Fibrin rich / soft clot mechanical thrombectomy device

Information

  • Patent Grant
  • 11937837
  • Patent Number
    11,937,837
  • Date Filed
    Tuesday, December 29, 2020
    4 years ago
  • Date Issued
    Tuesday, March 26, 2024
    9 months ago
  • Inventors
  • Original Assignees
  • Examiners
    • Rwego; Kankindi
    Agents
    • TROUTMAN PEPPER HAMILTON SANDERS LLP
Abstract
Designs are disclosed for devices capable of removing both firm and soft clots from body vessels that can have dual layers where an inner expandable body of cells runs within an outer expandable cage of cells. The designs can feature a constrained delivery configuration and an expanded deployed configuration. An outer cage can have wide opening struts to allow for clot integration into the device. Both the inner body and outer cage can be configured with shapes to pinch a clot in addition to embedding in it. The devices can also be capable of having a portion of the outer cage fold and invert proximally after engaging with a target clot to internalize it. These factors can increase the device's ability to capture clots of all compositions, allowing for safer and more efficient flow restoration.
Description
FIELD OF THE INVENTION

The present disclosure generally relates to devices and methods for removing acute blockages from body vessels during intravascular medical treatments. More specifically, the present disclosure relates to a clot retrieval device for removing a clot from a blood vessel.


BACKGROUND

Mechanical devices and methods can be used for removing acute obstructions from blood vessels. Acute obstructions may include a clot, misplaced devices, migrated devices, large emboli, and the like. Thromboembolism occurs when part or all of a thrombus breaks away from the blood vessel wall. This clot (now called an embolus) is then carried in the direction of blood flow, which can result in many complications. An ischemic stroke may result if the clot lodges in the cerebral vasculature. A pulmonary embolism may result if the clot originates in the venous system or in the right side of the heart and lodges in a pulmonary artery or branch thereof. Clots may also develop and block vessels locally without being released in the form of an embolus, and this mechanism is common in the formation of coronary blockages. The devices and methods herein are particularly suited to removing clots from cerebral arteries in patients suffering acute ischemic stroke (AIS), from pulmonary arteries in patients suffering from pulmonary embolism (PE), from coronary native or graft vessels in patients suffering from myocardial infarction (MI), and from other peripheral arterial and venous vessels in which a clot is causing an occlusion.


There are a number of access challenges that can make it difficult to deliver devices to a target site. In cases where access involves navigating the aortic arch (such as coronary or cerebral blockages) the configuration of the arch in some patients makes it difficult to position a guide catheter. The tortuosity challenge is even more severe in the arteries approaching the brain. It is not unusual at the distal end of the internal carotid artery that the device will have to navigate a vessel segment with several extreme bends in quick succession over only a few centimeters of travel. In the case of pulmonary embolisms, access may be gained through the venous system and then through the right atrium and ventricle of the heart. The right ventricular outflow tract and pulmonary arteries are delicate vessels that can easily be damaged by inflexible or high-profile devices. For these reasons it is desirable that a clot retrieval device be compatible with as low profile and flexible access catheters as possible.


Stent-like clot retriever devices are being increasingly used to remove a clot from cerebral vessels of acute stroke patients. These devices often rely on a pinning mechanism to grab the clot by trapping it between the self-expanding stent-like body and the vessel wall. This approach has a number of disadvantages.


A stent-like clot retriever depends on its outward radial force to retain its grip on the clot during retraction. This compressive force will tend to dehydrate the clot, which in turn can increase its coefficient of friction, making it more difficult to dislodge and remove from the vessel. If the radial force is too low the stent-like clot retriever can lose its grip on the clot, but if the radial force is too high the stent-like clot retriever may damage the vessel wall and require too much force to withdraw. Therefore stent-like clot retrievers that have sufficient radial force to deal with all clot types may cause vessel trauma and serious patient injury, and stent-like clot retrievers that have appropriate radial force to remain atraumatic may not be able to effectively handle all clot types in diverse thrombectomy situations. Pinning the clot between the stent-like clot retriever and the vessel wall also results in high shear forces against the side of the clot as it is removed, potentially releasing fragments of the clot. If these fragments are not retained by the device, they may migrate leading to further blockages in the distal vasculature.


Certain conventional thrombectomy device designs also do not retain their expanded shape very well when placed in tension in vessel bends, due to the manner in which their strut elements are connected to one another which results in the struts being placed in tension during retraction. This tension is due to friction between the device and the blood vessel and is increased if an additional load is applied load such as the resistance provided by a clot. This can result in a loss of grip on the clot as the stent-like clot retriever is withdrawn proximally around a bend in a tortuous vessel, with the potential for the captured clot to escape. In a bend, the struts on the outside of the bend are placed in higher tension than those on the inside. In order to attain the lowest possible energy state, the outside surface of the clot retrieval device moves towards the inside surface of the bend, which reduces the tension in the struts, but also reduces the expanded diameter of the device.


In seeking procedural efficiency in this environment, clot retrieval devices with multiple bodies have often been preferred. Such devices can have an outer body capable of scaffolding a target vessel and an inner body for embedding and capturing a clot. These devices can perform well in engaging with and dislodging a clot but having a larger and often stiffer network of struts can potentially make it more difficult to retract the device and partially or fully collapse to re-sheath it within an outer catheter. Additionally, since these devices are designed so the clot is typically required to migrate radially inward through the outer member, the device can have a less firm grip on peripheral regions of a clot.


Additionally, conventional thrombectomy devices are usually aimed at removing either fibrin rich or soft clots. Currently, there is no way to identify whether a clot is fibrin rich or soft and friable (or some combination of the two) prior to the introduction of a thrombectomy device, preventing a user from knowing which device would improve the probability of a first pass success to reduce risk to the patient. Furthermore, clot heterogeneity can mean a clot can include fibrin rich cores in proximal, central, or distal portions of the overall clot anatomy, making a uniform and secure grip more difficult.


The challenges described above need to be overcome for any device to provide a high level of success in removing a clot of any type, restoring flow and facilitating good patient outcomes. The present designs are aimed at providing an improved clot retrieval device to address the above-stated deficiencies.


SUMMARY

The disclosed designs resolve these questions by providing a flexible dual-layer clot retrieval device in which the inner and outer members work in unison to capture and remove a clot. The designs can be intended for use as first pass devices with features that are just as effective at capturing fibrin rich and sticky clots as they are soft, friable clots.


The designs can feature a constrained delivery configuration and an expanded deployed configuration. The outer member can have wide opening struts to allow for clot integration into the device. Both the inner and outer members can be configured and shaped to pinch a clot in addition to embedding in it. In some examples, at least some portions of the devices are capable of folding and inverting proximally after engaging with a target clot to internalize and protect it. These actions can increase the security of the device's grip on a clot during all phases of retrieval, allowing safer and more efficient flow restoration.


The device can have a proximal tubular shaft for manipulation with a lumen extending therethrough. The shaft can be various sizes depending on the application. In one example, the shaft is a hypotube having an outer diameter of less than or equal to 0.021 inches. In another example, the shaft can have an outer diameter of approximately 0.026 inches. Distal of the shaft can be a framework of struts having a constrained delivery configuration, an expanded clot engaging deployed configuration when deployed at a target site, and an at least partially constrained clot pinching configuration.


In some examples, the framework of struts can form an elongate inner body and an outer cage. In one case, the inner body and outer cage can be laser cut from a single continuous hypotube. In another case, the proximal shaft, inner body, and outer cage can all be cut from the same continuous hypotube. The inner body can have a distal end, a longitudinal axis, and one or more clot pinching cells configured to pinch the clot when the device is transitioned from the deployed configuration to the clot pinching configuration. The outer cage can be arranged around the inner body, can extend from the distal end of the inner body, or be some combination of these. The outer cage can be expandable to a radial extent greater than the expanded inner body, or it can have the same or similar radial dimensions.


The clot pinching structure can take a variety of forms. The pinching structure can have a series of clot-receiving cells. The cells can consist of one or more flexible struts extending between crowns. The cells can have a horseshoe shaped saddle point at the proximal and distal ends of the cell so that the cells are capable of constricting portions of a clot in the cells when the struts are in radial compression. These patterns allows a microcatheter or outer catheter to be advanced over the proximal end of the pinching structure cells in order to compress and grip a clot between the tip of the catheter and at least a portion of the struts of the cells as the device is transitioned from the expanded deployed configuration to the partially-constrained clot pinching configuration. In another example, the clot pinching structure can be a flat pattern of struts arranged in an undulating or spiral fashion.


The properties of the inner body and outer cage can be tailored independently of each other. The outer cage can be coaxial with the inner body or can be radially offset. The inner body can be arranged substantially within the lumen of the outer cage.


In some examples, pull wires can extend through the lumen of the proximal tubular shaft and be fixedly connected to the outer cage at linkage points. The linkage points can be at least one of a crimp clamp, a weld, or a braid. A user manipulating the pull wires at the proximal end of the shaft can transition the outer cage from the expanded deployed configuration to an inverted clot housing configuration. During this transition, the pull wires can invert the outer cage so that at least part of it folds at transition points and back proximally over the inner body. The struts of the outer cage can thus enclose a clot and the inner body in the clot housing configuration. This inversion can internalize and contain both soft and firm portions of the clot for subsequent retraction and removal. In some cases, a remaining distal portion of the outer cage can also flare radially outward on activation of the pull wires to function as a fragment protection element during clot retrieval.


In some examples, the radial sizes of the inner body and outer cage can be heat set and varied depending on the application and the location of potential target occlusions within the vasculature. For targets in the neurovascular, the elongate inner body can have an outer diameter of approximately 2.25 mm in the expanded deployed configuration. Similarly, the outer cage can have an outer diameter of approximately 5 mm in the expanded deployed configuration and the inverted clot housing configuration.


Another design for the clot retrieval device can have a longitudinal axis, a proximal shaft, an inner body, an outer cage, and a tapered strut mesh connected to the distal end of the outer cage. The inner body, outer cage, and strut mesh can have a constrained delivery configuration, an expanded deployed configuration, and an at least partially constrained clot pinching configuration. After being deployed across a clot, the clot pinching configuration can be achieved by advancing a catheter over the proximal ends of the inner body and the outer cage until at least a portion of the clot is compressed between the tip of the catheter and at least a portion of the struts of the inner body, the outer cage, or a combination of the inner body and outer cage.


In some examples, the inner body can have struts forming a series of clot receiving cells. The cells can be heat set to extend in a generally sinusoidal wave pattern along the longitudinal axis in the expanded deployed configuration. In another example, the cells form a spiral pattern around the axis. In one case, the cells of the inner body are configured to embed with and stabilize a clot when expanded. In another case, the cells of the inner body can have at least one bend configured embed with and stabilize at least a portion of the clot. The inner body can be a range of radial sizes. In some examples, the inner body can have an outer diameter in the range of 1.25 mm-1.5 mm in the expanded deployed configuration.


The outer cage can have a series of segments extending in an axial fashion along the length of the device. Each segment can have one or more cells. In some examples, each segment can have two cells. Each cell of the outer cage can have a horseshoe shaped saddle point at the proximal and distal ends of the cell configured to compress and pinch at least a portion of the clot as the device is moved to the clot pinching configuration. The clot pinching configuration can be achieved by advancing a catheter over the proximal ends of the inner body and the outer cage until at least a portion of the clot is compressed between the tip of the catheter and at least a portion of the struts of the outer cage as the struts are radially compressed. Adjacent axial segments can be hingedly joined by a flexible connector strut, which can be the only point of contact between respective segments. The segments can therefore flex independently as the device is advanced or retracted through bends in the vasculature.


The outer cage can be various sizes depending on the target location within the vasculature. In one example, the outer cage can have an outer diameter of approximately 3 mm in the expanded deployed configuration. In another example, the outer cage can have an outer diameter of approximately 5 mm in the expanded deployed configuration.


