The contents of the electronic sequence listing (“BROD-5090WP_ST25.txt”; Size is 13,564,627 bytes and it was created on Feb. 10, 2021) is herein incorporated by reference in its entirety.
The subject matter disclosed herein is generally directed to rapid single-reaction coronavirus diagnostics including the use of CRISPR effector systems and thermostable CRISPR Cas proteins.
Nucleic acids are a universal signature of biological information. The ability to rapidly detect nucleic acids with high sensitivity and single-base specificity on a portable platform has the potential to revolutionize diagnosis and monitoring for many diseases, provide valuable epidemiological information, and serve as a generalizable scientific tool. Although many methods have been developed for detecting nucleic acids (Du et al., 2017; Green et al., 2014; Kumar et al., 2014; Pardee et al., 2014; Pardee et al., 2016; Urdea et al., 2006), they inevitably suffer from trade-offs among sensitivity, specificity, simplicity, and speed.
Sensitive and rapid detection of nucleic acids is important for clinical diagnostics and biotechnological applications. Particularly when responding to outbreaks, such as the novel coronavirus, which has been referred to as 2019-nCoV and SARS-CoV-2, which causes COVID 2019, time is of the essence. Sabeti, Early Detection Is Key to Combating the Spread of Coronavirus, Time (Feb. 6, 2020). The 2019-nCoV has killed hundreds in a 2-month time span, and response to the escalating outbreak, particularly where there are indications that both symptomatic and asymptomatic patients with 2019-nCov may transmit the disease. Wang, et al., A precision medicine approach to managing Wuhan Coronavirus pneumonia, Prec. Clin. Med, doi:10.1093/pcmedi/pbaa002. Current coronavirus testing kits sent to states and other countries do not work properly, according to the U.S. Centers for Disease Control and Prevention. Grady, “Coronavirus Test Kits Sent to States, 30 Countries Are Flawed, C.D.C. Says,” New York Times, Feb. 12, 2020. Moreover the test being used provides results in four hours from initial sample processing to results. cdc.gov/media/releases/2020/p0206-coronavirus-diagnostic-test-kits. Highly accurate test results at better processing speds, particularly that are field-depoloyable would aid in addressing the outbreak. Currently, the novel coronavirus SARS-CoV-2 has resulted in an international public health emergency, spreading to over 180 countries and infecting more than 300,000 individuals. Testing for the presence of the virus is of utmost importance to both reduce the basic reproductive rate of the virus (R0) and inform best clinical practices for affected patients. However, understanding the full extent of the virus outbreak has remained challenging due to bottlenecks in the diagnosis of infection.
Previously, Applicants developed a platform for nucleic acid detection using CRISPR enzymes called SHERLOCK (Specific High Sensitivity Enzymatic Reporter unLOCKing)(Gootenberg, 2018; Gootenberg, 2017), which combines pre-amplification with the RNA-guided RNase CRISPR-Cas13 (Abudayyeh, 2016; East-Seletsky, 2016; Shmakov, 2015; Smargon, 201; Shmakov, 2017) and DNase CRISPR-Cas12 (Zetsche, 2015 599; Chen, 2018) for sensing of nucleic acids via fluorescence or portable lateral flow.
In certain example embodiments, a single reaction composition for detecting the presence of a target polynucleotide in a sample is provided, comprising: an extraction-free polynucleotide isolation solution; one or more thermostable Cas proteins possessing collateral activity; at least one guide polynucleotide comprising a sequence capable of binding a target polynucleotide and designed to form a complex with the one or more Cas proteins; isothermal amplification reagents; and a detection construct comprising a polynucleotide component, wherein the Cas protein exhibits collateral nuclease activity and cleaves the polynucleotide component of the detection construct once activated by the target sequence.
The compositions may further comprise amplification reagents for amplification of the coronavirus target sequence. In an aspect the amplification reagents are LAMP reagents. In an aspect, the isothermal amplification reagents comprise optimized LAMP primers and amplification reagents. In an aspect, the optimized LAMP primers are selected from SEQ ID NOs. 1-40,499, and 61,983-61,988. In certain embodiments, the guide polynucleotide is selected from SEQ ID NOs: 40,500-61,643 and SEQ ID NO: 61,989. In an aspect, the guide polynucleotides are optimized guide polynucleotides.
In certain embodiments, the guide polynucleotide comprises a spacer specific for the N gene or S gene of SARS-CoV-2. The compositions may further comprise one or more additives to increase reaction specificity or kinetics, and/or polynucleotide binding beads.
In certain example embodiments, compositions for detecting the presence of a target polynucleotide in a sample, comprising isothermal amplification reagents for amplifying the target polynucleotide, and an extraction-free solution for isolating polynucleotides from a cell or virus particle. The isothermal amplification reagents may comprise LAMP reagents comprising F3, B3, FIP, BIP, Loop Forward and Loop Reverse primers. In an aspect, the LAMP reagents may further comprise oligonucleotide strand displacement (OSD) probes.
In certain example embodiments, a system for the detection of coronavirus is provided. A system for detecting the presence of a coronavirus in a sample, comprising: a Cas protein; at least one guide polynucleotides comprising a guide sequence capable of binding a coronoavirus target sequence and designed to form a complex with the Cas protein; and a detection construct comprising a polynucleotide component, wherein the Cas protein exhibits collateral RNase activity and cleaves the polynucleotide component of the detection construct once activate by the target sequence. In embodiments, the coronavirus is SARS-CoV-2. In an aspect, the at least one guide polynucleotide is a highly active guide polynucleotide. The guide polynucleotide of the system can, an embodiment, bind to a coronavirus sequence encoding a polypeptide that is immunostimulatory to a host immune system, and/or binds to at least one target sequence that is a unique coronavirus genomic sequence.
The systems and methods may utilize one or more Cas proteins. In embodiments, the Cas proteins are a Type V or Type VI Cas protein, and may be Cas 12 proteins, Cas13 proteins, or a combination thereof. In an aspect, the one or more Cas proteins comprise a thermostable protein. In example embodiment the Cas protein is a Cas13, which may be a thermostable Cas13 or Leptotrichia wadei Cas13. In an aspect, the one or more Cas proteins comprise a Cas12, which may be a thermostable Cas12b, for example Alicyclobacilluys acidiphilus Cas12b or Brevibacillus sp. SYSU G02855 (Br) Cas12b. In an aspect, the guide polynucleotide comprises a guide derived from Alicyclobacillus acidoterrestris. In an aspect, the Alicyclobacillus acidoterrestris sequence selected from Aac guide types 1 to 5 (SEQ ID NOs: 62006 to 62010). In an embodiment, the Cas12b protein is Brevibacillus sp. SYSU G02855 and the guide sequence comprises crRNA design 1 to 3 (SEQ ID NO:62003-62005).
The systems may further comprise amplification reagents for amplification of the coronavirus target sequence. In an aspect the amplification reagents are LAMP reagents.
Methods for detecting a target nucleic acid in a sample are also provided, comprising distributing a sample or set of samples into individual discrete volumes, each individual discrete volume comprising a composition as disclosed herein, incubating the sample or set of samples at conditions sufficient to allow lysis of a cell or virus via reagents of the extraction-free polynucleotide isolation solution; amplifying the target polynucleotides using isothermal amplification, wherein isolation of target polynucleotides between the incubating and amplifying steps is not required; an detecting amplified target polynucleotides by binding of the CRISPR-Cas complex to the target polynucleotides, wherein binding of the target polynucleotides activates cleavage of the detection construct thereby generating a detectable signal.
