1. Field of the Invention
The present invention relates to handpieces for delivering electromagnetic radiation.
2. Description of the Related Art
Handpieces have existed in the prior art for delivering electromagnetic radiation.
The rotating handpiece of the present invention includes a fiber tip fluid output device and a removable trunk fiber optic. The trunk fiber optic and the fiber tip are disposed perpendicularly, with a parabolic mirror disposed there between. Slight misalignments of the trunk fiber optics, as well as imperfections on the output surface of the fiber optic, are compensated by the parabolic mirror which consistently and efficiently focuses the electromagnetic energy into the input end of the fiber tip. Moreover, in accordance with one aspect of the present invention, the handpiece can be rotated about the longitudinal axis of the trunk fiber optic, with the parabolic mirror continuing to efficiently couple the electromagnetic energy from the trunk fiber optic into the fiber tip.
In accordance with one aspect of the present invention, a fiber tip fluid output device is provided for holding a fiber tip in an electromagnetic energy cutting apparatus and for directing water particles over a radiation delivery end of the fiber tip. The fiber tip fluid output device comprises a generally cylindrical body having an outer surface, a proximal end, a distal end, and a lumen extending between the proximal end and the distal end, the lumen being sized and shaped to accommodate a fiber tip therethrough so that the fiber tip extends through the lumen from the proximal end to the distal end of the generally cylindrical body. The fiber tip fluid output device further comprises a plurality of apertures extending around the generally cylindrical body, wherein each of the apertures of the plurality of apertures fluidly connects the outer surface to the lumen. Fluid is mixed around the cylindrical body, before entering the lumen through the plurality of apertures for additional mixing. The mixed fluid is then output from the lumen of the fiber tip fluid output device onto the fiber tip, for subsequent interaction with electromagnetic energy in an interaction zone above a target surface.
The present invention, together with additional features and advantages thereof, may best be understood by reference to the following description taken in connection with the accompanying illustrative drawings.
a depicts a chuck according to a feature of the present invention;
a-4c, 5a-5c, 6a and 6b are other views of the invention;
Referring more particularly to the drawings,
In the presently preferred embodiment, the electromagnetic energy exiting from the output end 55 of the trunk fiber optic 45 comprises a wavelength on the order of 3 mm. The material of the parabolic mirror 41 is selected to provide an efficient reflection and focusing into the input end 59. As presently embodied, the electromagnetic energy is generated from an Er:YSGG laser, and the material of the parabolic mirror 41 comprises a gold plating to provide reflectivity of approximately 99.9 percent. Other materials may be selected in accordance with design parameters. Other reflective surfaces and materials for the parabolic mirror 41 may be selected, in accordance with the laser being used and the desired efficiency of reflection. For example, if a lower reflectivity is selected, then additional cooling may be needed for the parabolic mirror 41 (such as a greater flow rate of cooled and/or filtered air across the surface of the parabolic mirror 41).
In a modified embodiment, a pentaprism (five-sided prism) is used instead of the parabolic mirror 41 for coupling the trunk fiber optic 45 to the fiber tip 51.
In addition to slight misalignment of the axis of the trunk fiber optic 45, slight imperfections on the output end 55 of the trunk fiber optic 45 may also be present. The parabolic mirror 41 corrects for both of these slight errors, by collecting the electromagnetic energy from the output end 55 of the front fiber optic 45 and, subsequently, focusing the electromagnetic energy to the output end of the rotating handpiece 10 at which location the input end 55 of the fiber tip 51 receives the focused electromagnetic energy. If the output end of the fiber tip 51 is considered to be the output end of the rotating handpiece 10, then energy exiting the output end of the fiber tip 51 will, by definition, exit the output end of the rotating handpiece 10 at the same time.
The parabolic mirror 41 may also comprise molypdium, in a preferred embodiment.
