The subject matter disclosed herein relates generally to the field of electrocaloric materials and, more particularly, to a heat pump system that uses liquid-phase electrocaloric materials.
Typical heating, ventilation, and air conditioning functionality (“HVAC”) is provided by vapor compression, or reverse Rankine, cycles. These devices use two-phase fluorinated refrigerants which are under high pressure and exhibit significant global warming potential when they inevitably leak into the atmosphere. Also, the compression process cannot be efficiently scaled to small sizes restricting energy savings achievable through distributed heat pumping. Finally, such compressors tend to be noisy. A scalable, quiet, and environmentally friendly alternative is desired.
Materials that exhibit adiabatic temperature change when subject to mechanical strain, magnetic fields, or electrical fields have been used to create heat pump cycles. For example, field-active materials can include electrocaloric and magnetocaloric materials. Electrocaloric materials exhibit large entropy changes when an electric field is applied to their structure. A basic heat pump cycle that implements an electrocaloric material is shown in
The adiabatic temperature lift available with known elcctrocaloric or magnetocaloric materials is typically lower than the lift required for most commercial heat pump applications such as environmental control. One well-known means of increasing temperature lift (at the expense of capacity) is thermal regeneration. A typical regenerative heat exchanger depends on thermal storage and reciprocating fluid motion to develop an axial temperature gradient and thus multiply temperature lift. Regenerative heat exchangers are common in cycles that use fluid compression rather than field-active materials to provide heat pumping. For example, Stirling cycle coolers, and thermoacoustic coolers that apply a modified Stirling cycle, use regenerative heat exchangers as common practice. In these regenerative heat exchangers, the work for heat pumping comes from compression/expansion of the fluid within the regenerator and the solid material of the regenerator provides the heat capacity for regeneration. Also, in a thermoacoustic or other pressure-based regenerative cooling cycle, it is necessary to use a heat exchanger to separate the pressurized working fluid from the ambient air resulting in a significant loss in performance. Regenerative heat exchanger use has also been reported in field-active magnetocaloric cooler prototypes.
In accordance with an embodiment, a heat pump cycle includes providing a fluidic loop between two heat exchangers in fluidic communication with each other; energizing at least a first heat exchanger of the two heat exchangers to generate an electric field in the first heat exchanger, advecting a field-active liquid through the fluidic loop; changing an entropy of the field-active liquid in response to advecting into the electric field of the at least first heat exchanger; and exchanging heat between the field-active liquid and the two heat exchangers in response to the changing of the entropy of the field-active liquid.
In accordance with another embodiment a regenerative field-active heat pump cycle for heat transport having a regenerator and secondary heat exchanger elements includes energizing the regenerator and a first heat exchanger of the secondary heat exchanger elements to apply an intermittent electric field; changing an entropy of the field-active liquid resident in the regenerator and a first heat exchanger of the secondary heat exchanger elements in response to the electric field; advecting the field-active liquid from the regenerator into the first heat exchanger of the secondary heat exchanger elements while maintaining the electric field; transferring heat from the first heat exchanger to a hot ambient temperature in response to advecting the hot energized field-active liquid into the heat exchanger; releasing the field in the regenerator and a first heat exchanger of the secondary heat exchanger elements; changing an entropy of the field-active liquid resident in the regenerator and a first heat exchanger of the secondary heat exchanger elements in response to releasing the electric field; advecting the cold field-active liquid from the regenerator into the second heat exchanger of the secondary heat exchanger elements while maintaining the electric field; and transferring heat from the second heat exchanger to a cold ambient temperature in response to advecting the cold do-energized field-active liquid into the heat exchanger.
Technical function of the one or more claims described above provides heat transfer through a field-active liquid that heats or cools upon application of a field, and heat transfer occurs in a heat exchanger with the associated hot or cool environment until the liquid comes into near-equilibrium with the environs while remaining in the field.
Other aspects, features, and techniques of the invention will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which like elements are numbered alike in the several FIGURES:
Embodiments of the invention described below include using liquid-based electrocaloric materials as the working fluids for heat pumping in heating, ventilation, and air conditioning (“HVAC”) and refrigeration systems, as well as in hybrid systems containing field-active liquid and solid materials. In embodiments, the field-active liquid is circulated through at least two heat exchanger elements, wherein a heat transfer process occurs in the presence of an electric field in one and in the absence of field in the other. The field causes the field-active liquid to either heat or cool (depending on the specific liquid composition), and heat transfer occurs in the heat exchanger with the associated hot or cool environment until the liquid comes into near-equilibrium with the environs while remaining in the field. As the liquid leaves the field it cools or heats (respectively) and the fluid enters a de-energized heat exchanger to once again transfer heat to the cool/hot environment.
Referring to
Field-active materials including liquid crystals respond to an applied electric field, creating internal order/disorder; and therefore are capable of storing or releasing energy in the form of caloric heat and electrical capacitive energy. The field-active material can alter its order parameter with the applied electric field. As the order parameter is directly related to the system entropy and free energy, cooling and heating are consequences of electric field release or application, or of advection of the field-active material through a localized continuous electric field.