A lateral flow device comprising a substrate comprising a first end and a second end, are also provided, the first end comprising a sample loading portion, a first region comprising a detectable ligand, two or more systems of the claims provided herein, and one or more first capture regions, each comprising a first binding agent; the substrate comprising two or more second capture regions between the first region of the first end and the second end, each second capture region comprising a different binding agent. In an aspect, the first end comprises two detection constructs, wherein each of the two detection constructs comprises an RNA or DNA oligonucleotide, comprising a first molecule on a first end and a second molecule on a second end. In an aspect, the first end comprises three detection constructs, wherein each of the three detection constructs comprises an RNA or DNA oligonucleotide, comprising a first molecule on a first end and a second molecule on a second end. The lateral flow device may comprise a polynucleotide encoding a Cas13 and/or Cas12 and the one or more guide RNAs are provided as a multiplexing polynucleotide, the multiplexing polynucleotide configured to comprise two or more guide sequences.
Methods for detecting a target nucleic acid in a sample are also provided, comprising contacting a sample with the first end of the lateral flow device comprising the sample loading portion, wherein the sample flows from the sample loading portion of the substrate towards the first and second capture regions and generates a detectable signal. Methods may utilize a lateral flow device capable of detecting two different target nucleic acid sequences. In an aspect, the target nucleic acid sequences are absent from the sample, a detectable signal is generated at each capture region, the detectable signal appears at the first and second capture regions. The lateral flow device can be designed such that when the target nucleic acid sequences are absent from the sample, a detectable signal is generated at each capture region, and wherein when the sample contains one or more target nucleic acid sequences, a detectable signal is absent at the capture region for the corresponding target nucleic acid sequence.
Methods for detection may also comprise detecting coronavirus in a sample by contacting the sample with the systems disclosed herein. The step of contacting the sample with the system can comprise amplifying the one or more target sequences in the sample and incubating the sample under conditions sufficient to allow binding of the guide polynucleotides to one or more target molecules; activating the Cas protein via binding of the guide polynucleotides to one or more target sequencess, wherein activating the Cas protein results in modification of the detection construct such that a detectable signal is generated.
The step of contacting the sample with the system can further comprise incubating the sample at about 55° C. to about 65° C., about 59° C. to 61° C. or about 60° C. for 50 to 70 minutes and detecting the presence of a positive signal. The steps of extracting, amplifying incubating, activating and detecting are all performed in the same individual discrete volume.
Methods of detection can further comprise the step of treating the sample with a DNA extraction solution prior to contacting the sample with the systems disclosed herein.
In an aspect, the DNA extraction solution is mixed with a sample at a concetration of about 1:2 to 2:1 sample:extraction solution. In an aspect, the method may further comprise incubating the sample and the DNA extraction solution, which may be performed at a temperature of about 20° C. to 60° C. for about 60 minutes, or 95° C. for about 5 to 10 minutes. Extraction may also comprise the addition of beads capable of concentrating targets of interest of the sample, in an aspect, the beads are magnetic.
A cartridge for detection assays in accordance with methods disclosed herein is provided comprising a sample receiver, at least a first, second, and third ampoule, and at least a first and second chamber, and a lateral flow strip, wherein the first ampoule is communicatively coupled to the first chamber comprising a heat source, the first chamber is communicatively coupled to the second ampoule, the second ampoule communicatively coupled to the second chamber, the third ampoule communicatively coupled to the lateral flow strip.
A cartridge can be provided comprising at least a first and second ampoule, a lysis chamber, an amplification chamber and a sample receiving chamber, the first ampoule fluidically connected to the sample receiving chamber, the sample receiving chamber further connected to the lysis chamber, the lysis chamber connected via a metering channel to the second ampoule and the amplification chamber. In certain embodiments, the first ampoule comprises an extraction-free polynucleotide isolation solution and the second ampoule comprise isothermal amplification reagents amplifying a target polynucleotide or isothermal amplification reagents and a CRISPR-Cas collateral detection system for amplifying and detecting a target polynucleotide. In an aspect, wherein the extraction-fee polynucleotide isolation solution and/or the lysis well comprises polynucleotide binding bead.
The cartridge may be configured to fit in a system comprising a heating means, an optic means, a means for releasing reagents on the cartridge, and a means for readout of assay result. The cartridge can comprise a first ampoule that comprises lysis buffer, and/or the second ampoule that comprises a CRISPR system, the CRISPR-Cas system comprising one or more Cas proteins and at least one guide polynucleotide.
The cartridge may further comprise amplification reagents. The amplification reagents comprise LAMP F3, B3, FIP, BIP, Loop Forward and Loop Reverse primers.
The cartridge can comprise a CRISPR system that includes a guide RNA designed to bind to a target nucleic acid that are diagnostic for a disease state. The disease state can be an infection, which may be caused by a microbe, the microbe selected from a virus, bacterium, a fungus, a protozoa, or a parasite. The guide RNA may be specific for a microbe that is viral, bacterial, or fungal.
The cartridge can further comprise a detection construct comprising a polynucleotide component, which may be fluorescent. In an aspect, the cartridge comprises a CRISPR system that is lyophilized. In an aspect, the Cas protein of the CRISPR system is a Type V or Type VI Cas protein. In an aspect, the Cas protein is a Cas12 or Cas13 protein. The cartridge cancomprise a thermostable protein, for example, the thermostable Cas protein is Alicyclobacillus acidiphilus Cas12b (Aap). In an aspect, the guide comprises a sequence derived from Alicyclobacillus acidoterrestris (Aac). The cartridge can comprise a lysis buffer that comprises a DNA extraction buffer.
A device designed to receive the one or more cartridges as disclosed herein is provided, which may further comprise a one or more motors connected to a plunger for rupturing of the first and second ampoule of the cartridge and configured within the device to align with the first and second ampule of the inserted cartridge, a heating element configured to align with the amplification chamber of the inserted cartridge, an optical detector configured to align with the amplification chamber of the inserted cartridge, and a display. The device may comprise a graphical user interface for programming the device and/or readout of the results of the assay. A system comprising a docking station and two or more devices as disclosed herein is provided, wherein the docking station is configured to receive the two or more devices.
A system designed to receive the detection cartridge as disclosed herein is provided, the system designed to receive the cartridge and conduct an assay comprising isothermal amplification of nucleic acids and detection of target nucleic acids on the cartridge. In embodiments, the system can comprise one or more heating means for extraction, amplification and/or detection, a means for releasing reagents for extraction, amplification, and/or detection, a means for mixing reagents for extraction, amplification, and/or detection, and/or a means for reading the results of the assay. In an aspect, the means of reading the results of the assay is an optic means. The system can further comprise a user interface for programming the device and/or readout of the results of the assay.
These and other aspects, objects, features, and advantages of the example embodiments will become apparent to those having ordinary skill in the art upon consideration of the following detailed description of illustrated example embodiments.
An understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention may be utilized, and the accompanying drawings of which:
The figures herein are for illustrative purposes only and are not necessarily drawn to scale.
Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. Definitions of common terms and techniques in molecular biology may be found in Molecular Cloning: A Laboratory Manual, 2nd edition (1989) (Sambrook, Fritsch, and Maniatis); Molecular Cloning: A Laboratory Manual, 4th edition (2012) (Green and Sambrook); Current Protocols in Molecular Biology (1987) (F. M. Ausubel et al. eds.); the series Methods in Enzymology (Academic Press, Inc.): PCR 2: A Practical Approach (1995) (M. J. MacPherson, B. D. Hames, and G. R. Taylor eds.): Antibodies, A Laboratory Manual (1988) (Harlow and Lane, eds.): Antibodies A Laboraotry Manual, 2nd edition 2013 (E. A. Greenfield ed.); Animal Cell Culture (1987) (R. I. Freshney, ed.); Benjamin Lewin, Genes IX, published by Jones and Bartlet, 2008 (ISBN 0763752223); Kendrew et al. (eds.), The Encyclopedia of Molecular Biology, published by Blackwell Science Ltd., 1994 (ISBN 0632021829); Robert A. Meyers (ed.), Molecular Biology and Biotechnology: a Comprehensive Desk Reference, published by VCH Publishers, Inc., 1995 (ISBN 9780471185710); Singleton et al., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, N.Y. 1994), March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, N.Y. 1992); and Marten H. Hofker and Jan van Deursen, Transgenic Mouse Methods and Protocols, 2nd edition (2011).
