This invention relates to a method of forming fibre reinforced thermoplastic composite tubes by placement of fibres and resin matrix onto a mandrel and further processing the composite materials insitu.
It is well known to manufacture reinforced composite shafts or tubes by winding resin fibres impregnated with a thermosetting resin such as an epoxy resin, sometimes in the form of a tape, around a mandrel and then curing the fibre/resin composite on the mandrel. It is also known from WO-A-9218559 to impregnate glass fibres with a thermoplastic material and then wind the impregnated glass fibres around a mandrel and heat the windings to fuse the thermoplastic polymer resin.
Elongated fibre and thermosetting resin composites are also formed by a pultrusion process as is illustrated in U.S. Pat. No. 4,943,338, and U.S. Pat. No. 4,673,541 in which impregnated fibres are drawn through an elongated die and the resin is substantially set within the die. A similar process is described in GB-A-1275379 which describes reinforcing a thermoplastic pipe by applying a layer of fibrous material to the cold pipe and then pulling the pipe through a tapered sleeve cold forming the pipe and layer to a smaller diameter. The pipe is then heated to soften the thermoplastic material so that the softened plastic is forced between the fibres as the pipe is pulled through a heated former.
The present invention provides a method of forming a fibre reinforced resin composite which is particularly useful for forming tubular thermoplastic composite components.
A first aspect of the present invention is provided by a method of forming a fibre reinforced composite tube or pipe in which reinforcing fibres and resin matrix material are formed around a mandrel to provide a composite tubular pre-form on the mandrel, the mandrel with the perform thereon is then passed through a heated die to compact and reduce the diameter of the pre-form and change the state of matrix, the mandrel with the formed tube thereon exiting the die and the now formed tube is removed from the mandrel, the reinforcing fibres being helically wound around the mandrel characterised in that the reinforced thermoplastic composite tube is formed by winding a tubular pre-form of reinforcement fibre and thermoplastic fibre onto the mandrel, the thermoplastic fibre being caused to flow and solidify on cooling to form the matrix.
The mandrel may be pushed or pulled through the die as is desired.
Fibre reinforced thermoplastic tube may be formed by mixing the reinforcement fibres with thermoplastic fibres and then winding the mixed fibrous material onto the mandrel using a conventional filament winding machine but with no wet-out system, the thermoplastic fibres being softened in the heated die and caused to flow and form the resin matrix during compaction.
The ratio of reinforcement fibre and thermoplastic filaments co-wound is approximately 40%-60% (by volume). The pre-form is compacted in the die such that the finished composite tube preferably has a Fibre Volume Fraction of 60-70%, and preferably about between 55%-65%.
The mandrel may be passed through a heated die having a plurality of heat zones of increasing temperature including a zone having temperature higher than the melting point of the thermoplastic fibres. The formed tube then exits the die via a cooling zone.
The reinforcement fibre may be supplied as a roving on a spool with either no sizing or a thermoplastic specific sizing. The thermoplastic fibres matrix may be supplied in a multifilament form δn a spool.
According to a second aspect of the present invention, there is provided a fibre reinforced thermoplastic resin composite tube or pipe, which is formed by a method in accordance with the first aspect of the Invention.
Typical reinforcement fibres comprise at least one of E-glass, S-glass, Aramid, Quartz, Ceramic, polymer fibre, a liquid crystal polymer fibre, any one of a range of carbon fibres, or a mixture thereof.
The matrix could be any thermoplastic, preferably one of PEI (polyetherimide), PPS (Polyphenylenesulpone), PAI (Polyamide-imide), PES (polyethersulphone) and more preferably PEEK (Polyetheretherketone). Other additives may be supplied separately or as part of the reinforcing fibre and/or matrix rovings. These additives may be used to impart specific mechanical or physical properties to the composite, for example increased resistance to impact or electrical conductivity.
The Invention will be described by way of Example and with reference to the accompanying drawings in which:
With reference to
The PEEK filaments are typically <0.7μ in diameter and the reinforcement carbon fibres may be 5-7μ in diameter and the Glass fibre about 12μ in diameter.
The spread fibres 10 and filaments 11 will be laid on joint pulleys and pins, shown schematically as rollers 15, with the reinforcement fibre 10 spread on top of the spread matrix filaments 11. This is to promote substantially total co-mingling of the fibres and filaments to ensure that the matrix filaments are evenly distributed amongst the reinforcement fibres so during the next stage of the process the matrix resin has a minimal distance to flow so as to promote maximum “wet-out” of the reinforcement fibres, as the materials are consolidated and heated to form a composite tube P. The ratio of reinforcement fibre 10 and thermoplastic filaments 11 co-wound will be approximately 50% each (by volume) and preferably 40%-60% respectively. The mingled fibres and filaments are then passed through a placement head H for placement onto a rotatable mandrel M in order to helically wind the fibres and filaments onto the mandrel and form a perform 20 comprising oppositely biased layers 16 & 17.
Upon completion of the winding process represented in
As the now formed tube P gradually exits the process heat zone 32 (where the thermoplastic is above its melting point), it enters a cool down zone 33 where the thermoplastic matrix is brought below its melting point and solidifies. The composite tube P is then removed from the mandrel. The speed with which the mandrel passes through the cooling zone and the cooling zone temperature may be utilized to control the cool down of the thermoplastic matrix in order to obtain optimized properties such as cross-linking and crystallinity, of the composite material. Typically the speed of the mandrel through the die will be about 1 metre/minute.
The continuous pipe P as shown in
Number | Date | Country | Kind |
---|---|---|---|
08229965 | Dec 2008 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2009/002900 | 12/17/2009 | WO | 00 | 8/3/2011 |