangential air flow created by a vacuum source (e.g. pump, blower, fan) (not shown) through housing
200
. The present invention draws air under manifold surface
130
, by the use of a vacuum shown by the arrow
120
, created by the vacuum source, inside the housing
200
, to create the high velocity air needed to disturb the surface boundary layer and remove adhered particles. The flanges
130
are automatically spaced above the surface to be cleaned
12
(i.e. imaging surface or BTR surface). With the use of these manifold surface
130
, very small gaps can be easily created which will generate high air flows
140
tangent to the surface to be cleaned with relatively small air flows. The very small gaps under the manifold surface
130
insure that the boundary layer is penetrated by the air stream and that the air velocity is high.
FIG. 2
illustrates an enlarged side view of housing
200
of the present invention. Housing
200
has a primary channel
104
; a second channel
102
which is parallel to the primary channel
104
. The primary channel
104
and secondary channel
102
are adjacent to each other. In operation, vacuum
120
creates the high velocity air needed to disturb the surface boundary layer and remove adhered particles to the surface to be cleaned by drawing air through a particle primary channel
104
and secondary channels
102
. Air flowing through primary channel
104
and secondary channels
102
generate high air flows
140
tangent to the surface to be cleaned.
Applicant has performed bench testing on embodiments shown in
FIGS. 2-4
.
FIG. 3
shows a manifold housing employing a single channel
115
. Single channel
115
has a flange having a rounded corners
126
facing the surface to be cleaned. Applicant has found more air is required to dislodge the particles
160
and allow other forces to transport the particles
160
away from the surface
12
when compared to embodiments shown in
FIGS. 4 and 2
.
FIG. 4
shows a manifold housing employing a single channel
115
. Single channel
115
has a flange having a sharp corner
125
facing the surface to be cleaned. Applicant has found that more air is required to dislodge the particles
160
and allow other forces to transport the particles
160
away from the surface
12
when compared to embodiment shown in FIG.
2
. But applicant has found better sheer stress was generated to dislodge the particles with the sharp corner as compared to embodiment shown in FIG.
3
.
Applicant has found less air flow is required to dislodge the particles
160
and allows reduced vacuum force to transport the particles
160
away from the surface
12
when compared to embodiments shown in
FIGS. 3 and 4
.
Applicant has found through laboratory testing that in addition of the secondary channel perpendicular to the main channel formed by the manifold flange(s) proximity to the photoreceptor surface, results in improved particle removal performance from the photoreceptor surface. The secondary channel supplying a specific volume of air at a specific mean velocity in a direction perpendicular to the flow direction of the main channel. The vacuum generated through the primary channel generated a volume and velocity of air through the secondary channels so that air therethrough crosses the primary channel gap and impinges on the photoreceptor surface, causing a zone of maximum shear stress prior to completely mixing with the main channel air. Extensive numerical simulation research suggests that maximizing the shear stress zone results in improved particle removal performance from the photoreceptor surface. The performance improvement provides decreased power requirements, as well as increased latitude for bulk air flow and channel height (gap) requirements.
While the invention has been described in detail with reference to specific and preferred embodiments, it will be appreciated that various modifications and variations will be apparent to the artisan. All such modifications and embodiments as may occur to one skilled in the art are intended to be within the scope of the appended claims.
Claims
- 1. An apparatus for removing particles from a surface, comprising:a manifold including a primary channel having a first opening facing the surface; a secondary channel having a second opening facing the surface, said secondary channel being parallel to the primary channel; said secondary channel has flange having a sharp corner facing the surface; and vacuum means, in communication with said primary and coating with said secondary channel, for generating high velocity air stream to disturb a boundary layer of the surface thereby removing adhered particles from the surface.
- 2. The apparatus of claim 1 wherein said secondary channel includes a first channel and a second channel.
- 3. An apparatus for removing particles from a surface, comprising:a manifold including a primary channel having a first opening facing the surface; a secondary channel having a second opening facing the surface, said secondary channel including a first channel and a second channel, said secondary channel being parallel to the primary channel; said primary channel is between said first channel and second channel; and vacuum means, in communication with said primary and coating with said secondary channel, for generating high velocity air stream to disturb a boundary layer of the surface thereby removing adhered particles th surface.
- 4. An air suction manifold device for removal of fibers/debris from a photoconductive surface, comprising:air manifold having a primary channel for supplying air to the photoconductive surface, a secondary channel, parallel to the primary channel, said secondary channel coating with said primary channel supplying a specific volume of air at a specific mean velocity in a direction perpendicular to the flow direction of the primary channel when a vacuum is applied to said primary channel, said secondary channel has flange having a sharp corner facing the surface.
- 5. The apparatus of claim 4, wherein said secondary channel includes a first channel and a second channel.
- 6. An air suction manifold device for removal of fibers/debris from a photo-conductive surface, comprising:air manifold having a primary channel for supplying air to the photoconductive surface, a secondary channel, parallel to the primary channel, said secondary channel including a first channel and a second channel, said secondary channel coating said primary channel supplying a specific volume of air at a specific mean velocity in a direction perpendicular to the flow direction of the primary channel when a vacuum is applied to said primary channel, said primary channel is between said first channel and second channel.
- 7. A printer having an imaging member having an imaging surface, means for recording an image on the imaging surface and development system for developing the image, comprising:an air suction manifold device for removal of fibers/debris from the imaging surface, comprising: air manifold having a primary channel for supplying air to the imaging surface, a secondary channel, parallel to the primary channel, said secondary channel coating with said primary channel supplying a specific volume of air at a specific mean velocity in a direction parallel to the flow direction of the primary channel when a vacuum is applied to said primary channel, said secondary channel has flange having a sharp corner facing the surface.
- 8. The apparatus of claim 7, wherein said secondary channel includes a first channel and a second channel.
- 9. The apparatus of claim 8, wherein said primary channel is between said first channel and second channel.
- 10. The apparatus of claim 7 wherein said air
US Referenced Citations (4)
Number |
Name |
Date |
Kind |
4026701 |
Till et al. |
May 1977 |
A |
5321484 |
Kedarnath et al. |
Jun 1994 |
A |
5577294 |
Pollock |
Nov 1996 |
A |
6181896 |
Zirilli et al. |
Jan 2001 |
B1 |
Foreign Referenced Citations (1)
Number |
Date |
Country |
08-195458 |
Apr 1996 |
JP |