The inner and outer bodies can share the same shaft and be coaxial around the longitudinal axis. At the proximal interface joint with the shaft, the outer cage can have a fully circumferential tubular outer collar circumscribing the shaft. The inner body can be formed laser cutting a tube with an outer diameter less than an inner diameter of the outer collar of the outer cage. The inner body can thus have a collar at the proximal interface that can slide within the outer collar.


A method for using the disclosed examples as first pass devices to extract both firm and soft clots from vessels can include a device having an inner body, an outer cage, and a proximal shaft. The inner body can be formed monolithically by laser cutting a tube, and have struts forming cells configured to embed with at least a portion a clot. In some cases, the outer cage can also be cut from the same continuous tube and extend distal to the inner body. In other cases, the outer cage can extend along the longitudinal axis around the inner body and be expandable to a radial extent greater than the inner body. The outer cage can also have struts forming cells configured to embed with at least a portion of the clot but also allow portions of the clot to migrate radially inward. The device can have a constrained delivery configuration, an expanded deployed configuration, and an at least partially constrained clot pinching configuration.


The method can include the step of delivering the device to a blood vessel adjacent to the site of a target clot. The clot composition can be firm, soft, or mixed with both firm and soft portions The device can be unsheathed to embed at least one of the cells of the outer cage and at least one of the cells of the inner body in the clot by expanding the device from the constrained delivery configuration to the expanded deployed configuration.


Another step can involve advancing an outer catheter distally so that the outer catheter engages with and impinges on the proximal ends of the inner body and outer cage to pinch in compression at least a firm portion of the clot with the cells of the inner body the outer cage. The outer catheter can be a microcatheter, access catheter, or another suitable outer sheath. The pinch can be maintained while the device is withdrawn so the grip on the clot is not lost.


In some examples, the cells of the inner body and/or outer cage can have struts forming bends or horseshoe shaped saddle points shaped to be compressed by the distal advancement of the outer catheter. The method can then further include the step of pinching at least a portion of the clot in a horseshoe shaped saddle point of at least one of the inner body cells when engaged with the outer catheter. Alternatively, or in addition to, the method can further include the step of pinching at least a portion of the clot in a horseshoe shaped saddle point of at least one of the outer cage cells when engaged with the outer catheter.


If the clot is frangible and not stiff enough to achieve a pinch, a user can feel the lack of tactile resistance when the shaft of the device is retracted, or the outer catheter is distally advanced. In this scenario, the outer catheter can be withdrawn, and the device can be redeployed to the expanded configuration to imbed the clot. In some examples, struts of the outer cage can be inverted back over the device, and the method can involve the step of inverting the struts proximally to internalize the clot and the inner body. The inner body can be held in position while the outer cage struts are inverted so the clot is not pushed proximally.


When the firm and/or soft clot has been captured by the device, the method can involve the step of removing the clot retrieval device and the captured clot from the patient. This can be done, for example, by retrieving the device proximally into a guide catheter using aspiration. If a firm portion of the clot can be pinched, the pinch can be maintained during this step so the grip on the clot is not lost. Additionally, if the struts of the outer cage have been inverted proximally (using tensioned pull wires or other method) to internalize and help secure the clot, this configuration can also be maintained.


After retrieving some or all of the occlusive clot, an assessment can be made to the degree to which the vessel is patent. Additional passes with the clot retrieval device can be made if an obstruction remains in the vessel. Any remaining devices can then be removed from the patient once adequate recanalization of the target vessel is observed. The devices of the present disclosure, however, provide a means to minimize the number of catheter advancements required to treat a patient, thereby reducing the likelihood of vessel damage and the associated risk of vessel dissection in cases where multiple passes are required.


Other aspects and features of the present disclosure will become apparent to those of ordinary skill in the art, upon reviewing the following detailed description in conjunction with the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and further aspects of this invention are further discussed with reference to the following description in conjunction with the accompanying drawings, where like reference numbers indicate elements which are functionally similar or identical. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating principles of the invention. The figures depict one or more implementations of the inventive devices, by way of example only, not by way of limitation.



FIG. 1 is a view of a clot retrieval device according to aspects of the present invention;



FIG. 2 shows the clot retrieval device of FIG. 1 with the struts of the outer cage inverted proximally using pull wires according to aspects of the present invention;



FIGS. 3A-3C illustrate a method of use for a clot retrieval device for capturing a clot having both soft and firm components according to aspects of the present invention;



FIGS. 4A-4B demonstrate a method of use for a clot retrieval device for capturing a soft clot according to aspects of the present invention;



FIGS. 5A-5B depicts the continuation of the method steps in FIGS. 4A-4B according to aspects of the present invention;



FIG. 6 is a plan view of another example of a clot retrieval device according to aspects of the present invention;



FIG. 7 is an elevation view of the clot retrieval device of FIG. 6 according to aspects of the present invention;



FIG. 8 shows a perspective view of the inner body of the clot retrieval device of FIG. 6 according to aspects of the present invention;



FIG. 9a illustrates a plan view of the inner body of FIG. 6 according to aspects of the present invention;



FIG. 9b depicts an elevation view of the inner body of FIG. 6 according to aspects of the present invention;



FIG. 10 is a view of an example proximal joint for the clot retrieval device of FIG. 6 according to aspects of the present invention;



FIG. 11 is a flow diagram outlining a method of use for a clot retrieval device according to aspects of the present invention.





DETAILED DESCRIPTION

The objective of the disclosed designs is to create a clot retrieval device capable of providing more effective and efficient removal of clots of various composition in the vasculature while maintaining a high level of deliverability and flexibility during procedures. The designs can be first pass clot retrieval devices that can be used to the removal of any clot type, whether they be firm and sticky, soft and friable, or a combination of the two.


The designs can have an outer expandable cage within which runs an inner expandable body. The inner body and outer cage can have large openings where a radial force allows portions of the clot to migrate into the openings. The cells of one or both of the inner body and outer cage can have features configured to pinch at least a portion of the clot when an outer catheter is advanced distally upon the device. These pinching designs increase the grip security of the clot retrieval device. The devices can also be configured so that at least a portion of the device can invert proximally to internalize and protect the clot during retrieval.


Both the inner and outer expandable members are desirably made from a material capable of recovering its shape automatically once released from a highly strained delivery configuration. A suitable manufacturing process can be to laser cut a Nitinol tube and then heat set and electropolish the resultant structure to create a framework of struts and connecting elements. A range of designs are envisaged for each of these elements as described, and it is intended that any of these elements can be used in conjunction with any other element, although to avoid repetition they are not shown in every possible combination.


Accessing the various vessels within the vascular to reach a clot, whether they are coronary, pulmonary, or cerebral, involves well-known procedural steps and the use of a number of conventional, commercially available accessory products. These products are well understood and widely used in laboratory and medical procedures. When these or similar products are employed in conjunction with the disclosure of this invention in the description below, their function and exact constitution are not described in detail.


Specific examples of the present invention are now described in detail with reference to the Figures. While the description is in many cases in the context of mechanical thrombectomy treatments, the designs may be adapted for other procedures and in other body passageways as well.


Referring to FIG. 1, a clot retrieval device 100 can have an elongate shaft 6 from which distally extends a strut framework 102 with an inner body 110 and an outer cage 210 expandable from a collapsed or constrained delivery configuration to an expanded deployed configuration at the target site of a vessel occlusion or clot. The delivery method can be through, for example, a microcatheter 13 or other outer catheter or sheath depending on the access requirements of the target location. Upon being exposed beyond the distal end of the microcatheter 13, the device 100 can self-expand to the deployed configuration depicted in FIG. 1. The occlusion is typically a thrombus (blood clot) impeding blood flow in the vessel. Having a configuration with both an inner body 110 and outer cage 210 allows the clot to be retained inside the device which can minimize the risk of vessel damage during removal.


The inner body 110 can be a network of struts forming an axial series of cells 116. The struts of the cells 116 can have a high radial force when expanded to assist with interpenetrating and embedding the cells within the clot. The proximal and distal end of each cell can taper into substantially a “U” or horseshoe shaped saddle points 118. This shape of the saddle points 118 allows the cells 116 to contract radially when the microcatheter 13, or another outer catheter, is advanced over the proximal end of the device. This contraction can pinch a firm portion of a clot embedded within the cell or cells.


Having multiple pinching cells 116 can be beneficial for capturing clots which have fibrin cores in the proximal, center, and/or distal locations within the clot. The cells can grip the clot tightly as the device is retracted into the outer catheter until resistance is felt, indicating a pinch grip that can be further secured with aspiration.


The pinch facilitates removal of the clot by increasing the grip of the device on the clot, particularly in the case of substantially fibrin rich clots. The pinch can also elongate the clot, thereby reducing the dislodgement force by pulling the clot away from the vessel wall during the dislodgement process. Retention of the clot can be improved during retraction to the microcatheter or outer catheter by controlling the proximal end of the clot and preventing it from snagging on a side branch vessel.


The ends of adjacent cells 116 can be connected by flexible connecting struts 117. The connecting struts 117 can act as a hinge between cells and can be the only point of contact between adjacent cells. As a result, the individual cells can flex independently as the device is advanced or retracted through bends in the vasculature and can respond locally to the forces exerted on the device by a captured clot.


The outer cage 210 can be fixedly connected to the distal end 114 of the inner body 110. The gently curved loops of the outer cage 210 can give the device 100 an atraumatic profile near the distal end 4. In some examples, the inner body 110 and outer cage 210 can be formed monolithically, whereby the struts of the inner body transition to become struts of, and take on the shape of, the outer body. This is illustrated in FIG. 1 where transition points 115 at the distal end 114 of the inner body 110 make the transition to the broadly looped structure of the outer body 210. Cutting and heat setting the inner body 110 and outer cage 210 from the same tube can simplify the manufacturing process and remove potential kink points from stiffness gradients in the device.


The struts of the outer cage 210 can be very flexible with low radial force to allow the struts to be manipulated by pull wires 218 or other suitable actuation method to change the shape of the outer cage as desired. The flexibility of the struts also allows the outer cage 210 to be collapsed to the outer diameter 122 of the inner body 110 for navigation through narrower vessels.


The inner body 110 and outer cage 210 can be preferably made of a super-elastic or pseudo-elastic material such as Nitinol or other such alloy with a high recoverable strain and suitably high modulus and tensile strength. An advantage of using self-expanding bodies with these materials is that because of the volumetric properties and stiffness of a target clot, resistance can cause the device 100 to initially expand to only a fraction of its freely expanded diameter when deployed across the clot. This gives the outer body 210 the capacity to further expand to a larger diameter while being retracted so that it can appose vessel walls as it is retracted into progressively larger and more proximal vessels


In one example, the inner body 110 and outer cage 210 can be laser cut from a single continuous pieces of tubing which also serves as the shaft 6. Having a shaft 6 which doubles as a tube can allow the lumen 7 of the shaft tube to be used as a conduit for pull wires 218 or other actuation members or devices as necessary.


The tubing can be in raw material form, for example a Nitinol hypotube so that the struts of the inner body 110 and outer cage 210 can be laser cut and heat set to the desired shapes and dimensions. For example, the inner body 110 can be heat set to have an outer diameter 122 of approximately 2.25 mm when expanded to the deployed configuration. Similarly, in the same deployed configuration the outer cage 210 can be heat set to have an outer diameter 222 of approximately 5.00 mm. The device can thus be effectively spring loaded within a microcatheter and expand to these dimensions when deployed at the target site.


The radial size of the outer cage 210 can allow it to remain in contact with and appose the vessel walls as well as protecting against distal migration of the clot as the device is retracted proximally into progressively larger diameter vessels. Apposition with the vessel walls can also reduce the axial force necessary to initially dislodge a clot from the vessel.



