The technical field relates generally to systems and methods for determining the position of a vessel in the ocean and more specifically a system and method that employs fiber optic technology.
In oceanic prospection, often a ship (vessel) is placed “stationary” near a prospection point in the ocean and it is important to know the position of this ship. For reasons of safety, the ship position must be measured by more than one method that do not share a single mode of failure. One way to determine the ship position is using the global positioning system (GPS) and other method commonly used is the measurement through use of a taut wire.
The principle of the taut wire position measurement system is to keep a wire in constant tension between the vessel and a point on the seabed (this can be a well-head or a weight dropped from the vessel). The tension is maintained by an electric winch that constantly winds wire in and out as the vessel rolls or moves. By measuring the angles from vertical at the top, the position of the vessel relative to the seabed weight can be estimated as shown in
In suitable water depths, the taut wire measurements are very good, very stable, and different taut wire systems are largely independent of each other. As the water depth increases, though, the ability to keep the taut wire straight is reduced. The weight of a very long taut wire means that the tension at the top increases with increasing depth, while the tension at the bottom is likely to decrease. Currents and tides will also tend to distort the shape of the taut wire. The deepest useful depth for current taut wire systems is about 600 m. Attempts to reduce the effect of current have included measuring the angle at the top and bottom of the wire, but this does not overcome the problems of diverse current profiles (shown in
The taut wire position measurement system described above is not practical when the depth of the ocean is deep or when the surface current and the sub-surface current flow in different directions. Therefore, it is to a system and method that enables measurement of the relative position of a ship even when the taut wire is not extended the present invention is primarily directed.
In one embodiment, the present invention is a method for determining a relative position of a vessel in an ocean to a sinker weight dropped to the seabed. The method includes lowering a taut cable with a fiber optic cable from the vessel into the ocean, receiving by a controller strain data from a plurality of sensor connectors connected to the fiber optic cable, determining a 3D shape of the fiber optic cable, and determining the relative position of the vessel based on the 3D shape.
In another embodiment, the present invention is an apparatus for determining a relative position of a vessel in an ocean to a sinker weight dropped to the seabed. The apparatus includes a taut cable, a fiber optic cable with multiple fiber optic cores attached to the taut cable, a plurality of sensor connectors, each sensor connector being connected to a fiber optic core, a controller connected to the plurality of sensor connectors, and a winch for winding the taut cable with the fiber optic cable. The plurality of sensor connectors are configured to receive strain data from the fiber optic cores and the controller is configured to calculate a 3D shape of the taut cable when the taut cable is dropped into the ocean and to determine the position of the vessel relative to the sinker weight based on the 3D shape.
The foregoing has broadly outlined some of the aspects and features of the various embodiments, which should be construed to be merely illustrative of various potential applications of the disclosure. Other beneficial results can be obtained by applying the disclosed information in a different manner or by combining various aspects of the disclosed embodiments. Accordingly, other aspects and a more comprehensive understanding may be obtained by referring to the detailed description of the exemplary embodiments taken in conjunction with the accompanying drawings, in addition to the scope defined by the claims.
As required, detailed embodiments are disclosed herein. It must be understood that the disclosed embodiments are merely exemplary of various and alternative forms. As used herein, the word “exemplary” is used expansively to refer to embodiments that serve as illustrations, specimens, models, or patterns. The figures are not necessarily to scale and some features may be exaggerated or minimized to show details of particular components. In other instances, well-known components, systems, materials, or methods that are known to those having ordinary skill in the art have not been described in detail in order to avoid obscuring the present disclosure. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art.
The present invention introduces a system for calculating the relative position of a ship to a seabed weight by using a taut wire with a fiber optic cable. The fiber optic cable has multiple cores with Bragg diffusion gratings that allow a suitable driver circuit to determine the three dimensional (3D) shape of the cable based on the data collected from a large number of points along the length of the fiber optic cable. Using this 3D shape of the fiber optic cable, the position of the ship relative to the seabed weight can be inferred. Because the full shape of the taut wire is measured through the 3D shape of the fiber optic cable, there is no longer a need to keep the taut wire stiff along its length. The tension in the taut wire can therefore be reduced, even down to zero tension at the seabed. In order to reduce the required tension at the top, the length of the wire could include a semi-buoyant sleeve.
The method of calculating the 3D shape of a fiber optic cable is described by U.S. Pat. No. 7,813,599 B2 issued to J. P. Moore on Oct. 12, 2010, the specification of which is incorporated herewith by this reference. The method disclosed by '599 patent uses the estimated bend parameters from a plurality of strain sensors embedded in the light-guiding cores of a fiber optic cable to thereby accurately deduce the shape and end-position of the fiber optic cable. The method uses the natural torsion of the fiber optic cable during bending and the non-summation of strain measurement errors throughout the shape determination process. The method includes calculating various torsion, curvature, and bending direction data solutions in conjunction with an applied curve fitting of the measured curvature and bending direction data to obtain explicitly-defined functional solutions to a set of Frenet-Serret formulas, as those equations are known in the art, thus yielding 3D spatial functions describing the propagation of the fiber optic cable in 3D space. With a fixed end position, the other end position can be determined, and thus the position of an object tethered or connected thereto, e.g., a seabed weight, can be determined.
Even with the special taut wire 208 not been stretched straight, the relative position of the ship 202 can be determined using the method described in the '599 patent because of construction of the special taut wire 208.
Because the full shape of the taut wire can be determined, there is no longer a need to keep the taut wire stretched and stiff along its length. The tension in the wire can therefore be reduced, even down to zero tension at the seabed. In order to reduce the required tension at the top, the length of the taut wire could include a semi-buoyant sleeve. The laser driver for the fiber optic cable may be mounted on the winch drum.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.