In an exemplary operation for system 200, the field-active liquid material is circulated through heat exchanger elements 202 and 204, wherein an electric field is applied or not applied during a heat transfer process. Field-active liquid material is pumped into heat exchanger 202 where an electric field is applied. The electric field causes the field-active liquid material to transfer heat to the associated hot environment 218 (e.g., outdoors in cooling mode or indoors in heating mode) until the field-active liquid material comes into near-equilibrium with the environs while remaining in the electric field. As the field-active liquid material leaves the electric field it cools and the field-active liquid material enters a de-energized heat exchanger 204 to absorb heat from cold environment 216 (e.g., indoors in cooling mode or outdoors in heating mode). This cycle is repeated continuously. It is to be appreciated that, for maximizing performance of system 200, the field-active liquid material is energized in the same location that heat exchange occurs as any interruption of electric field will return the field-active liquid material to its original temperature. So, a heat exchanger integrated with electrodes that can apply the required uniform field can be used, for example, as heat exchanger 202.
It is to be appreciated that performance of the field-active liquid material can be increased by utilizing a mixture of dielectric constituents, both liquid and solid, to improve entropy change and/or extend operating temperature range. For example, particles of an electrocaloric ceramic with large pyroelectric effect can be mixed into an active electrocaloric liquid crystal with lower performance to create a slurry, gaining the performance advantage of the solid material while retaining the system flexibility advantage of using a liquid. In addition to the features of a slurry of an electrocaloric ceramic with an active electrocaloric liquid, other embodiments can include an inactive liquid dielectric material that is added to a solid elcctrocaloric material for the purpose of creating a flowable mixture. As an additional example, two or more different liquid crystals with different active temperature ranges may be mixed to broaden the temperature response of the liquid mixture in the system. As an additional example, additives may be used to lower input requirements for entropy change, such as nanoparticles to lower required field strength. Also, solid-state pumping technology such as electrophoretic pumping could be used to create an entirely solid-state cooling device.
Heat exchangers 404 and 406 can include electrodes to apply an electric field to the field-active liquid material. Unlike any other regenerative cycle, the reciprocating field-active liquid is best maintained under constant field, either on or off, when the liquid is reciprocated from regenerator 402 toward either heat exchangers 404 and 406. When the regenerator is energized and the liquid is translated toward one heat exchanger, that heat exchanger will also be energized. This requires integration of the three heat exchangers 402, 404, and 406 and specific spatial-temporal synchronization of the applied field.
In operation, application of the field through intimate contact to the field-active liquid in regenerator 402 may increase the material entropy (e.g., temperature). Advecting the now hot field-active liquid into the hot heat exchanger 404 while also maintaining the field in the heat exchanger 404 causes it to reject heat to the hot ambient 408. Once the heat exchanger 404 cools to the hot ambient 408 temperature, the field in the regenerator 402 is released causing the field-active liquid to cool. The field in hot heat exchanger 404 is also de-energized causing the field-active material inside to cool. Advecting the now cooled field-active material from the hot exchanger 404 toward the cold heat exchanger 406 causes the field-active material to absorb heat from the cold ambient 410 and complete the cycle. The performance of the system 400 may depend on timing and synchronization of the applied field and flow, and that such timing may change with thermal properties of the material, the load, and the temperature lift desired, so careful control of this process may be needed to achieve satisfactory performance.
The regenerator matrix can be made with field-active materials to create a hybrid liquid-solid matrix, increasing the heat pumping capacity and power density. In one embodiment the regenerator matrix 402 is made from electrically insulating electroactive ceramic or polymer with electrodes on each side and the field-active liquid between the layers. Energizing these electrodes activate both liquid and solid field-active material simultaneously for increased capacity. In another embodiment the regenerator matrix 402 can be made from active solid magnetocaloric materials, elastocaloric materials, or optocaloric materials. Electric field applied to activate the electroactive liquid material is synchronized with a separately applied magnetic, strain, or light field, respectively, to the solid matrix to produce additional capacity. In another embodiment, heat exchangers 404 and 406 can also be made from solid field-active material and energized with the field-active regenerator matrix and field-active liquid to further increase capacity.
In order to use the principle of offsetting parasitic loss of the regenerator matrix, a solid material can be used which exhibits entropy change in fields other than electric for the regenerator matrix. Use of a magnetocaloric material or material that changes entropy when exposed to strain, pressure, or radiation (including light) as the regenerator matrix and electrode support, combined with the imposition of the respective field synchronized with the electric field imposed on the liquid electrocaloric material, can also increase specific capacity of the device. Similarly, an electrocaloric solid material could be superposed with an optically energized liquid material.
Using a field-active liquid material serves a function of a heat transport fluid, enabling a continually flowing pumped loop with continuously applied electric fields as described in the embodiments described above in
As shown in
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. While the description of the present invention has been presented for purposes of illustration and description, it is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications, variations, alterations, substitutions, or equivalent arrangement not hereto described will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/068497 | 12/4/2014 | WO | 00 |