As used herein, the singular forms “a”, “an”, and “the” include both singular and plural referents unless the context clearly dictates otherwise.
The term “optional” or “optionally” means that the subsequent described event, circumstance or substituent may or may not occur, and that the description includes instances where the event or circumstance occurs and instances where it does not.
The recitation of numerical ranges by endpoints includes all numbers and fractions subsumed within the respective ranges, as well as the recited endpoints.
The terms “about” or “approximately” as used herein when referring to a measurable value such as a parameter, an amount, a temporal duration, and the like, are meant to encompass variations of and from the specified value, such as variations of +/−10% or less, +/−5% or less, +/−1% or less, and +/−0.1% or less of and from the specified value, insofar such variations are appropriate to perform in the disclosed invention. It is to be understood that the value to which the modifier “about” or “approximately” refers is itself also specifically, and preferably, disclosed.
As used herein, a “biological sample” may contain whole cells and/or live cells and/or cell debris. The biological sample may contain (or be derived from) a “bodily fluid”. The present invention encompasses embodiments wherein the bodily fluid is selected from amniotic fluid, aqueous humour, vitreous humour, bile, blood serum, breast milk, cerebrospinal fluid, cerumen (earwax), chyle, chyme, endolymph, perilymph, exudates, feces, female ejaculate, gastric acid, gastric juice, lymph, mucus (including nasal drainage and phlegm), pericardial fluid, peritoneal fluid, pleural fluid, pus, rheum, saliva, sebum (skin oil), semen, sputum, synovial fluid, sweat, tears, urine, vaginal secretion, vomit and mixtures of one or more thereof. Biological samples include cell cultures, bodily fluids, cell cultures from bodily fluids. Bodily fluids may be obtained from a mammal organism, for example by puncture, or other collecting or sampling procedures.
The terms “subject,” “individual,” and “patient” are used interchangeably herein to refer to a vertebrate, preferably a mammal, more preferably a human. Mammals include, but are not limited to, murines, simians, humans, farm animals, sport animals, and pets. Tissues, cells and their progeny of a biological entity obtained in vivo or cultured in vitro are also encompassed.
Various embodiments are described hereinafter. It should be noted that the specific embodiments are not intended as an exhaustive description or as a limitation to the broader aspects discussed herein. One aspect described in conjunction with a particular embodiment is not necessarily limited to that embodiment and can be practiced with any other embodiment(s). Reference throughout this specification to “one embodiment”, “an embodiment,” “an example embodiment,” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” or “an example embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment, but may. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner, as would be apparent to a person skilled in the art from this disclosure, in one or more embodiments. Furthermore, while some embodiments described herein include some but not other features included in other embodiments, combinations of features of different embodiments are meant to be within the scope of the invention. For example, in the appended claims, any of the claimed embodiments can be used in any combination.
Reference is made to U.S. patent application Ser. No. 16/894,678 entitled Novel Type V CRISPR-Cas Systems and Use Thereof filed Jun. 5, 2020, Ser. No. 16/894,670 entitled CRISPR Effector System Based Coronavirus Diagnostics filed Jun. 5, 2020, and Ser. No. 16/894,664 entitled Rapid Diagnostics filed Jun. 5, 2020, each of which is incorporated by reference in their entirety.
All publications, published patent documents, and patent applications cited herein are hereby incorporated by reference to the same extent as though each individual publication, published patent document, or patent application was specifically and individually indicated as being incorporated by reference.
Embodiments herein are directed to systems and methods of detecting the presence of a target nucleic acid in a sample. In certain example embodiments, the systems and methods provide for single reaction (one-pot) detection of target nucleic acids. In certain example embodiments, extraction, amplification, and detection may take place under a single set of reaction buffer and reagent conditions. In certain example embodiments, detection is achieved using isothermal amplification (e.g. LAMP) only. In other example embodiments, detection of nucleic acids can utilize Cas proteins to provide improved reaction sensitivity and/or specificity. In one embodiment, isothermal amplification may be utilized with a thermostable CRISPR-Cas protein, with the combination of thermostable protein and isothermal amplification utilized to further improve reaction conditions and times for detection and diagnostics. Advantageous quick extraction approaches for the extraction of nucleic acids from a sample are also provided. Design of reaction conditions and reagents are provided for the identification of primers and reaction conditions, including concentration and content of reagents and additives, that enhance the detection systems and methods disclosed herein. Advantageously, the systems and methods can be provided in lateral flow or self-contained cartridge devices for rapid, point-of-care diagnostics. In certain embodiments, the detection assay can be provided on a cartridge or chip. A device system can be configured to receive the cartridge and conduct an assay.
In certain example embodiments, the Cas protein may be a Type V CRISPR-Cas, a Type VI CRISPR-Cas, or combination thereof. In certain example embodiments, the Type V or Type VI Cas protein is a thermostable case protein with a nuclease activity above at least 50° C. In certain example embodiments, the Cas protein is a Cas12b protein. In certain other example embodiments, the Cas12b is Alicyclobacillus acidiphilus (AapCas12b). In certain other example embodiments, the Cas12b protein is Brevibacillus sp. SYSU G02855 (BrCas12b). In certain example embodiments, the Cas protein, may be paired with the novel guide designs disclosed herein.
Systems and method disclosed herein include approaches to detection isothermal amplification for detection of target nucleic acids. In certain example embodiments, isothermal amplification approach is loop-mediated isothermal amplification (LAMP). Design of optimal systems, including primers, reagents and additives to be used with isothermal amplification approaches are also provided. Optionally, CRISPR-Cas systems as disclosed herein can be used with isothermal amplification approaches, including LAMP, that can enhance sensitivity and/or specificity.
Methods of designing optimal reaction conditions are also provided. In an aspect, methods can comprise identifying the type of amplification reaction and designing optimal primers in accordance with the methods disclosed herein. Methods may also comprise identifying optimum CRISPR-Cas systems, including identification of the Cas protein for the reactions conditions. For example, the Cas protein may be identified based on its thermostability, cutting preferences, or other desired charateristics. Preferred guide molecules may similarly be identified. Once one or more primers and/or guides are identified, salt concentrations and other additives can be titrated and selected for further investigation. Additional reaction conditions, additives and reagents can be identified to optimize the use of one-pot methodology, lyophilization of reagents, and use in the devices disclosed herein. In certain example embodiments, preferred optimized additives include taurine, glycine or magnesium.
In certain example embodiments, the system comprises a Type VI CRISPR-Cas system, one or more guide polynucleotides comprising a guide sequence capable of binding a target sequence and designed to form a complex with the Type VI Cas protein, and a detection construct comprising a polynucleotide component. The Type VI Cas proteins of the present systems and methods exhibits collateral RNase activity, cleaving the polynucleotide component of the detection construct once activated by the target sequence, which can generate a detectable signal.