FIG. 2 shows an example configuration for the device 100 of FIG. 1 after the capture of a clot (not shown). The cells 116 of the inner body 110 can serve as inlets to stabilize the clot and allow the device, when retracted, to apply a force to the clot in a direction substantially parallel to the direction in which the clot is to be pulled from the vessel (i.e. substantially parallel to the longitudinal axis 8). This also means that any outward radial force applied to the vasculature by the outer cage 210 can be kept to a minimum.


When the cells 116 of the inner body 110 have been embedded within a clot, the pull wires 218 can be tensioned and retracted to invert the flexible struts of the outer cage 210 proximally as shown to internalize the inner body and clot. The pull wires 218 can be retrieved using a handle positioned at the proximal end of the device shaft. The wires 218 can pull the larger diameter outer cage 210 while the inner body 110 is left in position so that a pinch can be maintained between the saddle points 118 of the inner body cells 116, microcatheter 13, and at least a firm portion of the clot as described.


When inverted, the outer cage 210 can feature a series of broad loop segments 216 disposed around the longitudinal axis 8 and inner body 110. At the inner body distal end 114, the inner body/outer cage transition points 115 can form distal crowns 220 to act as a fragment protection element during clot removal to prevent the distal migration of debris. The crowns 220 can also have a flared diameter similar to that of the target vessel so that it can help to securely capture fragments from friable parts of the clot.


The shaft 6 can be a stock tubing size chosen to be compatible with commonly available delivery sheaths. In one example, the outer diameter 9 of the shaft 6 can be less than approximately 0.021 inches to ensure compatibility with a 0.021 inch inner diameter microcatheter. In another example, the shaft 6 can have a slightly larger outer diameter of approximately 0.026 inches to be compatible with 0.027 inch inner diameter microcatheter.


The shaft 6 and other portions of the device 100 can also have indicator bands or markers (not shown) to indicate to the user when the distal end of the device is approaching the end of the microcatheter during insertion or mark the terminal ends of the device during a procedure. These indicator bands can be formed by printing, removing, or masking areas of the shaft for coating, or a radiopaque element visible under fluoroscopy, so that they are visually differentiated from the remainder of the shaft.


The shaft 6 can also be coated with a material or have a polymeric jacket to reduce friction and thrombogenicity. The coating or jacket may consist of a polymer, a low friction lubricant such as silicon, or a hydrophilic/hydrophobic coating. This coating can also be applied to some or all of the outer cage 210 and inner body 110.



FIGS. 3A-3C illustrate a method for using the device 100 in the vasculature 40 to capture a non-homogenous clot 20, 22 with both firm and soft components. In FIG. 3A, the device can be deployed from a microcatheter 13 in a clot with the cells 116 of the inner body 110 section exposed to the clot. The microcatheter 13 can then be advanced distally to re-sheath at least a portion of the cells 116 of the inner body 110 and the pull wires 218. Alternatively, another outer catheter or sheath can be used. The saddle points 118 can form a natural inflection point for the cells 116 to fold down radially. If a fibrin rich portion 20 of the clot is present, the cells 116 can achieve a pinch on this section of the clot between the inner body 110 and microcatheter, as shown in FIG. 3B.


Once a pinch is achieved and the user feels the resulting resistance, the pull wires 218 can be retracted through the shaft 6. The wires pull the larger diameter heat set portion of the outer cage 210 proximally at linkage points 219 while leaving the inner body 110 in position to maintain the pinch. The retrieval of the pull wires 218 withdraws the loop segments 216 of the outer cage 210 over both the firm portions 20 and soft portions 22 of the clot to internalize the entire clot within the outer cage, as depicted in FIG. 3C. The full device can then be withdrawn with the clot into a guide catheter or other outer sheath.


The bond between the pull wires 218 and struts of the outer cage 210 at the linkage points 219 can be by a number of methods. In some examples, a mechanical connection such as a crimp, braid, or bulb/eyelet combination can be utilized. In other cases, a thermal process such as a weld or braze can be used.



FIGS. 4A-4B and FIGS. 5A-5B demonstrate a method for using the device if only a soft clot 22 is present. The device can be deployed in the clot 22 so that the cells 116 of the inner body 110 can be exposed to and embed in the clot as shown in FIG. 4A. In FIG. 4B, the microcatheter 13 can be advanced distally to re-sheath at least a portion of the cells 116 of the inner body 110 and the pull wires 218 to attempt to pinch the clot as seen in FIG. 4B. If the user does not feel the resistance of a pinch between the inner body 110 and microcatheter, it suggests the clot 22 is soft (no fibrin rich portion or portions). The device can then be redeployed out of the microcatheter 13 to embed the inner body 110 and stabilize the clot (FIG. 5A). The user can then tension the pull wires 218 and draw them proximally to invert the outer cage 210 while leaving the inner body 110 in position to internalize the soft clot 22 (FIG. 5B). The crowns 220 can prevent distal migration of clot fragments while the full device and clot is withdrawn into the guide catheter.


Another example of a clot retrieval device 300 capable of being a first pass device for capturing both firm and soft clots is seen in the plan view in FIG. 6. The device 300 can have a constrained delivery configuration for delivery through a microcatheter, an expanded deployed configuration, and an at least partially constrained clot pinching configuration for gripping firm or fibrin rich clots. The device 300 can have a longitudinal axis 8, a proximal shaft 6, and an expandable structure of struts forming an inner body 310 and an outer cage 410. Similar to other designs, the inner body 310 and outer cage 410 can be cut from a shape memory alloy such as Nitinol to allow the struts to be heat set to desired shapes when expanded. The inner body 310 and outer cage 410 can help to retain the clot inside the device to reduce the risk of damage to the vessel wall during retrieval as the clot is not brushed against the vessel wall for grip.


The inner body 310 can be configured to stabilize a clot during the removal process and add support and additional grip for particularly soft clots. The inner body 310 can be a low profile series of clot engaging cells designed with an “s-wave” or sinusoidal wave final heat set shape. The low profile design allows more clot reception space between the inner body 310 and outer cage 410 to minimize clot shearing when the device is retrieved back into an intermediate catheter or other outer catheter. In one example, the inner body 310 can have an expanded outer diameter in a range of approximately 1.25-1.5 mm. In other examples, the inner body can have an expanded diameter determined by the difference in foreshortening when the inner body and outer cage are crimped together into a microcatheter for delivery to a target site.


An elevation side view of the device 300 from FIG. 6 is depicted in FIG. 7. The outer cage 410 can have an axial series of body segments 412 disposed around the inner body 310 and heat set with a substantially larger outer diameter 422 than the inner diameter 322 of the inner body. In some preferred examples this outer diameter 422 can be approximately 5 mm. Each segment 412 can have one or more cells 416 with horseshoe shaped saddle points 418 at the proximal and distal ends of each cell.


The device 300 shown in FIGS. 6-7, for example, has two cells 416 per segment 412 around the longitudinal axis 8 perpendicular to each other. Note that due to the perpendicular nature of the cells 416 from the plan and elevation views as shown in FIG. 6 and FIG. 7, respectively, each cell of the body segments 412 can have 180 degrees of curvature where a flexible connector strut 417 serves as the top/bottom of the adjacent cell when the device 300 is rotated 90 degrees. The result can thus be a cylindrical shape for the outer cage 410 around the longitudinal axis 8.


Expansion of the outer cage 410 can cause compression and/or displacement of the clot during the expansion, depending on the level of scaffolding support provided by the struts. When an expandable body provides a high level of scaffolding the clot can be compressed. Alternately, when an expandable body provides an escape path or opening the expanding body urges the clot towards the opening. The clot itself can have many degrees of freedom and can move in a variety of different directions. When the device is sufficiently long, many of the degrees of movement freedom available to the clot are removed. This allows the clot to be retrieved without being excessively compressed. This is advantageous because compression of clot can cause it to dehydrate, which in turn increases the frictional properties and stiffness, which make the clot more difficult to disengage and remove from the vessel. This compression can be avoided if the clot can easily migrate inward through the cells of the outer cage.


As a result, the cells 416 from the device 300 shown in FIGS. 6 and 7 can have wide opening struts to allow a clot to migrate radially through the outer cage 410 once deployed in a clot. Similar to other examples, distally advancing a microcatheter or other catheter after deployment can compress the saddle points 418 of each cell 416 to pinch fibrin rich portions of a clot for a secure grip during removal.


Adjacent segments 412 of the outer cage 410 can be joined by a flexible connector strut 417. As the saddle points 418 taper the ends of the cells 416 of each segment 412 to a point, a single connector strut 417 can be the only point of contact between respective segments. This allows segments to hinge about the connector struts to improve device flexibility and vessel wall apposition. The connector struts can also allow the cells 416 of individual segments to open locally to an increasing diameter to maintain a good grip on a clot between the inner body 310 and outer cage 410. The ability to locally increase to a larger diameter can be especially useful in situations where some or all of a target clot is located in difficult anatomy, such as a bifurcation, allowing the clot to be retained inside the vessel.


The outer cage 410 can also have a final segment with a tapered mesh end 420 for preventing small fragments from breaking away from the main clot and re-occluding in smaller, more distal vessels. The mesh end 420 can also help to protect against sections of the clot which detach as they roll over or change shape during retrieval. The distal struts forming this segment 420 can be bulged or flared so the distal end of the outer cage 410 is rendered atraumatic to the vessels in which it is used. The tapering and convergence of these struts can also reduce the pore size of the mesh to create an effective fragment capture zone.


A perspective view of the inner body 310 of the device 300 from FIG. 6 and FIG. 7 is illustrated in FIG. 8. The sinusoidal waveform design of the body cells 316 is visible as the struts contain bends 319 between amplitude peaks 317 of the pattern. The bends 319 of the cells 316 can bias movement away from, or at least not in the same direction as, the clot pinching cells 416 of the outer cage 410 so that the inner body 310 stabilizes but does not shear portions of the clot when the proximal portion of the device is partially constrained in the clot pinching configuration. The bends or crowns can also help to provide a better grip on the clot by embedding with and balancing the clot for the critical initial step of disengaging it from the vessel, enabling the outer cage 410 to be configured with a lower radial force.


The cells 316 and waveform shape of the inner body 310 allow the device to accommodate minor length differentials through stretching without the application of significant tensile or compressive forces to the joints. Length differentials can occur when, for example, the device is expanded, collapsed or deployed in a small vessel. The waveform arrangement of the struts of the inner body cells 316 also allows the cells to lengthen and shorten enough so that the lengths of the inner body 310 and outer cage 410 can be substantially the same when loaded in a microcatheter and when freely expanded at the target site. However, the cells can still have sufficient structural rigidity so the device 300 can be advanced or retracted without excessively lengthening or shortening the inner body 310 and outer cage 410.


The inner body 310 can also transition distally from the single cell sinusoid pattern into a collection of radially expanded struts 318. In the example shown, four expanded struts 318 can be positioned spaced equally 90 degrees around the longitudinal axis. The flared or expanded struts can aid the distal mesh fragment segment 420 of the outer cage 410. The expanded struts can also align the foreshortening of the inner body 310 and outer cage 410 during the crimping of the device into an insertion tool or microcatheter.



FIGS. 9A and 9B provide a top view and side view, respectively, of the inner body 310 of FIG. 8 independent of the outer cage 410 of the device 300. FIG. 9A shows the sequence of cell openings 316 in the inner body 310. Each wave can have a single cell opening 316. The cells can have a diameter of approximately 1.25-1.5 mm or can have a slightly different diameter determined by the difference in the foreshortening of the inner body 310 and outer cage 410 during crimping of the device into an insertion tool or microcatheter. The expanded struts 318 near the distal end 314 can be a larger outer diameter (much closer to the expanded outer diameter of the outer cage) than the cells 316 of the inner body 310, and as a result these struts can also make up a significant amount of the take-up length required between the inner body and outer cage.



