Many roof constructions are known to the art with nearly all being concerned with not only waterproofness but wind uplift. Wind uplift is a serious concern for large expanse buildings where an entire roof can be blown off by the low pressure created thereabove by swiftly moving and tumbling air. Because of these concerns, prior art roofs can be complex and time consuming to build.
Another concern of the commercial roofing industry is fire proofing. Fireproofing traditionally requires additional layers and structures which further complicate the roof structure.
While roofs of the prior art do function well for their intended purpose, easier to install structures that have the same or greater benefits than those of the prior art would be welcomed.
Disclosed herein is a roof structure including a deck air sealed by expanding foam and wherein a mesh material is upwardly adjacent the deck and embedded in the expanding foam or in additional expanding foam.
Further disclosed herein is a method for making a roof which includes applying a foam material to a roof deck and embedding a mesh in the foam.
Referring now to the drawings wherein like elements are numbered alike in the several figures:
Referring to
The reinforcing mesh 20 not only aids in adding structural integrity to the foam 26 but also causes the foam 26 to rise uniformly, thereby avoiding the otherwise common undulating surface of the foam 26. The undulating surface is caused by the foam approximating the corrugated decking material. Because the mesh bridges the flutes in the corrugated material, the foam 26 rises smoothly and more uniformly because the matrix of the mesh causes a more uniform distribution of the liquid coating like water through a screen for a uniform coating and/or rising of a foam coating.
After spraying foam 26, a temporary roof is achieved. The cured foam can be walked on and worked on yet is waterproof. The roof structure as disclosed further does not require insulation (although there is no prohibition to adding insulation) so there is nothing that needs to be covered immediately. This is beneficial in a number of ways such as making the rapid installation of the roof possible and the fact that the roofing membrane 34 that will be installed later according to art recognized procedures is not subject to damage by workers and machinery on the roof while any major construction is taking place.
Referring to
In each of the embodiments described, a mechanical fastener 32 is optionally added to secure the cured foam “panel” to the underlying corrugated deck for both rigidity and wind uplift resistance as well as providing an underside attachment pad for waterproofing membrane attachment.
In both of the described embodiments, the strength of the whole roof structure is dramatically increased. Moreover, the structural rigidity and strength that is achieved is not subject to a loss of flexibility like in the case of a concrete or other inflexible material. The cured foam and scrim still have a sufficient degree of flexibility to avoid fracture. The arrangement also produces a flat roof construction which is aesthetically pleasing.
Referring to
In this construction, a second layer 48 of foam is applied over the first layer 26, followed by a third layer 50 embedded in which is mesh 20. The particular construction of the embodiment adds the second 48 and third 50 layers of foam to achieve a fire rating not obtainable by prior art wood deck roof systems.
In testing of both the metal and wood deck embodiments of the invention for wind uplift, the wood deck supported 130 psi vacuum before the joists failed (note the deck did not fail, the structure of the building failed). The metal deck supported 230 psi (the maximum psi vacuum available at Underwriters Laboratories) without failure. Thus, these embodiments are vastly superior to the prior art in structural strength while remaining extremely easily installed.
While preferred embodiments have been shown and described, various modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustration and not limitation.
Number | Name | Date | Kind |
---|---|---|---|
2245689 | Krueger | Jun 1941 | A |
2484695 | Dickey et al. | Oct 1949 | A |
3300912 | Shumaker | Jan 1967 | A |
3397497 | Shea et al. | Aug 1968 | A |
3482367 | Curran | Dec 1969 | A |
3956864 | Fung | May 1976 | A |
4106249 | Morton | Aug 1978 | A |
4348846 | Bellem | Sep 1982 | A |
4558550 | Marchais et al. | Dec 1985 | A |
4630421 | Diehl et al. | Dec 1986 | A |
4783942 | Nunley et al. | Nov 1988 | A |
5088259 | Myers | Feb 1992 | A |
5516953 | Feldman et al. | May 1996 | A |
5584153 | Nunley et al. | Dec 1996 | A |
5600929 | Morris | Feb 1997 | A |
5842315 | Lin | Dec 1998 | A |
5979133 | Funkhouser | Nov 1999 | A |
6416854 | Hunter, Jr. | Jul 2002 | B2 |
6418678 | Rotter | Jul 2002 | B2 |
6742315 | Linn | Jun 2004 | B2 |
6944997 | Verkamp | Sep 2005 | B2 |
7454876 | Kelly | Nov 2008 | B2 |
Number | Date | Country | |
---|---|---|---|
20060053702 A1 | Mar 2006 | US |