Embodiments disclosed herein provide systems utilized in multiplex lateral flow devices and methods of use. In certain preferred embodiments, the guides utilized are designed to be highly active guide molecules, allowing for rapid and highly sensitive detection of coronavirus. In certain example embodiments, the systems can utilize general capture of antibody that was not bound by intact reporter RNAs as described in Gootenberg, et al., Science 360, 439-444 (2018). In other embodiments, the presently disclosed system can be designed for detecting two or more targets. When utilized with a lateral flow approach, two or more separate detection lines consisting of deposited materials that capture detection construct and a molecule specific to the deposited material, allows visualization of detectable signal (e.g. gain or loss) at detection lines due to collateral activity and cleavage of corresponding reporter oligonucleotide. Utilizing guide design that allows for design of highly active guide RNAs for use with the specific Cas protein of the systems for target sequences, for example, coronavirus is also provided. In certain embodiments, the time from processing of a sample in the current methods and using the presently claimed systems, from receipt of sample to detectable signal is less than 120 minutes, 110 minutes, 100 minutes, 90 minutes, 75 minutes, 60 minutes, 45 minutes, or 30 minutes.
In certain aspects, embodiments disclosed herein are directed to compositions and kits that consolidate extraction-free lysis and amplification of target nucleic acids into a single reaction volume. In certain example embodiments, the extraction-free lysis reagents, e.g., extraction-free solution for isolating polynucleotides, can be used to extract nucleic acids from cells and/or viral particles. In contrast to existing protocols, the extraction-free lysis solution does not require isolation of the nucleic acid prior to further amplification. The extractaction-free lysis reagents may be mixed with amplification reagents such as standard RT-PCR amplification reactions. An example extraction-free lysis solution is described in Example 3.
In an embodiment, the extraction-free polynucleotide isolation solution, is referred to alternately as an extraction-free lysis reagent herein. In one embodiment, the extraction-free polynucleotide isolation solution is used for isolation of DNA or RNA without a separate extraction step. In an aspect, the polynucleotide isolation solution is a DNA extraction solution that is utilized for the extraction of RNA from a cell or virus particle.
In one embodiment, the extraction-free polynucleotide isolation solution is Quick Extract™ DNA Extraction Solution (QE09050), Lucigen, or QuickExtract Plant DNA Extraction Solution, Lucigen. In an embodiment, the solution allows for isolation of polynucleotides without the requirement of further extraction prior to further processing. In an aspect, the sample is diluted 2:1, 1:1 or 1:2 sample:DNA extraction solution. Advantageously, use of the QuickExtract DNA Extraction solution can be utilized for extraction of RNA. In one embodiment, the QuickExtract DNA Extraction solution can be utilized for extraction of viral RNA. In one embodiment, the QuickExtract DNA Extraction solution can be utilized for extraction-free isolation of SARS-CoV-2 with the compositions, systems and methods detailed herein in a one-pot solution.
In one embodiment, the extraction-free polynucleotide isolation solution is Plant Quick Extract solution. In one embodiment, the Plant Quick Extract solution is used with polynucleotide isolation beads. In an aspect the beads used are madnetic beads. In an embodiment, the polynucleotide islation solution, a KCl buffer and magnetic beads are utilized to allow a system that can be performed as a one pot method. In an aspect, the method using polynucleotide isolation solution, beads, and KCl buffer solution can be performed without washing steps or an extraction step.
In one example embodiments, the extraction-free lysis solution is combined with amplification reagents into a single volume. In an aspect, the amplification reagents are isothermal amplification reagents. In one embodiment, the isothermal amplification reagents are LAMP isothermal amplification reagents. The LAMP isothermal amplification reagents may include primers for the target nucleic acids discussed in further detail below. In an embodiment, the LAMP amplification reagents include primer sets selected from SEQ ID Nos: 1-40499.
Chlamydia trachomatis D/UW-3/CX chromosome,
Neisseria gonorrhoeae strain WHO F chromosome
Streptococcus pyogenes strain NCTC8198
In certain example embodiments, the LAMP amplification reagents may include primers to SARS-COV2. In certain example embodiments, the primers are selected from SEQ ID NOS: 1-40,499 from Table 5, Table 10, Table 15. LAMP reagents may further comprise colorimetric and/or fluorescent detection reagents, such as hydroxy napthol blue (see, e.g. Goto, M., et al., Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. Biotechniques, 2009. 46 (3): p. 167-72.) leuco triphenylmethane dyes (see, e.g. Miyamoto, S., et al., Method for colorimetric detection of double-stranded nucleic acid using leuco triphenylmethane dyes. Anal Biochem, 2015. 473: p. 28-33) and pH-sensitive dyes (see, e.g. Tanner, N. A., Y. Zhang, and T. C. Evans, Jr., Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes. Biotechniques, 2015. 58 (2): p. 59-68); as well as fluorescent detection (see, e.g. Yu et al., Clinical Chemistry, hvaa102, doi:10.1093/clinchem/hvaa102 12 May 2020), including use of quenching probes (see, e.g. Shirato et al., J Virol Methods. 2018 August; 258:41-48. doi: 10.1016/j.jviromet.2018.05.006). An overview of LAMP methods, including OSD-LAMP, for sequence-specific detection is described in Becherer et al., Anal. Methods, 2020, 12, 717-746, doi: 10.1039/C9AY02246E, incorporated herein by reference.
In embodiments, the LAMP amplification reagents can comprise oligonucleotide strand displacement (OSD) probes. As used herein, oligonucleotide strand displacement probes are also referred to herein as oligonucleotide strand exchange probes or one-step strand displacement probes. The general concept of the use of OSD exchange is depicted in FIG. 1 of Bhadra et al., High-surety isothermal amplification and detection of SARS-CoV-2, including with crude enzymes, doi:10.1101/2020.04.13.039941. OSD probes rely on the binding enthalpy between the target-binding probe and amplicon of the LAMP reaction yielding a strand exchange reaction, leading to an easily read change in fluorescent signal. As a result, the results of a LAMP reaction can be visually or optically read fluorogenic OSD probes.
In an aspect, the OSD probes comprise a sequence specific for a target molecule. The OSD probes may comprise a pre-hybridized nucleic acid sequence, strand wherein the target sequence is 5, 6, 7, 8, 9, 10, 11, 12 or 13 nucleotides longer than the strand to which it is hybridized, allowing for sequence-specific interaction with a complementary target, with the OSD undergoing strand exchange and yielding a change in fluorescent signal. In a certain aspect, the OSD probes are designed specific for one or more of the LAMP primer sets disclosed herein, for example SEQ ID NOs. 1-40499, 61,983-61,988, Table 5, Table 10, Table 15. In an aspect the OSD probes are specific for LAMP primer N set 6. The OSD probes may be selected from Table 11. In an aspect, the OSD probes are provided at a concentration of about 50 nM to 200 nM, about 75 nM to 150 nM, less than or equal to 200 nM, 190 nM, 180 nM, 170 nM, 160 nM, 150 nM, 140 nM, 130 nM, 120 nM, 110 nM, 100 nM, 90 nM, 80 nM, 75 nM, 65 nM, or 50 nM. Probes can be designed to be complementary to the loop region between the F1c and F2 primer binding sites for the LAMP primers, this can be reffed to as the long toehold region. The complementary portion can be between about 9 and 14 nucleotides long, more preferably 11-12 nucleotides long. In an aspect, the longer strand of the OSD is labeled with a fluorescent molecule at the 5′ or 3′ end of the strand. In an aspect, the label is provided on the end opposite the designed complementary target region (long toehold region). The short strand is prepared with a quencher on one end of the probe, and can be designed to comprise a region complementary to a portion of the long strand. The OSD probes can be provided as part of LAMP reagents as described herein, which may comprise their use on any of the devices, cartridges or in any of the compositions as provided herein, including being provided as a lyophilized reagent in some instances.