FIG. 9B illustrates a side view of FIG. 9A clearly showing the sinusoidal wave pattern 315 of the cells 316 of the inner body 310. The most proximal cell of the pattern can terminate in a connecting strut 330 linking it to a partially circumferential inner collar 328 at the proximal end 312 of the inner body. The struts of the inner body can be formed monolithically with the collar 328 by cutting and machining a single hypotube with an outer diameter 324 equal to that of the collar. At the distal end 314 of the inner body 310 can be a radiopaque coil 310 or marker band to mark the terminal end of the device during a procedure.


The proximal connections of the inner body 310 and outer cage 410 to the elongate shaft 6 can be constructed so the inner body and outer cage can have some small amount of independent translation with respect to each other. The translation can be, for example, a linear translation along an axis, a rotation of one body with respect to the other, or some combination of these. An example of a joint where this can be accomplished with a collar assembly 426 is illustrated in the exploded view in FIG. 10. The proximal end 413 of the outer cage 410 can have a tubular collar 427 circumscribing the elongate shaft 6. The proximal end 312 of the inner body 310 can have the partially circumferential inner collar 328 riding on elongate shaft 6 as mentioned above. The partially circumferential inner collar 328 can be cut from a hypotube having an outer diameter 324 less than the inner diameter 428 of the tubular collar 427 of the outer cage 410. Such a configuration can allow the inner collar 328 to sit radially inboard of the tubular outer collar 427 so that a small amount of rotation of either the inner body 310 or outer cage 410 can be possible with respect to the other. A partially circumferential setup also allows the inner collar 328 to be assembled on the shaft 6 with a fully circumferential outer collar 427.


The coaxial collar assembly 426 of the partial inner collar 328 of the inner body 310 and outer collar 427 of the outer cage 410 can allow for the two bodies to be substantially aligned with the neutral axis of the device 300 during bending within the vasculature. The rotation potential between the outer cage 410 and inner body 310 allowed by the collar assembly 426 can also help to prevent clot shearing which could otherwise occur with a static and fixed connection.



FIG. 11 diagrams method steps for performing a thrombectomy procedure with such a device. The method steps can be implemented by any of the example devices or suitable alternatives described herein and known to one of ordinary skill in the art. The method can have some or all of the steps described, and in many cases, steps can be performed in a different order than as disclosed below.


Referring to a method 11000 outlined in FIG. 11, step 11010 can involve delivering a clot retrieval device across a target clot of unknown composition. The clot can be firm and fibrin rich, soft and friable, or some combination of the two. The clot retrieval device can be delivered through a microcatheter or other suitable delivery catheter and have a collapsed configuration during delivery and an expanded deployed configuration when the delivery catheter is retracted. An elongate shaft can be used to manipulate the device by a user.


An expandable element of struts can be attached to the distal end of the elongate shaft and have an outer cage of cells and an inner body of cells within the lumen of the outer cage. Step 11020 can involve embedding at least one of the cells of the outer cage and at least one of the cells of the inner body in a clot by expanding the device from the constrained delivery configuration to the expanded deployed configuration. The radial force from the expansion of the outer cage can cause at least a portion of the clot to migrate radially inward.


In step 11030, a microcatheter or other outer catheter can be advanced distally to engage with at least some of the cells of the inner body and outer cage to pinch in compression at least a firm portion of the clot. The cells of the inner body and/or outer cage can be shaped to have bends at the axial apices shaped to fold the cell down radially as the device is partially re-sheathed. The saddle points can therefore exert a firm grip on any fibrin rich cores in the clot composition.


The distal advancement of the outer catheter can continue until resistance is felt by the user, indicating a pinch has been achieved, or no resistance is felt indicating the lack of fibrin rich portions of the clot. If no pinch is achieved, step 11040 can involve withdrawing the outer catheter to redeploy and embed the device in the clot. This redeployment stabilizes the soft clot within the cells of the device.


In step 11050, some or all of the struts of the outer cage can be inverted proximally to fold back over and internalize the clot and inner body. The inversion can protect the clot and reduce possible interactions or snags due to friction, bifurcations, and/or sharp bends in the vasculature. The struts can be pulled proximally by the user utilizing pull wires that are retracted and run through an inner lumen of the device shaft or by other suitable means. For example, the pull wires can extend through a hypotube device shaft and be actuated from a handle positioned on the proximal end of the shaft. In addition, the proximal joint of the inner body, outer cage, and the elongate shaft can be configured to allow some relative motion between them, reducing retraction forces and the risks of clot shearing.


Step 11060 can involve removing the clot retrieval device and captured clot from the patient. This can be accomplished, for example, by retrieving the device into an outer catheter with the aid of aspiration. If a pinch was achieved, it can be maintained by keeping the relative positions of the device and outer catheter during withdrawal. If required, the device may be rinsed in saline and gently cleaned before being reloaded into the microcatheter to be reintroduced into the vasculature when there are additional segments of occlusive clot, or if further passes for complete recanalization are needed.


The invention is not necessarily limited to the examples described, which can be varied in construction and detail. The terms “distal” and “proximal” are used throughout the preceding description and are meant to refer to a positions and directions relative to a treating physician. As such, “distal” or distally” refer to a position distant to or a direction away from the physician. Similarly, “proximal” or “proximally” refer to a position near to or a direction towards the physician. Furthermore, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.


As used herein, the terms “about” or “approximately” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein. More specifically, “about” or “approximately” may refer to the range of values ±20% of the recited value, e.g. “about 90%” may refer to the range of values from 71% to 99%.


In describing example embodiments, terminology has been resorted to for the sake of clarity. It is intended that each term contemplates its broadest meaning as understood by those skilled in the art and includes all technical equivalents that operate in a similar manner to accomplish a similar purpose without departing from the scope and spirit of the invention. It is also to be understood that the mention of one or more steps of a method does not preclude the presence of additional method steps or intervening method steps between those steps expressly identified. Similarly, some steps of a method can be performed in a different order than those described herein without departing from the scope of the disclosed technology. For clarity and conciseness, not all possible combinations have been listed, and such variants are often apparent to those of skill in the art and are intended to be within the scope of the claims which follow.