The clamp assembly 91 operates to firmly grip and hold the trunk fiber optic 45. In the presently preferred embodiment, the clamp assembly 91 is provided with at least one slit, which extends from the distal end 93 of the clamp assembly 91 to a region 95 just distal of the set screw 97. As presently embodied, the at least one slit extending from the distal end 93 to the region 95 just distal of the set screw 97 comprises two slits, which are adapted to allow the clamp assembly 91 to be compressed by the chuck 23 onto the trunk fiber optic 45. The chuck 23 thus presses against the portion of the clamp assembly 91, wherein the portion is defined between the distal end 93 and the region 95, to thereby have the clamp assembly 91 squeeze and hold the trunk fiber optic 45 in place. In the presently preferred embodiment, the set screw 97 is used to hold the chuck 23 in place and prevent rotation thereof. In the illustrated embodiment, the outer surface of the clamp assembly 91 is provided with threads 99 for engaging with corresponding threads on the inner surface of the chuck 23. In the presently preferred embodiment, the chuck 23 is screwed onto the threads of the clamp assembly 91, before the removable trunk fiber assembly 16 is inserted into the handpiece 12. The chuck 23 is screwed onto the clamp assembly 91 to a predetermined tightness, and then the set screw 97 is secured thereto to securely hold the chuck 23 to the clamp assembly 91. Subsequently, the removable trunk fiber assembly 16 is inserted and secured into the handpiece head 12.
Referring to FIGS. 5 and 7-9, the fiber tip fluid output device 14 comprises a generally cylindrical body having an outer surface, a proximal end, a distal end, and a lumen extending between the proximal end and the distal end. The lumen is sized and shaped to accommodate the fiber tip 51a therethrough so that the fiber tip 51a extends through the lumen from the proximal end to the distal end of the generally cylindrical body. The fiber tip fluid output device 14 further comprises a plurality of apertures 125 extending around the generally cylindrical body. Each of the apertures 125 fluidly connects the outer surface to the lumen. As presently embodied, the lumen comprises a first diameter near the proximal end and a second diameter near the distal end, wherein in the illustrated embodiment the second diameter is greater than or equal to about two times the first diameter. As presently embodied, the lumen comprises a proximal lumen section and a distal lumen section, the proximal lumen section having a diameter which in the illustrated embodiment is equal to the first diameter and the distal lumen section having a diameter which in the illustrated embodiment is equal to the second diameter. The proximal lumen section comprises a proximal end, a distal end, and a lumen axis extending between the proximal end and the distal end; the distal lumen section comprises a proximal end, a distal end, and a lumen axis extending between the proximal end and the distal end; and the diameter of the proximal lumen section in the illustrated embodiment is preferably substantially constant along a length of the proximal lumen section between the proximal end of the proximal lumen section and the distal end of the proximal lumen section. The diameter of the distal lumen section is preferably substantially constant along a length of the distal lumen section between the proximal end of the distal lumen section and the distal end of the distal lumen section. In the illustrated embodiment, the first diameter transitions to the second diameter at the distal end of the proximal lumen section and the proximal end of the distal lumen section, a distal opening of the fiber tip fluid output device 14 has a diameter which is equal to the second diameter, and a proximal opening of the fiber tip fluid output device 14 has a diameter which is equal to the first diameter. In the illustrated embodiment, each of the apertures 125 has a diameter which is about half of the first diameter.
The apertures 125 are preferably disposed within a first depression 121 (
The rotating handpiece 10 of the presently preferred embodiment preferably uses the electromagnetically induced cutting system disclosed in U.S. Pat. No. 5,741,247, the entire contents of which are expressly incorporated herein by reference. For example, an engineered and controllable atomized distribution of fluid particles is placed into an interaction for absorption of electromagnetic energy (from the fiber tip 51a) and for subsequent expansion to impart mechanical cutting forces onto a target surface. In the illustrated embodiment of
As can be seen from
The initially-mixed air and water travel from the circumferential chamber 119 through the orifices 125 and into the lumen 133. The air and water is further mixed and atomized within the lumen 133. The atomized water under air pressure subsequently travels along the fiber tip 51 in a direction toward the output end 136 of the fiber tip 51. In a preferred embodiment, the fiber tip 51a is permanently affixed to and extends through the fiber tip fluid output device 14. As presently embodied, three O-ring seals 139 are provided to seal the inside of the rotating handpiece from the air and water.