In certain embodiments, extraction-free lysis solution and isothermal amplification reagents may be lyophilized in a single reaction volume, to be reconstituted by addition of a sample to be assayed. In certain other embodiments, the extraction-free lysis solution and and isothermal amplification reagents may be lyophilized and stored on a cartridge or lateral flow strip, as discussed in further detail below.
In certain example embodiments, the single lysis reaction compositions and kits may further comprise one or more Cas proteins possessing collateral activity and a detection construct. Pairing with one or more Cas proteins may increase sensitivity or specificity of the assay. In certain example embodiments, the one or more Cas proteins may be thermostable Cas proteins. Example Cas proteins are disclosed in further detail below.
In certain example embodiments, the single lysis amplification reaction compositions and kits may comprise optimized primers and/or one or more additives. In an aspect, the design optimizes the primers used in the amplification, In particular aspects, the isothermal amplification is used alone. In another aspect, the isothermal amplification is used with CRISPR-Cas systems comprising one or more Cas proteins and one or more guide molecules. In either approach, design considerations can follow a rational design for optimization of the reactions. Optimization of the methods as disclosed herein can include first screening primers to identify one or more sets of primers that work well for a particular target, Cas protein and/or reaction. Once the primers have been screened, titration of magnesium concentration can be performed to identify an optimal magnesium concentration for higher signal to noise readout. Once an optimum magnesium concentration is identified, additional additives are screened at around 20-25% of the reaction, and once additives are identified, these additives, such as those additives identified in
In certain embodiments, the compositions and kits may further comprise nucleic acid binding bead. The bead may be used to capture, concentrate or otherwise enrich for particular material. The bead may be magnetic, and may be provided to capture nucleic acid material. In another aspect, the bead is a silica bead. Beads may be utilized in an extraction step of the methods disclosed herein. Beads can be optionally used with the methods described herein, including with the one-pot methods that allow for concentration of viral nucleic acids from large volume samples, such as saliva or swab samples to allow for a single one-pot reaction method. Concentration of desired target molecules can be increased by about 10-fold, 50-fold, 100-fold, 200-fold, 500-fold, 800-fold, 1000-fold, 1500-fold, 2000-fold, 2500-fold, 3000-fold, or more.
Magnetic beads in a PEG and salt solution are preferred in an aspect, and in embodiments bind to viral RNA and/or DNA which allows for concentration and lysis concurrently. Silica beads can be used in another aspect. Capture moieties such as oligonucleotide functionalized beads are envisioned for use. The beads may be using with the extraction reagents, allowed to incubate with a sample and the lysis/extraction buffer, thereby concrrating target molecules on the beads. When used with a cartridge device detailed elsewhere herein, a magnet can be activated and the beads collected, with optional flushing of the extraction buffer and one or more washes performed. Advantageously, the beads can be used in the one-pot methods and systems without additional washings of the beads, allowing for a more efficient process without increased risks of contamination in multi-step processes. Beads can be utilized with the isothermal amplifications detailed herein, and the beads can flow into an amplification chamber of the cartridge or be maintained in the pot for the amplification step. Upon heating, nucleic acid can be released off the beads.
CRISPR Cas for use in the embodiments disclosed herein may comprise a Type V Cas protein, a Type VI Cas protein, or a combination thereof and one or more guide molecules. In certain embodiments, the Cas proteins are thermostable Cas proteins. Example thermostable Cas proteins can be selected from Table 2A or Table 2B, comprising Cas12 thermostable Cas proteins; other representative Cas12 and Cas13 proteins can be identified from Cas systems isolated from organisms that inhabit similar microenviroments. In certain example embodiments, the Cas is AapCas12b. In other example embodiments, the Cas is BrCas12b. In an aspect, two or more CRISPR effector systems are provided which may be RNA-targeting effector proteins, DNA-targeting effector proteins, or a combination thereof. The RNA-targeting effector proteins may be a Type VI Cas protein, such as Cas13 protein, including Cas13b, Cas13c, or Cas13d. The DNA-targeting effector protein may be a Type V Cas protein, such as Cas12a (Cpf1), Cas12b (C2c2), or Cas12c (C2c3). In certain example embodiments, the guide molecules of the CRISPR System can comprise one or more guide molecules of Table 1C.
In certain example embodiments, the protein selected may be more thermostable at higher temperatures. Exemplary proteins may comprise any Cas protein with collateral effect when used with particular methodologies disclosed herein. In an aspect, the Cas protein is a thermostable protein. The thermostable Cas protein may be a Type V or a Type VI protein, for example, a Cas12 or Cas13 protein. In embodiments, the thermostable protein, upon activation, comprises collateral cleavage. A thermostable protein as used herein comprises a protein that retains catalytic activity at a temperature at or above 32° C., 33° C., 34° C., 35° C., 36° C., 37° C., 38° C., 39° C., 40° C., 41° C., 42° C., 43° C., 44° C., 45° C., 46° C., 47° C., 48° C., 49° C., 50° C., 51° C., 52° C., 53° C., 54° C., 55° C., 56° C., 57° C., 58° C., 59° C., 60° C., 61° C., 62° C., 63° C., 64° C., 65° C., 66° C., 67° C., 68° C., 69° C., 70° C., 71° C., 72° C. In certain example embodiments, the protein is thermostable at or above 55° C.
Methods for identification of thermostable proteins are detailed herein, and may comprise identifying Cas proteins from thermophilic bacterial species. Upon identification of a particular Cas protein from a species, Cas proteins form similar species may be identified.
In certain embodiments, the thermostable CRISPR-Cas protein is a Cas 12 protein from Table 2A or 2B, or at least 80% identity to a polypeptide from Table 2A or 2B.
In certain embodiments, the thermostable CRISPR-Cas protein is a Cas 12 protein from Table 2A or 2B, or at least 80% identity to a polypeptide from Table 2A or 2B. SEQ ID NOS: 61644-61990.
Alicyclobacillus kakegawensis NBRC 103104 DNA, contig: AK2_CON0027_0001, whole genome shotgun sequence | GENOME_ACESSION:
Alicyclobacillus hesperidum strain DSM 12489 genome assembly, contig: Ga0074806_135, whole genome shotgun sequence | GENOME_ACESSION:
Bacillus sp. V3-13 contig_40, whole genome shotgun sequence | GENOME_ACCESSION: GCA_002860165.1_ ASM286016v1_genomic GENOME_ID: 150146
Brevibacillus agri strain NRRL NRS 1219 contig_7, whole genome shotgun sequence | GENOME_ACCESSION: GCA_003710885.1_ASM371088v1_genomic
Brevibacillus gelatini strain DSM 100115 contig_35, whole genome shotgun sequence | GENOME_ACESSION: GCA_003710935.1_ASM371093v1_genomic
Alicyclobacillus kakegawensis NBRC 103104 DNA, contig: AK2_CON0027_0001, whole genome shotgun
Alicyclobacillus hesperidum strain DSM 12489 genome assembly, contig: Ga0074806_135, whole genome
Bacillus sp. V3-13 contig_40, whole genome shotgun sequence | GENOME_ACCESSION:
Brevibacillus agri strain NRRL NRS 1219 contig_7, whole genome shotgun sequence |
Brevibacillus gelatini strain DSM 100115 contig_35, whole genome shotgun sequence |
In certain embodiments, the CRISPR-Cas protein is a Cas12b from a thermostable species, for example Alicyclobacillus acidiphilus (Aap). Cas 12a proteins can be identified from similar organisms as identified in any of BROD_5090P4_Cas12b_sequences.txt. In certain embodiments, the thermostable CRISPR-Cas protein is a Cas13a. In an aspect, the Cas13a thermostable protein is from FIG. 1A of U.S. Provisional Application 62/967,408, filed Jan. 29, 2020, entitled “Novel CRISPR Enzymes and Systems” which were identified from stable anaerobic thermophilic methanogenic microbiomes fermenting switchgrass, supporting their thermostability. See, Liang et al., Biotechnol Biofuels 2018; 11:243 doi: 10.1186/s13068-018-1238-1. Similarly, the 0J26742_10014101 clusters with the verified thermophilic sourced Cas13a sequences detailed in FIG. 1A of U.S. Provisional Application 62/967,408, filed Jan. 29, 2020, entitled “Novel CRISPR Enzymes and Systems”. The nucleic acid identified at loci 123519_10037894 was identified from a study focusing on 70° C. organism. In certain example embodiments, the Cas13 orthologue has at least two HEPN domains and at least 80% identity to a polypeptide encoded by the nucleic acid sequence 0123519_10037894 or 0J26742_10014101.