Claims
  • 1. A device for removing a clot from a blood vessel, comprising: a proximal tubular shaft comprising a lumen extending therethrough;a framework of struts having a constrained delivery configuration, an expanded clot engaging deployed configuration, and an at least partially constrained clot pinching configuration, the framework of struts comprising: an elongate inner body comprising a distal end, a longitudinal axis, and one or more clot pinching cells configured to pinch the clot on movement from the deployed configuration to the clot pinching configuration; andan outer cage connected to the distal end of the elongate inner body and expandable to a radial extent greater than the elongate inner body; andone or more pull wires extending through the lumen of the proximal tubular shaft and fixedly connected to the outer cage, the one or more pull wires configured to move the outer cage from the expanded deployed configuration to an inverted clot housing configuration,wherein each of the one or more clot pinching cells are arranged in an axial series and are hingedly joined to each of their respective adjacent clot pinching cells of the one or more clot pinching cells by a flexible connector strut, the flexible connector strut being the only point of contact between the respective adjacent clot pinching cells of the one or more clot pinching cells.
  • 2. The device of claim 1, wherein the elongate inner body and outer cage are monolithically formed through laser cutting a single continuous tube.
  • 3. The device of claim 1, wherein each clot pinching cell of the one or more clot pinching cells comprise a horseshoe shaped saddle point at proximal and distal ends of the clot pinching cell.
  • 4. The device of claim 1, wherein the one or more pull wires are connected to the outer cage at a linkage point by at least one of a crimp clamp, a weld, or a braid.
  • 5. The device of claim 1, wherein the struts of the outer cage are configured to invert proximally when the outer cage is moved from the expanded deployed configuration to the inverted clot housing configuration.
  • 6. The device of claim 5, wherein the struts of the outer cage enclose the clot and the elongate inner body in the inverted clot housing configuration.
  • 7. The device of claim 1, wherein the proximal tubular shaft has an outer diameter of less than or equal to 0.021 inches.
  • 8. The device of claim 1, wherein the elongate inner body has an outer diameter of approximately 2.25 mm in the expanded deployed configuration.
  • 9. The device of claim 1, wherein the outer cage has an outer diameter of approximately 5 mm in the inverted clot housing configuration.
US Referenced Citations (913)
Number Name Date Kind
4455717 Gray Jun 1984 A
4611594 Grayhack et al. Sep 1986 A
4612931 Dormia Sep 1986 A
4643184 Mobin-Uddin Feb 1987 A
4727873 Mobin-Uddin Mar 1988 A
4793348 Palmaz Dec 1988 A
4873978 Ginsburg Oct 1989 A
5011488 Ginsburg Apr 1991 A
5084065 MacGregor et al. Jan 1992 A
5092839 Kipperman Mar 1992 A
5100423 Fearnot Mar 1992 A
5102415 Guenther et al. Apr 1992 A
5108419 Reger et al. Apr 1992 A
5122136 Guglielmi et al. Jun 1992 A
5163951 Pinchuk et al. Nov 1992 A
5171233 Amplatz et al. Dec 1992 A
5171259 Inoue Dec 1992 A
5217441 Shichman Jun 1993 A
5234437 Sepetka Aug 1993 A
5236447 Kubo et al. Aug 1993 A
5330482 Gibbs et al. Jul 1994 A
5383887 Nadal Jan 1995 A
5387219 Rappe Feb 1995 A
5387226 Miraki Feb 1995 A
5449372 Schmaltz et al. Sep 1995 A
5499985 Hein et al. Mar 1996 A
5538512 Zenzon et al. Jul 1996 A
5538515 Kafry et al. Jul 1996 A
5549626 Miller et al. Aug 1996 A
5558652 Henke Sep 1996 A
5609627 Goicoechea et al. Mar 1997 A
5624461 Mariant Apr 1997 A
5639277 Mariant et al. Jun 1997 A
5639278 Dereume et al. Jun 1997 A
5645558 Horton Jul 1997 A
5653605 Woehl et al. Aug 1997 A
5658296 Bates et al. Aug 1997 A
5665117 Rhodes Sep 1997 A
5695519 Summers et al. Dec 1997 A
5709704 Nott et al. Jan 1998 A
5713853 Clark et al. Feb 1998 A
5733325 Robinson et al. Mar 1998 A
5769871 Mers Kelly et al. Jun 1998 A
5769884 Solovay Jun 1998 A
5779686 Sato et al. Jul 1998 A
5779716 Cano et al. Jul 1998 A
5800519 Sandock Sep 1998 A
5810874 Lefebvre Sep 1998 A
5814064 Daniel et al. Sep 1998 A
5824041 Lenker et al. Oct 1998 A
5827304 Hart Oct 1998 A
5853422 Huebsch et al. Dec 1998 A
5855598 Pinchuk Jan 1999 A
5893869 Barnhart et al. Apr 1999 A
5895398 Wensel et al. Apr 1999 A
5897567 Ressemann et al. Apr 1999 A
5904698 Thomas et al. May 1999 A
5911702 Romley et al. Jun 1999 A
5911725 Boury Jun 1999 A
5919126 Armini Jul 1999 A
5931509 Bartholomew Aug 1999 A
5935139 Bates Aug 1999 A
5947995 Samuels Sep 1999 A
6063113 Kavteladze et al. May 2000 A
6066149 Samson et al. May 2000 A
6066158 Engelson et al. May 2000 A
6093196 Okada Jul 2000 A
6093199 Brown et al. Jul 2000 A
6096053 Bates Aug 2000 A
6099534 Bates et al. Aug 2000 A
6099559 Nolting Aug 2000 A
6102932 Kurz Aug 2000 A
6106548 Roubin et al. Aug 2000 A
6129739 Khosravi Oct 2000 A
6143022 Shull et al. Nov 2000 A
6146404 Kim et al. Nov 2000 A
6156064 Chouinard Dec 2000 A
6165194 Denardo Dec 2000 A
6165199 Barbut Dec 2000 A
6168604 Cano Jan 2001 B1
6168622 Mazzocchi Jan 2001 B1
6174318 Bates et al. Jan 2001 B1
6179861 Khosravi et al. Jan 2001 B1
6203561 Ramee et al. Mar 2001 B1
6214026 Lepak et al. Apr 2001 B1
6221006 Dubrul et al. Apr 2001 B1
6221096 Aiba et al. Apr 2001 B1
6231597 Deem et al. May 2001 B1
6238412 Dubrul et al. May 2001 B1
6245012 Kleshinski Jun 2001 B1
6245087 Addis Jun 2001 B1
6251122 Tsukernik Jun 2001 B1
6254571 Hart Jul 2001 B1
6264663 Cano Jul 2001 B1
6267777 Bosma et al. Jul 2001 B1
6290710 Cryer et al. Sep 2001 B1
6312444 Barbut Nov 2001 B1
6315778 Gambale et al. Nov 2001 B1
6325815 Kusleika et al. Dec 2001 B1
6325819 Pavcnik et al. Dec 2001 B1
6334864 Amplatz et al. Jan 2002 B1
6336934 Gilson et al. Jan 2002 B1
6346116 Brooks et al. Feb 2002 B1
6348056 Bates et al. Feb 2002 B1
6350271 Kurz et al. Feb 2002 B1
6355057 DeMarais et al. Mar 2002 B1
6361545 Macoviak et al. Mar 2002 B1
6364895 Greenhalgh Apr 2002 B1
6375668 Gifford et al. Apr 2002 B1
6375670 Greenhalgh Apr 2002 B1
6383205 Samson et al. May 2002 B1
6383206 Gillick et al. May 2002 B1
6391037 Greenhalgh May 2002 B1
6402771 Palmer et al. Jun 2002 B1
6416541 Denardo Jul 2002 B2
6425909 Dieck et al. Jul 2002 B1
6428558 Jones et al. Aug 2002 B1
6432122 Gilson et al. Aug 2002 B1
6436112 Wensel et al. Aug 2002 B2
6458139 Palmer et al. Oct 2002 B1
6485497 Wensel et al. Nov 2002 B2
6485501 Green Nov 2002 B1
6485502 Don Michael et al. Nov 2002 B2
6488701 Nolting et al. Dec 2002 B1
6511492 Rosenbluth et al. Jan 2003 B1
6530935 Wensel et al. Mar 2003 B2
6530939 Hopkins et al. Mar 2003 B1
6540768 Diaz et al. Apr 2003 B1
6544279 Hopkins et al. Apr 2003 B1
6551341 Boylan et al. Apr 2003 B2
6551342 Shen et al. Apr 2003 B1
6575996 Denison et al. Jun 2003 B1
6575997 Palmer et al. Jun 2003 B1
6582448 Boyle et al. Jun 2003 B1
6585756 Strecker Jul 2003 B1
6589265 Palmer et al. Jul 2003 B1
6592607 Palmer et al. Jul 2003 B1
6592614 Lenker et al. Jul 2003 B2
6592616 Stack et al. Jul 2003 B1
6602265 Dubrul et al. Aug 2003 B2
6602271 Adams et al. Aug 2003 B2
6602272 Boylan et al. Aug 2003 B2
6605102 Mazzocchi et al. Aug 2003 B1
6610077 Hancock et al. Aug 2003 B1
6616679 Khosravi et al. Sep 2003 B1
6632241 Hancock et al. Oct 2003 B1
6638245 Miller et al. Oct 2003 B2
6638293 Makower et al. Oct 2003 B1
6641590 Palmer et al. Nov 2003 B1
6656218 Denardo et al. Dec 2003 B1
6660021 Palmer et al. Dec 2003 B1
6663650 Sepetka et al. Dec 2003 B2
6673089 Yassour et al. Jan 2004 B1
6685722 Rosenbluth et al. Feb 2004 B1
6692504 Kurz et al. Feb 2004 B2
6692508 Wensel et al. Feb 2004 B2
6692509 Wensel et al. Feb 2004 B2
6695858 Dubrul et al. Feb 2004 B1
6702782 Miller et al. Mar 2004 B2
6702834 Boylan et al. Mar 2004 B1
6709465 Mitchell et al. Mar 2004 B2
6712834 Yassour et al. Mar 2004 B2
6726701 Gilson et al. Apr 2004 B2
6726703 Broome et al. Apr 2004 B2
6730104 Sepetka et al. May 2004 B1
6783528 Vincent-Prestigiacomo Aug 2004 B2
6783538 McGuckin, Jr. et al. Aug 2004 B2
6824545 Sepetka et al. Nov 2004 B2
6855155 Denardo et al. Feb 2005 B2
6878163 Denardo et al. Apr 2005 B2
6890340 Duane May 2005 B2
6913612 Palmer et al. Jul 2005 B2
6913618 Denardo et al. Jul 2005 B2
6939361 Kleshinski Sep 2005 B1
6953472 Palmer et al. Oct 2005 B2
6989019 Mazzocchi et al. Jan 2006 B2
6989021 Bosma et al. Jan 2006 B2
6994718 Groothuis et al. Feb 2006 B2
7004954 Voss et al. Feb 2006 B1
7004955 Shen et al. Feb 2006 B2
7004956 Palmer et al. Feb 2006 B2
7008434 Kurz et al. Mar 2006 B2
7033376 Tsukernik Apr 2006 B2
7041116 Goto et al. May 2006 B2
7048758 Boyle et al. May 2006 B2
7052500 Bashiri et al. May 2006 B2
7058456 Pierce Jun 2006 B2
7063707 Bose et al. Jun 2006 B2
7083633 Morrill et al. Aug 2006 B2
7083822 Brightbill Aug 2006 B2
7094249 Broome et al. Aug 2006 B1
7097653 Freudenthal et al. Aug 2006 B2
7101380 Khachin et al. Sep 2006 B2
7172614 Boyle et al. Feb 2007 B2
7175655 Molaei Feb 2007 B1
7179273 Palmer et al. Feb 2007 B1
7185922 Takayanagi et al. Mar 2007 B2
7220271 Clubb et al. May 2007 B2
7226464 Garner et al. Jun 2007 B2
7229472 DePalma et al. Jun 2007 B2
7241304 Boyle et al. Jul 2007 B2
7241308 Andreas et al. Jul 2007 B2
7288112 Denardo et al. Oct 2007 B2
7300458 Henkes et al. Nov 2007 B2
7306618 Demond et al. Dec 2007 B2
7314483 Landau et al. Jan 2008 B2