Referring to
a illustrates a side elevation view of the assembled rotating handpiece 10 and
This application is a continuation of U.S. application Ser. No. 11/644,155, filed Dec. 22, 2006, now U.S. Pat. No. 7,424,199, which is a continuation of U.S. application Ser. No. 10/404,683, filed Apr. 1, 2003, now U.S. Pat. No. 7,187,822, which is a continuation of U.S. application Ser. No. 09/822,981, filed Mar. 30, 2001, now U.S. Pat. No. 6,567,582, both of which are commonly assigned and the contents of which are expressly incorporated herein by reference. This application is also a continuation-in-part of U.S. application Ser. No. 09/469,571, filed Dec. 22, 1999, now U.S. Pat. No. 6,389,193, which is commonly assigned and the contents of which are expressly incorporated herein by reference. This application is a also a continuation-in-part of U.S. application Ser. No. 09/256,697, filed Feb. 24, 1999, now U.S. Pat. No. 6,350,123, which is commonly assigned and the contents of which are expressly incorporated herein by reference. U.S. application Ser. No. 09/256,697 is a continuation-in-part of U.S. application Ser. No. 08/985,513, filed Dec. 5, 1997, now abandoned, which is a continuation of U.S. application Ser. No. 08/522,503, filed Aug. 31, 1995, (now U.S. Pat. No. 5,741,247), and is a continuation-in-part of U.S. application Ser. No. 08/995,241, filed Dec. 17, 1997, now abandoned, which is a continuation of U.S. application Ser. No. 8/575,775, filed Dec. 20, 1995, (now U.S. Pat. No. 5,785,521), the contents of which are expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3851650 | Darling | Dec 1974 | A |
4109998 | Iverson | Aug 1978 | A |
4175545 | Termanini | Nov 1979 | A |
4330274 | Friedman et al. | May 1982 | A |
4519670 | Spinner et al. | May 1985 | A |
4773413 | Hussein et al. | Sep 1988 | A |
4872737 | Fukahori et al. | Oct 1989 | A |
5167686 | Wong | Dec 1992 | A |
5204922 | Weir et al. | Apr 1993 | A |
5354294 | Chou | Oct 1994 | A |
5420946 | Tsai | May 1995 | A |
5476379 | Disel | Dec 1995 | A |
5602951 | Shiota et al. | Feb 1997 | A |
5669769 | Disel | Sep 1997 | A |
5738666 | Watson et al. | Apr 1998 | A |
5836941 | Yoshihara et al. | Nov 1998 | A |
5968037 | Rizoiu et al. | Oct 1999 | A |
6129721 | Kataoka et al. | Oct 2000 | A |
6224566 | Loeb | May 2001 | B1 |
6438305 | Kataoka et al. | Aug 2002 | B1 |
6567582 | Rizoiu et al. | May 2003 | B1 |
6701181 | Tang et al. | Mar 2004 | B2 |
7424199 | Rizoiu et al. | Sep 2008 | B2 |
Number | Date | Country |
---|---|---|
2003070722 | Mar 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20090076490 A1 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11644155 | Dec 2006 | US |
Child | 12190690 | US | |
Parent | 10404683 | Apr 2003 | US |
Child | 11644155 | US | |
Parent | 09822981 | Mar 2001 | US |
Child | 10404683 | US | |
Parent | 12190690 | US | |
Child | 10404683 | US | |
Parent | 08522503 | Aug 1995 | US |
Child | 08985513 | US | |
Parent | 08575775 | Dec 1995 | US |
Child | 08995241 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09469571 | Dec 1999 | US |
Child | 12190690 | US | |
Parent | 09256697 | Feb 1999 | US |
Child | 09469571 | US | |
Parent | 08985513 | Dec 1997 | US |
Child | 09256697 | US | |
Parent | 08995241 | Dec 1997 | US |
Child | 09256697 | US |