Certain example embodiments disclosed herein provide are based on low-cost CRISPR-based diagnostic that enables single-molecule detection of DNA or RNA with single-nucleotide specificity (Gootenberg, 2018; Gootenberg, et al, Science. 2017 Apr. 28; 356(6336):438-442 (2017); Myhrvold, et al., Science 360, 444-448 (2018)). Nucleic acid detection with SHERLOCK relies on the collateral activity of Type VI and Type V Cas proteins, such as Cas13 and Cas12, which unleashes promiscuous cleavage of reporters upon target detection (Gooteneberg et al., 2018)(Abudayyeh, et al., Science. 353(6299)(2016); East-Seletsky et al. Nature 538:270-273 (2016); Smargon et al. Mol Cell 65(4):618-630 (2017)). Certain embodiments disclosed herein, are capable of single-molecule detection in less than an hour and can be used for multiplexed target detection when using CRISPR enzymes with orthogonal cleavage preference, such as Cas13a from Leptotrichia wadei (LwaCas13a), Cas13b from Capnocytophaga canimorsus Cc5 (CcaCas13b), and Cas12a from Acidaminococcus sp. BV3L6 (AsCas12a); Alicyclobacillus acidiphilus (Aap) Cas 12b and Brevibacillus sp. SYSU G02855 (BrCas12b); (Gootenberg, 2018; Myhrvold et al. Science 360(6387):444-448 (2018); Gootenberg, 2017; Chen et al. Science 360(6387):436-439 (2018); Li et al. Cell Rep 25(12):3262-3272 (2018); Li et al. Nat Protoc 13(5):899-914 (2018)). Guide molecules used herein are designed using a model for high activity-based Cas guide selection for coronavirus would facilitate design of optimal diagnostic assays, especially in applications requiring high-activity guides like lateral flow detection, and enable guide RNA design for in vivo RNA targeting applications with Cas13 has also been detailed in U.S. Provisional Applications 62/818,702 filed Mar. 14, 2019, now PCT/US20/22795 and 62/890,555, filed Aug. 22, 2019, now PCT/US20/22795, both entitled CRISPR Effector System Based Multiplex Diagnostics, incorporated herein by reference in their entirety, and, in particular, Examples 1-4, Tables 1-8 and FIG. 4A of U.S. Provisional Application 62/890,555.
Embodiments disclosed herein utilize Cas proteins possessing non-specific nuclease collateral activity to cleave detectable reporters upon target recognition, providing sensitive and specific diagnostics, including single nucleotide variants, detection based on rRNA sequences, screening for drug resistance, monitoring microbe outbreaks, genetic perturbations, and screening of environmental samples, as described, for example, in PCT/US18/054472 filed Oct. 22, 2018 at [0183]-[0327], incorporated herein by reference. Reference is made to WO 2017/219027, WO2018/107129, US20180298445, US 2018-0274017, US 2018-0305773, WO 2018/170340, U.S. application Ser. No. 15/922,837, filed Mar. 15, 2018 entitled “Devices for CRISPR Effector System Based Diagnostics”, PCT/US18/50091, filed Sep. 7, 2018 “Multi-Effector CRISPR Based Diagnostic Systems”, PCT/US18/66940 filed Dec. 20, 2018 entitled “CRISPR Effector System Based Multiplex Diagnostics”, PCT/US18/054472 filed Oct. 4, 2018 entitled “CRISPR Effector System Based Diagnostic”, U.S. Provisional 62/740,728 filed Oct. 3, 2018 entitled “CRISPR Effector System Based Diagnostics for Hemorrhagic Fever Detection”, U.S. Provisional 62/690,278 filed Jun. 26, 2018 and U.S. Provisional 62/767,059 filed Nov. 14, 2018 both entitled “CRISPR Double Nickase Based Amplification, Compositions, Systems and Methods”, U.S. Provisional 62/690,160 filed Jun. 26, 2018 and U.S. Pat. No. 62,767,077 filed Nov. 14, 2018, both entitled “CRISPR/CAS and Transposase Based Amplification Compositions, Systems, And Methods”, U.S. Provisional 62/690,257 filed Jun. 26, 2018 and 62/767,052 filed Nov. 14, 2018 both entitled “CRISPR Effector System Based Amplification Methods, Systems, And Diagnostics”, U.S. Provisional 62/767,076 filed Nov. 14, 2018 entitled “Multiplexing Highly Evolving Viral Variants With SHERLOCK” and 62/767,070 filed Nov. 14, 2018 entitled “Droplet SHERLOCK.” Reference is further made to WO2017/127807, WO2017/184786, WO 2017/184768, WO 2017/189308, WO 2018/035388, WO 2018/170333, WO 2018/191388, WO 2018/213708, WO 2019/005866, PCT/US18/67328 filed Dec. 21, 2018 entitled “Novel CRISPR Enzymes and Systems”, PCT/US18/67225 filed Dec. 21, 2018 entitled “Novel CRISPR Enzymes and Systems” and PCT/US18/67307 filed Dec. 21, 2018 entitled “Novel CRISPR Enzymes and Systems”, U.S. 62/712,809 filed Jul. 31, 2018 entitled “Novel CRISPR Enzymes and Systems”, U.S. 62/744,080 filed Oct. 10, 2018 entitled “Novel Cas12b Enzymes and Systems” and U.S. 62/751,196 filed Oct. 26, 2018 entitled “Novel Cas12b Enzymes and Systems”, U.S. 715,640 filed August 7, 2-18 entitled “Novel CRISPR Enzymes and Systems”, WO 2016/205711, U.S. Pat. No. 9,790,490, WO 2016/205749, WO 2016/205764, WO 2017/070605, WO 2017/106657, and WO 2016/149661, WO2018/035387, WO2018/194963, Cox DBT, et al., RNA editing with CRISPR-Cas13, Science. 2017 Nov. 24; 358(6366):1019-1027; Gootenberg J S, et al., Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6., Science. 2018 Apr. 27; 360(6387):439-444; Gootenberg J S, et al., Nucleic acid detection with CRISPR-Cas13a/C2c2., Science. 2017 Apr. 28; 356(6336):438-442; Abudayyeh 00, et al., RNA targeting with CRISPR-Cas13, Nature. 2017 Oct. 12; 550(7675):280-284; Smargon A A, et al., Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28. Mol Cell. 2017 Feb. 16; 65(4):618-630.e7; Abudayyeh 00, et al., C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector, Science. 2016 Aug. 5; 353 (6299):aaf5573; Yang L, et al., Engineering and optimising deaminase fusions for genome editing. Nat Commun. 2016 Nov. 2; 7:13330, Myhrvold et al., Field deployable viral diagnostics using CRISPR-Cas13, Science 2018 360, 444-448, Shmakov et al. “Diversity and evolution of class 2 CRISPR-Cas systems,” Nat Rev Microbiol. 2017 15(3):169-182, each of which is incorporated herein by reference in its entirety.