7316692 Huffmaster Jan 2008 B2
7323001 Clubb et al. Jan 2008 B2
7331976 McGuckin, Jr. et al. Feb 2008 B2
7344550 Carrison et al. Mar 2008 B2
7399308 Borillo et al. Jul 2008 B2
7410491 Hopkins et al. Aug 2008 B2
7425215 Boyle et al. Sep 2008 B2
7452496 Brady et al. Nov 2008 B2
7491215 Vale et al. Feb 2009 B2
7491216 Brady Feb 2009 B2
7510565 Gilson et al. Mar 2009 B2
7534252 Sepetka et al. May 2009 B2
7556636 Mazzocchi et al. Jul 2009 B2
7582111 Krolik et al. Sep 2009 B2
7594926 Linder et al. Sep 2009 B2
7604649 McGuckin, Jr. et al. Oct 2009 B2
7604650 Bergheim Oct 2009 B2
7618434 Santra et al. Nov 2009 B2
7662165 Gilson et al. Feb 2010 B2
7670356 Mazzocchi et al. Mar 2010 B2
7678123 Chanduszko Mar 2010 B2
7691121 Rosenbluth et al. Apr 2010 B2
7691124 Balgobin Apr 2010 B2
7708770 Linder et al. May 2010 B2
7717929 Fallman May 2010 B2
7736385 Agnew Jun 2010 B2
7749246 McGuckin, Jr. et al. Jul 2010 B2
7758606 Streeter et al. Jul 2010 B2
7758611 Kato Jul 2010 B2
7766934 Pal et al. Aug 2010 B2
7771452 Pal et al. Aug 2010 B2
7780694 Palmer et al. Aug 2010 B2
7780700 Frazier et al. Aug 2010 B2
7811305 Balgobin et al. Oct 2010 B2
7815659 Conlon et al. Oct 2010 B2
7819893 Brady et al. Oct 2010 B2
7828815 Mazzocchi et al. Nov 2010 B2
7828816 Mazzocchi et al. Nov 2010 B2
7833240 Okushi et al. Nov 2010 B2
7842053 Chanduszko et al. Nov 2010 B2
7846175 Bonnette et al. Dec 2010 B2
7846176 Gilson et al. Dec 2010 B2
7850708 Pal Dec 2010 B2
7883516 Huang et al. Feb 2011 B2
7887560 Kusleika Feb 2011 B2
7901426 Gilson et al. Mar 2011 B2
7914549 Morsi Mar 2011 B2
7922732 Mazzocchi et al. Apr 2011 B2
7927784 Simpson Apr 2011 B2
7931659 Bose et al. Apr 2011 B2
7998165 Huffmaster Aug 2011 B2
8002822 Glocker et al. Aug 2011 B2
8021379 Thompson et al. Sep 2011 B2
8021380 Thompson et al. Sep 2011 B2
8043326 Hancock et al. Oct 2011 B2
8048151 OBrien et al. Nov 2011 B2
8052640 Fiorella et al. Nov 2011 B2
8057497 Raju et al. Nov 2011 B1
8057507 Horan et al. Nov 2011 B2
8066757 Ferrera et al. Nov 2011 B2
8070791 Ferrera et al. Dec 2011 B2
8088140 Ferrera et al. Jan 2012 B2
8100935 Rosenbluth et al. Jan 2012 B2
8109941 Richardson Feb 2012 B2
8118829 Carrison et al. Feb 2012 B2
8118856 Schreck et al. Feb 2012 B2
8123769 Osborne Feb 2012 B2
8137376 Clubb et al. Mar 2012 B2
8137377 Palmer et al. Mar 2012 B2
8142422 Makower et al. Mar 2012 B2
8142442 Palmer et al. Mar 2012 B2
8182508 Magnuson et al. May 2012 B2
8187298 Pal May 2012 B2
8246641 Osborne et al. Aug 2012 B2
8246672 Osborne Aug 2012 B2
8252017 Paul, Jr. et al. Aug 2012 B2
8252018 Valaie Aug 2012 B2
8262689 Schneiderman et al. Sep 2012 B2
8282668 McGuckin, Jr. et al. Oct 2012 B2
8298257 Sepetka et al. Oct 2012 B2
RE43882 Hopkins et al. Dec 2012 E
8357178 Grandfield et al. Jan 2013 B2
8357179 Grandfield et al. Jan 2013 B2
8357180 Feller, III et al. Jan 2013 B2
8357893 Xu et al. Jan 2013 B2
8361095 Osborne Jan 2013 B2
8361110 Chanduszko Jan 2013 B2
8366663 Fiorella et al. Feb 2013 B2
8409215 Sepetka et al. Apr 2013 B2
8414482 Belson Apr 2013 B2
8414543 McGuckin, Jr. et al. Apr 2013 B2
8419748 Valaie Apr 2013 B2
8460312 Bose et al. Jun 2013 B2
8460313 Huffmaster Jun 2013 B2
8486104 Samson et al. Jul 2013 B2
8512352 Martin Aug 2013 B2
8529596 Grandfield et al. Sep 2013 B2
8545526 Martin et al. Oct 2013 B2
8574262 Ferrera et al. Nov 2013 B2
8579915 French et al. Nov 2013 B2
8585713 Ferrera et al. Nov 2013 B2
8608761 Osborne et al. Dec 2013 B2
8679142 Slee et al. Mar 2014 B2
8690907 Janardhan et al. Apr 2014 B1
8696622 Fiorella et al. Apr 2014 B2
8702652 Fiorella et al. Apr 2014 B2
8702704 Shelton, IV et al. Apr 2014 B2
8702724 Olsen et al. Apr 2014 B2
8777976 Brady et al. Jul 2014 B2
8777979 Shrivastava et al. Jul 2014 B2
8784434 Rosenbluth et al. Jul 2014 B2
8784441 Rosenbluth et al. Jul 2014 B2
8795305 Martin et al. Aug 2014 B2
8795317 Grandfield et al. Aug 2014 B2
8795345 Grandfield et al. Aug 2014 B2
8814892 Galdonik et al. Aug 2014 B2
8814925 Hilaire et al. Aug 2014 B2
8852205 Brady et al. Oct 2014 B2
8870941 Evans et al. Oct 2014 B2
8900265 Ulm, III Dec 2014 B1
8920358 Levine et al. Dec 2014 B2
8939991 Krolik et al. Jan 2015 B2
8945143 Ferrera et al. Feb 2015 B2
8945160 Krolik et al. Feb 2015 B2
8945169 Pal Feb 2015 B2
8945172 Ferrera et al. Feb 2015 B2
8956399 Cam et al. Feb 2015 B2
8968330 Rosenbluth et al. Mar 2015 B2
9011481 Aggerholm et al. Apr 2015 B2
9039749 Shrivastava et al. May 2015 B2
9072537 Grandfield et al. Jul 2015 B2
9095342 Becking et al. Aug 2015 B2
9113936 Palmer et al. Aug 2015 B2
9119656 Bose et al. Sep 2015 B2
9138307 Valaie Sep 2015 B2
9155552 Ulm, III Oct 2015 B2
9161758 Figulla et al. Oct 2015 B2
9161766 Slee et al. Oct 2015 B2
9173668 Ulm, III Nov 2015 B2
9186487 Dubrul et al. Nov 2015 B2
9198687 Fulkerson et al. Dec 2015 B2
9204887 Cully et al. Dec 2015 B2
9211132 Bowman Dec 2015 B2
9232992 Heidner Jan 2016 B2
9254371 Martin et al. Feb 2016 B2
9301769 Brady et al. Apr 2016 B2
9332999 Ray et al. May 2016 B2
9402707 Brady et al. Aug 2016 B2
9445829 Brady et al. Sep 2016 B2
9456834 Folk Oct 2016 B2
9532792 Galdonik et al. Jan 2017 B2
9532873 Kelley Jan 2017 B2
9533344 Monetti et al. Jan 2017 B2
9539011 Chen et al. Jan 2017 B2
9539022 Bowman Jan 2017 B2
9539122 Burke et al. Jan 2017 B2
9539382 Nelson Jan 2017 B2
9549830 Bruszewski et al. Jan 2017 B2
9554805 Tompkins et al. Jan 2017 B2
9561125 Bowman et al. Feb 2017 B2
9572982 Burnes et al. Feb 2017 B2
9579104 Beckham et al. Feb 2017 B2
9579484 Barnell Feb 2017 B2
9585642 Dinsmoor et al. Mar 2017 B2
9615832 Bose et al. Apr 2017 B2
9615951 Bennett et al. Apr 2017 B2
9622753 Cox Apr 2017 B2
9636115 Henry et al. May 2017 B2
9636439 Chu et al. May 2017 B2
9642639 Brady et al. May 2017 B2
9642675 Werneth et al. May 2017 B2
9655633 Leynov et al. May 2017 B2
9655645 Staunton May 2017 B2
9655989 Cruise et al. May 2017 B2
9662129 Galdonik et al. May 2017 B2
9662238 Dwork et al. May 2017 B2
9662425 Lilja et al. May 2017 B2
9668898 Wong Jun 2017 B2
9675477 Thompson Jun 2017 B2
9675782 Connolly Jun 2017 B2
9676022 Ensign et al. Jun 2017 B2
9692557 Murphy Jun 2017 B2
9693852 Lam et al. Jul 2017 B2
9700262 Janik et al. Jul 2017 B2
9700399 Acosta-Acevedo Jul 2017 B2
9717421 Griswold et al. Aug 2017 B2
9717500 Tieu et al. Aug 2017 B2
9717502 Teoh et al. Aug 2017 B2
9724103 Cruise et al. Aug 2017 B2
9724526 Strother et al. Aug 2017 B2
9750565 Bloom et al. Sep 2017 B2
9757260 Greenan Sep 2017 B2
9764111 Gulachenski Sep 2017 B2
9770251 Bowman et al. Sep 2017 B2
9770577 Li et al. Sep 2017 B2
9775621 Tompkins et al. Oct 2017 B2
9775706 Peterson et al. Oct 2017 B2
9775732 Khenansho Oct 2017 B2
9788800 Mayoras, Jr. Oct 2017 B2
9795391 Saatchi et al. Oct 2017 B2
9801651 Harrah et al. Oct 2017 B2
9801980 Karino et al. Oct 2017 B2
9808599 Bowman et al. Nov 2017 B2
9833252 Sepetka et al. Dec 2017 B2
9833304 Horan et al. Dec 2017 B2
9833604 Lam et al. Dec 2017 B2
9833625 Waldhauser et al. Dec 2017 B2
9901434 Hoffman Feb 2018 B2
9918720 Marchand et al. Mar 2018 B2
10016206 Yang Jul 2018 B1
10070878 Ma Sep 2018 B2
10098651 Marchand et al. Oct 2018 B2
10201360 Vale et al. Feb 2019 B2
10231751 Sos Mar 2019 B2
10292723 Brady et al. May 2019 B2
10299811 Brady et al. May 2019 B2
10363054 Vale et al. Jul 2019 B2
10376274 Farin et al. Aug 2019 B2
10390850 Vale et al. Aug 2019 B2
10524811 Marchand et al. Jan 2020 B2
10531942 Eggers Jan 2020 B2
10617435 Vale et al. Apr 2020 B2
10722257 Skillrud et al. Jul 2020 B2
11517340 Casey Dec 2022 B2
20010001315 Bates et al. May 2001 A1
20010016755 Addis Aug 2001 A1
20010037141 Yee et al. Nov 2001 A1
20010041909 Tsugita et al. Nov 2001 A1
20010044632 Daniel Nov 2001 A1
20010049554 Ruiz et al. Dec 2001 A1
20010051810 Dubrul et al. Dec 2001 A1
20020004667 Adams et al. Jan 2002 A1
20020016609 Wensel et al. Feb 2002 A1
20020022859 Hogendijk Feb 2002 A1
20020026211 Khosravi et al. Feb 2002 A1
20020042627 Brady et al. Apr 2002 A1
20020049468 Streeter et al. Apr 2002 A1
20020052620 Barbut May 2002 A1
20020058911 Gilson et al. May 2002 A1
20020068954 Foster Jun 2002 A1
20020072764 Sepetka et al. Jun 2002 A1
20020082558 Samson et al. Jun 2002 A1
20020091407 Zando-Azizi et al. Jul 2002 A1
20020095171 Belef Jul 2002 A1
20020123765 Sepetka et al. Sep 2002 A1
20020128680 Pavolvic Sep 2002 A1
20020138094 Borillo et al. Sep 2002 A1
20020143349 Gifford, III et al. Oct 2002 A1
20020143362 Macoviak et al. Oct 2002 A1
20020156455 Barbut Oct 2002 A1
20020161393 Demond et al. Oct 2002 A1
20020165576 Boyle et al. Nov 2002 A1
20020173819 Leeflang et al. Nov 2002 A1
20020183787 Wahr et al. Dec 2002 A1
20020188276 Evans et al. Dec 2002 A1
20020188314 Anderson et al. Dec 2002 A1
20020193824 Boylan et al. Dec 2002 A1
20020198588 Armstrong et al. Dec 2002 A1
20030004536 Boylan et al. Jan 2003 A1
20030004538 Secrest et al. Jan 2003 A1
20030004540 Linder et al. Jan 2003 A1
20030004542 Wensel et al. Jan 2003 A1
20030009146 Muni et al. Jan 2003 A1
20030009191 Wensel et al. Jan 2003 A1
20030038447 Cantele Feb 2003 A1
20030040772 Hyodoh et al. Feb 2003 A1
20030050663 Khachin et al. Mar 2003 A1
20030114879 Euteneuer et al. Jun 2003 A1
20030125798 Martin Jul 2003 A1
20030130682 Broome et al. Jul 2003 A1
20030144687 Brady et al. Jul 2003 A1
20030144688 Brady et al. Jul 2003 A1
20030153943 Michael et al. Aug 2003 A1
20030153944 Phung et al. Aug 2003 A1
20030163064 Vrba et al. Aug 2003 A1
20030163158 White Aug 2003 A1
20030171769 Barbut Sep 2003 A1
20030171771 Anderson et al. Sep 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030187495 Cully et al. Oct 2003 A1
20030195537 Dubrul et al. Oct 2003 A1
20030195554 Shen et al. Oct 2003 A1
20030199917 Knudson et al. Oct 2003 A1
20030204202 Palmer et al. Oct 2003 A1
20030208224 Broome Nov 2003 A1
20030212430 Bose et al. Nov 2003 A1
20030236533 Wilson et al. Dec 2003 A1
20040064179 Linder et al. Apr 2004 A1
20040068288 Palmer et al. Apr 2004 A1
20040073243 Sepetka et al. Apr 2004 A1
20040079429 Miller et al. Apr 2004 A1
20040082962 Demarais et al. Apr 2004 A1
20040082967 Broome et al. Apr 2004 A1
20040088001 Bosma et al. May 2004 A1
20040093065 Yachia et al. May 2004 A1
20040098050 Foerster et al. May 2004 A1
20040133231 Maitland et al. Jul 2004 A1
20040133232 Rosenbluth et al. Jul 2004 A1
20040138692 Phung et al. Jul 2004 A1
20040153117 Clubb et al. Aug 2004 A1
20040153118 Clubb et al. Aug 2004 A1
20040199201 Kellett et al. Oct 2004 A1
20040204749 Gunderson Oct 2004 A1
20040215318 Kwitkin Oct 2004 A1
20040220663 Rivelli Nov 2004 A1
20050033348 Sepetka et al. Feb 2005 A1
20050038447 Huffmaster Feb 2005 A1
20050038468 Panetta et al. Feb 2005 A1
20050043759 Chanduszko Feb 2005 A1
20050049619 Sepetka et al. Mar 2005 A1
20050049669 Jones et al. Mar 2005 A1
20050049670 Jones et al. Mar 2005 A1
20050055033 Leslie et al. Mar 2005 A1
20050055047 Greenhalgh Mar 2005 A1
20050059995 Sepetka et al. Mar 2005 A1
20050085849 Sepetka et al. Apr 2005 A1
20050090779 Osypka Apr 2005 A1
20050090857 Kusleika et al. Apr 2005 A1
20050125024 Sepetka et al. Jun 2005 A1
20050171566 Kanamaru Aug 2005 A1
20050192627 Whisenant et al. Sep 2005 A1
20050215942 Abrahamson et al. Sep 2005 A1
20050216030 Sepetka et al. Sep 2005 A1
20050216050 Sepetka et al. Sep 2005 A1
20050228417 Teitelbaum et al. Oct 2005 A1
20050251206 Maahs et al. Nov 2005 A1
20050251209 Saadat et al. Nov 2005 A1
20050267491 Kellett et al. Dec 2005 A1
20050273135 Chanduszko et al. Dec 2005 A1
20050283186 Berrada et al. Dec 2005 A1
20050288686 Sepetka et al. Dec 2005 A1
20060009798 Callister et al. Jan 2006 A1
20060009799 Kleshinski et al. Jan 2006 A1
20060020285 Niermann Jan 2006 A1
20060020286 Niermann Jan 2006 A1
20060030877 Martinez et al. Feb 2006 A1
20060041228 Vo et al. Feb 2006 A1
20060058836 Bose et al. Mar 2006 A1
20060058837 Bose et al. Mar 2006 A1
20060058838 Bose et al. Mar 2006 A1
20060064151 Guterman Mar 2006 A1
20060069424 Acosta et al. Mar 2006 A1
20060074477 Berthiaume et al. Apr 2006 A1
20060142838 Molaei et al. Jun 2006 A1
20060149313 Arguello et al. Jul 2006 A1
20060155305 Freudenthal et al. Jul 2006 A1
20060161187 Levine et al. Jul 2006 A1
20060195137 Sepetka et al. Aug 2006 A1
20060224177 Finitsis Oct 2006 A1
20060224179 Kucharczyk et al. Oct 2006 A1
20060229638 Abrams et al. Oct 2006 A1
20060235501 Igaki Oct 2006 A1
20060241677 Johnson et al. Oct 2006 A1
20060282111 Morsi Dec 2006 A1
20060287668 Fawzi et al. Dec 2006 A1
20060287701 Pal Dec 2006 A1
20060293706 Shimon Dec 2006 A1
20070010857 Sugimoto et al. Jan 2007 A1
20070032879 Levine et al. Feb 2007 A1
20070088382 Bei et al. Apr 2007 A1
20070088383 Pal et al. Apr 2007 A1
20070100348 Cauthen, III et al. May 2007 A1
20070112374 Paul, Jr. May 2007 A1
20070118173 Magnuson et al. May 2007 A1
20070149997 Muller Jun 2007 A1
20070156170 Hancock et al. Jul 2007 A1
20070165170 Fukuda Jul 2007 A1
20070179527 Eskuri et al. Aug 2007 A1
20070191866 Palmer et al. Aug 2007 A1
20070198028 Miloslavski et al. Aug 2007 A1
20070198051 Clubb et al. Aug 2007 A1
20070198075 Levy Aug 2007 A1
20070208367 Fiorella et al. Sep 2007 A1
20070208371 French et al. Sep 2007 A1
20070225749 Martin et al. Sep 2007 A1
20070233175 Zaver et al. Oct 2007 A1
20070244505 Gilson et al. Oct 2007 A1
20070270902 Slazas et al. Nov 2007 A1
20070288054 Tanaka et al. Dec 2007 A1
20080045881 Teitelbaum et al. Feb 2008 A1
20080077227 Ouellette et al. Mar 2008 A1
20080082107 Miller et al. Apr 2008 A1
20080086190 Ta Apr 2008 A1
20080091223 Pokorney et al. Apr 2008 A1
20080097386 Osypka Apr 2008 A1
20080109031 Sepetka et al. May 2008 A1
20080109032 Sepetka et al. May 2008 A1
20080119886 Greenhalgh et al. May 2008 A1
20080125798 Osborne et al. May 2008 A1
20080177296 Sepetka et al. Jul 2008 A1
20080178890 Townsend et al. Jul 2008 A1
20080183197 Sepetka et al. Jul 2008 A1
20080183198 Sepetka et al. Jul 2008 A1
20080183205 Sepetka et al. Jul 2008 A1
20080188876 Sepetka et al. Aug 2008 A1
20080188885 Sepetka et al. Aug 2008 A1
20080188887 Batiste Aug 2008 A1
20080200946 Braun et al. Aug 2008 A1
20080200947 Kusleika et al. Aug 2008 A1
20080215077 Sepetka et al. Sep 2008 A1
20080221600 Dieck et al. Sep 2008 A1
20080228209 DeMello et al. Sep 2008 A1
20080234706 Sepetka et al. Sep 2008 A1
20080243170 Jenson et al. Oct 2008 A1
20080255596 Jenson et al. Oct 2008 A1
20080262410 Jenson et al. Oct 2008 A1
20080262528 Martin Oct 2008 A1
20080262532 Martin Oct 2008 A1
20080262590 Murray Oct 2008 A1
20080269871 Eli Oct 2008 A1
20080275488 Fleming Nov 2008 A1
20080275493 Farmiga Nov 2008 A1
20080281350 Sepetka Nov 2008 A1
20080312681 Ansel et al. Dec 2008 A1
20090005858 Young et al. Jan 2009 A1
20090024157 Anukhin Jan 2009 A1
20090030443 Buser et al. Jan 2009 A1
20090062841 Amplatz et al. Mar 2009 A1
20090069828 Martin et al. Mar 2009 A1
20090076539 Valaie Mar 2009 A1
20090088793 Bagaoisan et al. Apr 2009 A1
20090088795 Cahill Apr 2009 A1
20090105722 Fulkerson et al. Apr 2009 A1
20090105737 Fulkerson et al. Apr 2009 A1
20090105747 Chanduszko et al. Apr 2009 A1
20090149881 Vale et al. Jun 2009 A1
20090163851 Holloway et al. Jun 2009 A1
20090177206 Lozier et al. Jul 2009 A1
20090182336 Brenzel et al. Jul 2009 A1
20090281610 Parker Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287229 Ogdahl Nov 2009 A1
20090292297 Ferrere Nov 2009 A1
20090292307 Razack Nov 2009 A1
20090299393 Martin et al. Dec 2009 A1
20090299403 Chanduszko et al. Dec 2009 A1
20090306702 Miloslavski et al. Dec 2009 A1
20090326636 Hashimoto et al. Dec 2009 A1
20100004607 Wilson et al. Jan 2010 A1
20100076482 Shu et al. Mar 2010 A1
20100087850 Razack Apr 2010 A1
20100087908 Hilaire et al. Apr 2010 A1
20100114017 Lenker et al. May 2010 A1
20100125326 Kalstad et al. May 2010 A1
20100125327 Agnew May 2010 A1
20100191272 Keating Jul 2010 A1
20100211094 Sargent, Jr. Aug 2010 A1
20100268264 Bonnette et al. Oct 2010 A1
20100268265 Krolik et al. Oct 2010 A1
20100274277 Eaton Oct 2010 A1
20100318178 Rapaport et al. Dec 2010 A1
20100324649 Mattsson Dec 2010 A1
20100331949 Habib Dec 2010 A1
20110009875 Grandfield et al. Jan 2011 A1
20110009940 Grandfield et al. Jan 2011 A1
20110009950 Grandfield et al. Jan 2011 A1
20110015718 Schreck Jan 2011 A1
20110022149 Cox et al. Jan 2011 A1
20110040319 Fulton, III Feb 2011 A1
20110054287 Schultz Mar 2011 A1
20110054504 Porter Mar 2011 A1
20110054514 Arcand et al. Mar 2011 A1
20110054516 Keegan et al. Mar 2011 A1
20110060212 Slee et al. Mar 2011 A1
20110060359 Hannes et al. Mar 2011 A1
20110106137 Shimon May 2011 A1
20110125181 Brady et al. May 2011 A1
20110152920 Eckhouse et al. Jun 2011 A1
20110160763 Ferrera et al. Jun 2011 A1
20110166586 Sepetka et al. Jul 2011 A1
20110184456 Grandfield et al. Jul 2011 A1
20110196414 Porter et al. Aug 2011 A1
20110202088 Eckhouse et al. Aug 2011 A1
20110208233 McGuckin, Jr. et al. Aug 2011 A1
20110213297 Aklog et al. Sep 2011 A1
20110213393 Aklog et al. Sep 2011 A1
20110213403 Aboytes Sep 2011 A1
20110224707 Miloslavski et al. Sep 2011 A1
20110270374 Orr et al. Nov 2011 A1
20110276120 Gilson et al. Nov 2011 A1
20110319917 Ferrera et al. Dec 2011 A1
20120041449 Eckhouse et al. Feb 2012 A1
20120041474 Eckhouse et al. Feb 2012 A1
20120059356 di Palma et al. Mar 2012 A1
20120065660 Ferrera et al. Mar 2012 A1
20120083823 Shrivastava et al. Apr 2012 A1
20120083868 Shrivastava et al. Apr 2012 A1
20120089216 Rapaport et al. Apr 2012 A1
20120101510 Lenker et al. Apr 2012 A1
20120116440 Leynov et al. May 2012 A1
20120123466 Porter et al. May 2012 A1
20120022572 Braun et al. Jun 2012 A1
20120143230 Sepetka et al. Jun 2012 A1
20120143237 Cam et al. Jun 2012 A1
20120143317 Cam et al. Jun 2012 A1
20120150147 Leynov et al. Jun 2012 A1
20120165858 Eckhouse et al. Jun 2012 A1
20120165859 Eckhouse et al. Jun 2012 A1
20120209312 Aggerholm et al. Aug 2012 A1
20120215250 Grandfield et al. Aug 2012 A1
20120277788 Cattaneo Nov 2012 A1
20120283768 Cox et al. Nov 2012 A1
20120296362 Cam et al. Nov 2012 A1
20120316600 Ferrera et al. Dec 2012 A1
20120330350 Jones et al. Dec 2012 A1
20130030460 Marks et al. Jan 2013 A1
20130030461 Marks et al. Jan 2013 A1
20130046330 McIntosh et al. Feb 2013 A1
20130046333 Jones et al. Feb 2013 A1
20130046334 Jones et al. Feb 2013 A1
20130116774 Strauss et al. May 2013 A1
20130131614 Hassan et al. May 2013 A1
20130144311 Fung et al. Jun 2013 A1
20130144326 Brady et al. Jun 2013 A1
20130158591 Koehler Jun 2013 A1
20130158592 Porter Jun 2013 A1
20130184739 Brady et al. Jul 2013 A1
20130197567 Brady et al. Aug 2013 A1
20130226146 Tekulve Aug 2013 A1
20130268050 Wilson et al. Oct 2013 A1
20130281788 Garrison Oct 2013 A1
20130325051 Martin et al. Dec 2013 A1
20130325055 Eckhouse et al. Dec 2013 A1
20130325056 Eckhouse et al. Dec 2013 A1
20130345739 Brady et al. Dec 2013 A1
20140005712 Martin Jan 2014 A1
20140005713 Bowman Jan 2014 A1
20140046359 Bowman et al. Feb 2014 A1