In general, a CRISPR-Cas or CRISPR system as used herein and in documents, such as WO 2014/093622 (PCT/US2013/074667), refers collectively to transcripts and other elements involved in the expression of or directing the activity of CRISPR-associated (“Cas”) genes, including sequences encoding a Cas gene, a tracr (trans-activating CRISPR) sequence (e.g. tracrRNA or an active partial tracrRNA), a tracr-mate sequence (encompassing a “direct repeat” and a tracrRNA-processed partial direct repeat in the context of an endogenous CRISPR system), a guide sequence (also referred to as a “spacer” in the context of an endogenous CRISPR system), or “RNA(s)” as that term is herein used (e.g., RNA(s) to guide Cas, such as Cas9, e.g. CRISPR RNA and transactivating (tracr) RNA or a single guide RNA (sgRNA) (chimeric RNA)) or other sequences and transcripts from a CRISPR locus. In general, a CRISPR system is characterized by elements that promote the formation of a CRISPR complex at the site of a target sequence (also referred to as a protospacer in the context of an endogenous CRISPR system). When the CRISPR protein is a Cas13 protein, a tracrRNA is not required. Cas13 has been described in Abudayyeh et al. (2016) “C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector”; Science; DOI: 10.1126/science.aaf5573; and Shmakov et al. (2015) “Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems”, Molecular Cell, DOI: dx.doi.org/10.1016/j.molce1.2015.10.008; which are incorporated herein in their entirety by reference. Cas13b has been described in Smargon et al. (2017) “Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNases Differentially Regulated by Accessory Proteins Csx27 and Csx28,” Molecular Cell. 65, 1-13; dx.doi.org/10.1016/j.molce1.2016.12.023., which is incorporated herein in its entirety by reference.
In certain embodiments, protospacer flanking site, or protospacer flanking sequence (PFS) directs binding of the effector proteins (e.g. Type VI) as disclosed herein to the target locus of interest. A PFS is a region that can affect the efficacy of Cas13a mediated targeting, and may be adjacent to the protospacer target in certain Cas13a proteins, while other orthologs do not require a specific PFS. In a preferred embodiment, the CRISPR effector protein may recognize a 3′ PFS. In certain embodiments, the CRISPR effector protein may recognize a 3′ PFS which is 5′H, wherein H is A, C or U. See, e.g. Abudayyeh, 2016. In certain embodiments, the effector protein may be Leptotrichia shahii Cas13p, more preferably Leptotrichia shahii DSM 19757 Cas13, and the 3′ PFS is a 5′ H.
In the context of formation of a CRISPR complex, “target molecule” or “target sequence” or “target nucleic acid” refers to a molecule harboring a sequence, or a sequence to which a guide sequence is designed to have complementarity, where hybridization between a target sequence and a guide sequence promotes the formation of a CRISPR complex. A target sequence may comprise RNA polynucleotides. The term “target RNA” refers to a RNA polynucleotide being or comprising the target sequence. In other words, the target RNA may be a RNA polynucleotide or a part of a RNA polynucleotide to which a part of the gRNA, i.e. the guide sequence, is designed to have complementarity and to which the effector function mediated by the complex comprising CRISPR effector protein and a gRNA is to be directed. In some embodiments, a target sequence is located in the nucleus or cytoplasm of a cell. A target sequence may comprise DNA polynucleotides.
As such, a CRISPR system may comprise RNA-targeting effector proteins. A CRISPR system may comprise DNA-targeting effector proteins. In some embodiments, a CRISPR system may comprise a combination of RNA- and DNA-targeting effector proteins, or effector proteins that target both RNA and DNA.
In some embodiments, one or more elements of a nucleic acid-targeting system is derived from a particular organism comprising an endogenous CRISPR RNA-targeting system. In certain example embodiments, the effector protein CRISPR RNA-targeting system comprises at least one HEPN domain, including but not limited to the HEPN domains described herein, HEPN domains known in the art, and domains recognized to be HEPN domains by comparison to consensus sequence motifs. Several such domains are provided herein. In one non-limiting example, a consensus sequence can be derived from the sequences of Cas13a or Cas13b orthologs provided herein. In certain example embodiments, the effector protein comprises a single HEPN domain. In certain other example embodiments, the effector protein comprises two HEPN domains.
In one example embodiment, the effector protein comprises one or more HEPN domains comprising a RxxxxH motif sequence. The RxxxxH motif sequence can be, without limitation, from a HEPN domain described herein or a HEPN domain known in the art. RxxxxH motif sequences further include motif sequences created by combining portions of two or more HEPN domains. As noted, consensus sequences can be derived from the sequences of the orthologs disclosed in U.S. Provisional Patent Application 62/432,240 entitled “Novel CRISPR Enzymes and Systems,” U.S. Provisional Patent Application 62/471,710 entitled “Novel Type VI CRISPR Orthologs and Systems” filed on Mar. 15, 2017, and U.S. Provisional Patent Application entitled “Novel Type VI CRISPR Orthologs and Systems,” labeled as attorney docket number 47627-05-2133 and filed on Apr. 12, 2017.
In an embodiment of the invention, a HEPN domain comprises at least one RxxxxH motif comprising the sequence of R(N/H/K)X1X2X3H (SEQ ID NO: 61991-61993). In an embodiment of the invention, a HEPN domain comprises a RxxxxH motif comprising the sequence of R(N/H)X1X2X3H (SEQ ID NO:61991 and SEQ ID NO: 61992). In an embodiment of the invention, a HEPN domain comprises the sequence of R(N/K)X1X2X3H (SEQ ID NO:61991 and SEQ ID NO: 61993). In certain embodiments, X1 is R, S, D, E, Q, N, G, Y, or H. In certain embodiments, X2 is I, S, T, V, or L. In certain embodiments, X3 is L, F, N, Y, V, I, S, D, E, or A.
In particular embodiments, the Type VI RNA-targeting Cas enzyme is Cas13a. In other example embodiments, the Type VI RNA-targeting Cas enzyme is Cas13b. In certain embodiments, the Cas13b protein is from an organism of a genus selected from the group consisting of: Bergeyella, Prevotella, Porphyromonas, Bacterioides, Alistipes, Riemerella, Myroides, Capnocytophaga, Porphyromonas, Flavobacterium, Porphyromonas, Chryseobacterium, Paludibacter, Psychroflexus, Riemerella, Phaeodactylibacter, Sinomicrobium, Reichenbachiella.