20140088678 Wainwright et al. Mar 2014 A1
20140121672 Folk May 2014 A1
20140128905 Molaei May 2014 A1
20140134654 Rudel et al. May 2014 A1
20140135812 Divino et al. May 2014 A1
20140142598 Fulton, III May 2014 A1
20140163367 Eskuri Jun 2014 A1
20140180122 Stigall et al. Jun 2014 A1
20140180377 Bose et al. Jun 2014 A1
20140180397 Gerberding et al. Jun 2014 A1
20140194911 Johnson et al. Jul 2014 A1
20140194919 Losordo et al. Jul 2014 A1
20140200607 Sepetka et al. Jul 2014 A1
20140200608 Brady et al. Jul 2014 A1
20140236220 Inoue Aug 2014 A1
20140243881 Lees et al. Aug 2014 A1
20140257362 Eidenschink Sep 2014 A1
20140276922 McLain et al. Sep 2014 A1
20140277079 Vale et al. Sep 2014 A1
20140303667 Cox et al. Oct 2014 A1
20140309657 Ben-Ami Oct 2014 A1
20140309673 Dacuycuy et al. Oct 2014 A1
20140330302 Tekulve et al. Nov 2014 A1
20140343585 Ferrera et al. Nov 2014 A1
20140371769 Vale et al. Dec 2014 A1
20140371779 Vale et al. Dec 2014 A1
20140371780 Vale et al. Dec 2014 A1
20140379023 Brady et al. Dec 2014 A1
20150018859 Quick et al. Jan 2015 A1
20150018860 Quick et al. Jan 2015 A1
20150032144 Holloway Jan 2015 A1
20150080937 Davidson Mar 2015 A1
20150112376 Molaei et al. Apr 2015 A1
20150133990 Davidson May 2015 A1
20150150672 Ma Jun 2015 A1
20150164523 Brady et al. Jun 2015 A1
20150224133 Ohri et al. Aug 2015 A1
20150250497 Marks et al. Sep 2015 A1
20150257775 Gilvarry et al. Sep 2015 A1
20150272716 Pinchuk et al. Oct 2015 A1
20150297252 Miloslavski et al. Oct 2015 A1
20150313617 Grandfield et al. Nov 2015 A1
20150320431 Ulm Nov 2015 A1
20150352325 Quick Dec 2015 A1
20150359547 Vale et al. Dec 2015 A1
20150366650 Zi et al. Dec 2015 A1
20150374391 Quick et al. Dec 2015 A1
20150374393 Brady et al. Dec 2015 A1
20150374479 Vale Dec 2015 A1
20160015402 Brady et al. Jan 2016 A1
20160022296 Brady et al. Jan 2016 A1
20160045298 Thinnes, Jr. et al. Feb 2016 A1
20160066921 Seifert et al. Mar 2016 A1
20160100928 Lees et al. Apr 2016 A1
20160106448 Brady et al. Apr 2016 A1
20160106449 Brady et al. Apr 2016 A1
20160113663 Brady et al. Apr 2016 A1
20160113664 Brady et al. Apr 2016 A1
20160113665 Brady et al. Apr 2016 A1
20160120558 Brady et al. May 2016 A1
20160143653 Vale et al. May 2016 A1
20160192953 Brady et al. Jul 2016 A1
20160192954 Brady et al. Jul 2016 A1
20160192955 Brady et al. Jul 2016 A1
20160192956 Brady et al. Jul 2016 A1
20160256180 Vale et al. Sep 2016 A1
20160303381 Pierce et al. Oct 2016 A1
20160317168 Brady et al. Nov 2016 A1
20170007264 Cruise et al. Jan 2017 A1
20170007265 Guo et al. Jan 2017 A1
20170020542 Martin et al. Jan 2017 A1
20170020670 Murray et al. Jan 2017 A1
20170020700 Bienvenu et al. Jan 2017 A1
20170027640 Kunis et al. Feb 2017 A1
20170027692 Bonhoeffer et al. Feb 2017 A1
20170027725 Argentine Feb 2017 A1
20170035436 Morita Feb 2017 A1
20170035567 Duffy Feb 2017 A1
20170042548 Lam Feb 2017 A1
20170049596 Schabert Feb 2017 A1
20170056061 Ogle et al. Mar 2017 A1
20170071614 Vale Mar 2017 A1
20170071737 Kelley Mar 2017 A1
20170072452 Monetti et al. Mar 2017 A1
20170079671 Morero et al. Mar 2017 A1
20170079680 Bowman Mar 2017 A1
20170079766 Wang et al. Mar 2017 A1
20170079767 Leon-Yip Mar 2017 A1
20170079812 Lam et al. Mar 2017 A1
20170079817 Sepetka et al. Mar 2017 A1
20170079819 Pung et al. Mar 2017 A1
20170079820 Lam et al. Mar 2017 A1
20170086851 Wallace et al. Mar 2017 A1
20170086862 Vale et al. Mar 2017 A1
20170086863 Brady et al. Mar 2017 A1
20170086996 Peterson et al. Mar 2017 A1
20170095259 Tompkins et al. Apr 2017 A1
20170100126 Bowman et al. Apr 2017 A1
20170100141 Morero et al. Apr 2017 A1
20170100143 Granfield Apr 2017 A1
20170100183 Iaizzo et al. Apr 2017 A1
20170105743 Vale et al. Apr 2017 A1
20170112515 Brady et al. Apr 2017 A1
20170112647 Sachar et al. Apr 2017 A1
20170113023 Steingisser et al. Apr 2017 A1
20170119409 Ma May 2017 A1
20170143465 Ulm, III May 2017 A1
20170147765 Mehta May 2017 A1
20170150979 Ulm, III Jun 2017 A1
20170151032 Loisel Jun 2017 A1
20170165062 Rothstein Jun 2017 A1
20170165065 Rothstein et al. Jun 2017 A1
20170165454 Tuohy et al. Jun 2017 A1
20170172581 Bose et al. Jun 2017 A1
20170172766 Vong et al. Jun 2017 A1
20170172772 Khenansho Jun 2017 A1
20170189033 Sepetka et al. Jul 2017 A1
20170189035 Porter Jul 2017 A1
20170189041 Cox Jul 2017 A1
20170215902 Leynov et al. Aug 2017 A1
20170216484 Cruise et al. Aug 2017 A1
20170224350 Shimizu et al. Aug 2017 A1
20170224355 Bowman et al. Aug 2017 A1
20170224467 Piccagli et al. Aug 2017 A1
20170224511 Dwork et al. Aug 2017 A1
20170224953 Tran et al. Aug 2017 A1
20170231749 Perkins et al. Aug 2017 A1
20170252064 Staunton Sep 2017 A1
20170265983 Lam et al. Sep 2017 A1
20170281192 Tieu et al. Oct 2017 A1
20170281331 Perkins et al. Oct 2017 A1
20170281344 Costello Oct 2017 A1
20170281909 Northrop et al. Oct 2017 A1
20170281912 Melder et al. Oct 2017 A1
20170290593 Cruise et al. Oct 2017 A1
20170290654 Sethna Oct 2017 A1
20170296324 Argentine Oct 2017 A1
20170296325 Marrocco et al. Oct 2017 A1
20170303939 Greenhalgh et al. Oct 2017 A1
20170303942 Greenhalgh et al. Oct 2017 A1
20170303947 Greenhalgh et al. Oct 2017 A1
20170303948 Wallace et al. Oct 2017 A1
20170304041 Argentine Oct 2017 A1
20170304097 Corwin et al. Oct 2017 A1
20170304595 Nagasrinivasa et al. Oct 2017 A1
20170312109 Le Nov 2017 A1
20170312484 Shipley et al. Nov 2017 A1
20170316561 Helm et al. Nov 2017 A1
20170319826 Bowman et al. Nov 2017 A1
20170333228 Orth et al. Nov 2017 A1
20170333236 Greenan Nov 2017 A1
20170333678 Bowman et al. Nov 2017 A1
20170340383 Bloom et al. Nov 2017 A1
20170348014 Wallace et al. Dec 2017 A1
20170348514 Guyon et al. Dec 2017 A1
20180140315 Bowman et al. May 2018 A1
20180206865 Martin et al. Jul 2018 A1
20180207399 Chou et al. Jul 2018 A1
20180263650 Iwanami et al. Sep 2018 A1
20180325537 Shamay et al. Nov 2018 A1
20180326024 Prochazka et al. Nov 2018 A1
20180344338 Brady et al. Dec 2018 A1
20190000492 Casey et al. Jan 2019 A1
20190015061 Liebeskind et al. Jan 2019 A1
20190167284 Friedman et al. Jun 2019 A1
20190239907 Brady et al. Aug 2019 A1
20190292273 Hanotin et al. Sep 2019 A1
20190374239 Martin et al. Dec 2019 A1
20190380723 Grandfield et al. Dec 2019 A1
20190388097 Girdhar et al. Dec 2019 A1
20200000483 Brady et al. Jan 2020 A1
20200009150 Chamorro Sanchez Jan 2020 A1
20200085444 Vale et al. Mar 2020 A1
20200100804 Casey et al. Apr 2020 A1
20200297364 Choe et al. Sep 2020 A1
20200390459 Casey et al. Dec 2020 A1
20210005321 Hwang Jan 2021 A1
20210007757 Casey et al. Jan 2021 A1
20210228223 Casey et al. Jul 2021 A1
Foreign Referenced Citations (108)
Number Date Country
2557083 Jun 2003 CN
101172051 May 2008 CN
102307613 Jan 2012 CN
102316809 Jan 2012 CN
102596098 Jul 2012 CN
103764049 Apr 2014 CN
104042304 Sep 2014 CN
105208950 Dec 2015 CN
105662532 Jun 2016 CN
205359559 Jul 2016 CN
107530090 Jan 2018 CN
208582467 Mar 2019 CN
202009001951 Mar 2010 DE
102009056450 Jun 2011 DE
102010010849 Sep 2011 DE
102010014778 Oct 2011 DE
102010024085 Dec 2011 DE
102011014586 Sep 2012 DE
1153581 Nov 2001 EP
2301450 Mar 2011 EP
2438891 Apr 2012 EP
2628455 Aug 2013 EP
3156004 Apr 2017 EP
3593742 Jan 2020 EP
3669802 Jun 2020 EP
3858291 Aug 2021 EP
2427554 Jan 2007 GB
2494820 Mar 2013 GB
09-19438 Jan 1997 JP
2014-511223 May 2014 JP
2014-525796 Oct 2014 JP
2015-505250 Feb 2015 JP
2016-513505 May 2016 JP
2019-526365 Sep 2019 JP
WO 2013072777 May 2013 NO
WO 9424926 Nov 1994 WO
WO 9727808 Aug 1997 WO
WO 9738631 Oct 1997 WO
WO 9920335 Apr 1999 WO
WO 9956801 Nov 1999 WO
WO 9960933 Dec 1999 WO
WO 0121077 Mar 2001 WO
WO 0202162 Jan 2002 WO
WO 0211627 Feb 2002 WO
WO 0243616 Jun 2002 WO
WO 02070061 Sep 2002 WO
WO 02094111 Nov 2002 WO
WO 03002006 Jan 2003 WO
WO 03030751 Apr 2003 WO
WO 03051448 Jun 2003 WO
WO 2004028571 Apr 2004 WO
WO 2004056275 Jul 2004 WO
WO 2005000130 Jan 2005 WO
WO 2005027779 Mar 2005 WO
WO 2006021407 Mar 2006 WO
WO 2006031410 Mar 2006 WO
WO 2006107641 Oct 2006 WO
WO 2006135823 Dec 2006 WO
WO 2007054307 May 2007 WO
WO 2007068424 Jun 2007 WO
WO 2008034615 Mar 2008 WO
WO 2008051431 May 2008 WO
WO 2008131116 Oct 2008 WO
WO 2008135823 Nov 2008 WO
WO 2009031338 Mar 2009 WO
WO 2009076482 Jun 2009 WO
WO 2009086482 Jul 2009 WO
WO 2009105710 Aug 2009 WO
WO 2010010545 Jan 2010 WO
WO 2010046897 Apr 2010 WO
WO 2010075565 Jul 2010 WO
WO 2010102307 Sep 2010 WO
WO 2010146581 Dec 2010 WO
WO 2011013556 Feb 2011 WO
WO 2011066961 Jun 2011 WO
WO 2011082319 Jul 2011 WO
WO 2011095352 Aug 2011 WO
WO 2011106426 Sep 2011 WO
WO 2011110316 Sep 2011 WO
WO 2011135556 Nov 2011 WO
WO 2012052982 Apr 2012 WO
WO 2012064726 May 2012 WO
WO 2012081020 Jun 2012 WO
WO 2012110619 Aug 2012 WO
WO 2012120490 Sep 2012 WO
WO 2012156924 Nov 2012 WO
WO 2013016435 Jan 2013 WO
WO 2013105099 Jul 2013 WO
WO 2013109756 Jul 2013 WO
WO 2013187927 Dec 2013 WO
WO 2014047650 Mar 2014 WO
WO 2014081892 May 2014 WO
WO 2014139845 Sep 2014 WO
WO 2014169266 Oct 2014 WO
WO 2014178198 Nov 2014 WO
WO 2015061365 Apr 2015 WO
WO 2015103547 Jul 2015 WO
WO 2015134625 Sep 2015 WO
WO 2015179324 Nov 2015 WO
WO 2015189354 Dec 2015 WO
WO 2016010995 Jan 2016 WO
WO 2016089451 Jun 2016 WO
WO 2017089424 Jun 2017 WO
WO 2017090473 Jun 2017 WO
WO 2017103686 Jun 2017 WO
WO 2017161204 Sep 2017 WO
WO 2020039082 Feb 2020 WO
WO 2021113302 Jun 2021 WO
Non-Patent Literature Citations (1)
Entry
US 6,348,062 B1, 02/2002, Hopkins et al. (withdrawn)
Related Publications (1)
Number Date Country
20220202428 A1 Jun 2022 US