In particular embodiments, the homologue or orthologue of a Type VI protein such as Cas13a as referred to herein has a sequence homology or identity of at least 30%, or at least 40%, or at least 50%, or at least 60%, or at least 70%, or at least 80%, more preferably at least 85%, even more preferably at least 90%, such as for instance at least 95% with a Type VI protein such as Cas13a (e.g., based on the wild-type sequence of any of Leptotrichia shahii Cas13a, Lachnospiraceae bacterium MA2020 Cas13a, Lachnospiraceae bacterium NK4A179 Cas13a, Clostridium aminophilum (DSM 10710) Cas13a, Carnobacterium gallinarum (DSM 4847) Cas13, Paludibacter propionicigenes (WB4) Cas13, Listeria weihenstephanensis (FSL R9-0317) Cas13, Listeriaceae bacterium (FSL M6-0635) Cas13, Listeria newyorkensis (FSL M6-0635) Cas13, Leptotrichia wadei (F0279) Cas13, Rhodobacter capsulatus (SB 1003) Cas13, Rhodobacter capsulatus (R121) Cas13, Rhodobacter capsulatus (DE442) Cas13, Leptotrichia wadei (Lw2) Cas13, or Listeria seeligeri Cas13). In further embodiments, the homologue or orthologue of a Type VI protein such as Cas13 as referred to herein has a sequence identity of at least 30%, or at least 40%, or at least 50%, or at least 60%, or at least 70%, or at least 80%, more preferably at least 85%, even more preferably at least 90%, such as for instance at least 95% with the wild type Cas13 (e.g., based on the wild-type sequence of any of Leptotrichia shahii Cas13, Lachnospiraceae bacterium MA2020 Cas13, Lachnospiraceae bacterium NK4A179 Cas13, Clostridium aminophilum (DSM 10710) Cas13, Carnobacterium gallinarum (DSM 4847) Cas13, Paludibacter propionicigenes (WB4) Cas13, Listeria weihenstephanensis (FSL R9-0317) Cas13, Listeriaceae bacterium (FSL M6-0635) Cas13, Listeria newyorkensis (FSL M6-0635) Cas13, Leptotrichia wadei (F0279) Cas13, Rhodobacter capsulatus (SB 1003) Cas13, Rhodobacter capsulatus (R121) Cas13, Rhodobacter capsulatus (DE442) Cas13, Leptotrichia wadei (Lw2) Cas13, or Listeria seeligeri Cas13).
In certain other example embodiments, the CRISPR system the effector protein is a Cas13 nuclease. The activity of Cas13 may depend on the presence of two HEPN domains. These have been shown to be RNase domains, i.e. nuclease (in particular an endonuclease) cutting RNA. Cas13a HEPN may also target DNA, or potentially DNA and/or RNA. On the basis that the HEPN domains of Cas13a are at least capable of binding to and, in their wild-type form, cutting RNA, then it is preferred that the Cas13a effector protein has RNase function. Regarding Cas13a CRISPR systems, reference is made to U.S. Provisional 62/351,662 filed on Jun. 17, 2016 and U.S. Provisional 62/376,377 filed on Aug. 17, 2016. Reference is also made to U.S. Provisional 62/351,803 filed on Jun. 17, 2016. Reference is also made to U.S. Provisional entitled “Novel Crispr Enzymes and Systems” filed Dec. 8, 2016 bearing Broad Institute No. 10035.PA4 and Attorney Docket No. 47627.03.2133. Reference is further made to East-Seletsky et al. “Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection” Nature doi:10/1038/nature19802 and Abudayyeh et al. “C2c2 is a single-component programmable RNA-guided RNA targeting CRISPR effector” bioRxiv doi:10.1101/054742.
RNase function in CRISPR systems is known, for example mRNA targeting has been reported for certain type III CRISPR-Cas systems (Hale et al., 2014, Genes Dev, vol. 28, 2432-2443; Hale et al., 2009, Cell, vol. 139, 945-956; Peng et al., 2015, Nucleic acids research, vol. 43, 406-417) and provides significant advantages. In the Staphylococcus epidermis type III-A system, transcription across targets results in cleavage of the target DNA and its transcripts, mediated by independent active sites within the Cas10-Csm ribonucleoprotein effector protein complex (see, Samai et al., 2015, Cell, vol. 151, 1164-1174). A CRISPR-Cas system, composition or method targeting RNA via the present effector proteins is thus provided.
In an embodiment, the Cas protein may be a Cas13a ortholog of an organism of a genus which includes but is not limited to Leptotrichia, Listeria, Corynebacter, Sutterella, Legionella, Treponema, Filifactor, Eubacterium, Streptococcus, Lactobacillus, Mycoplasma, Bacteroides, Flaviivola, Flavobacterium, Sphaerochaeta, Azospirillum, Gluconacetobacter, Neisseria, Roseburia, Parvibaculum, Staphylococcus, Nitratifractor, Mycoplasma and Campylobacter. Species of organism of such a genus can be as otherwise herein discussed.
It will be appreciated that any of the functionalities described herein may be engineered into CRISPR enzymes from other orthologs, including chimeric enzymes comprising fragments from multiple orthologs. Examples of such orthologs are described elsewhere herein. Thus, chimeric enzymes may comprise fragments of CRISPR enzyme orthologs of an organism which includes but is not limited to Leptotrichia, Listeria, Corynebacter, Sutterella, Legionella, Treponema, Filifactor, Eubacterium, Streptococcus, Lactobacillus, Mycoplasma, Bacteroides, Flaviivola, Flavobacterium, Sphaerochaeta, Azospirillum, Gluconacetobacter, Neisseria, Roseburia, Parvibaculum, Staphylococcus, Nitratifractor, Mycoplasma and Campylobacter. A chimeric enzyme can comprise a first fragment and a second fragment, and the fragments can be of CRISPR enzyme orthologs of organisms of genera herein mentioned or of species herein mentioned; advantageously the fragments are from CRISPR enzyme orthologs of different species.
In embodiments, the Cas13a protein as referred to herein also encompasses a functional variant of Cas13a or a homologue or an orthologue thereof. A “functional variant” of a protein as used herein refers to a variant of such protein which retains at least partially the activity of that protein. Functional variants may include mutants (which may be insertion, deletion, or replacement mutants), including polymorphs, etc. Also included within functional variants are fusion products of such protein with another, usually unrelated, nucleic acid, protein, polypeptide or peptide. Functional variants may be naturally occurring or may be man-made. Advantageous embodiments can involve engineered or non-naturally occurring Type VI RNA-targeting effector protein.
In an embodiment, nucleic acid molecule(s) encoding the Cas13 or an ortholog or homolog thereof, may be codon-optimized for expression in a eukaryotic cell. A eukaryote can be as herein discussed. Nucleic acid molecule(s) can be engineered or non-naturally occurring.
In an embodiment, the Cas13a or an ortholog or homolog thereof, may comprise one or more mutations (and hence nucleic acid molecule(s) coding for same may have mutation(s). The mutations may be artificially introduced mutations and may include but are not limited to one or more mutations in a catalytic domain. Examples of catalytic domains with reference to a Cas9 enzyme may include but are not limited to RuvC I, RuvC II, RuvC III and HNH domains.
In an embodiment, the Cas13a or an ortholog or homolog thereof, may comprise one or more mutations. The mutations may be artificially introduced mutations and may include but are not limited to one or more mutations in a catalytic domain. Examples of catalytic domains with reference to a Cas enzyme may include but are not limited to HEPN domains.
In an embodiment, the Cas1a3 or an ortholog or homolog thereof, may be used as a generic nucleic acid binding protein with fusion to or being operably linked to a functional domain. Exemplary functional domains may include but are not limited to translational initiator, translational activator, translational repressor, nucleases, in particular ribonucleases, a spliceosome, beads, a light inducible/controllable domain or a chemically inducible/controllable domain.
In certain example embodiments, the Cas13a effector protein may be from an organism selected from the group consisting of; Leptotrichia, Listeria, Corynebacter, Sutterella, Legionella, Treponema, Filifactor, Eubacterium, Streptococcus, Lactobacillus, Mycoplasma, Bacteroides, Flaviivola, Flavobacterium, Sphaerochaeta, Azospirillum, Gluconacetobacter, Neisseria, Roseburia, Parvibaculum, Staphylococcus, Nitratifractor, Mycoplasma, and Campylobacter.
In certain embodiments, the effector protein may be a Listeria sp. Cas13p, preferably Listeria seeligeria Cas13p, more preferably Listeria seeligeria serovar 1/2b str. SLCC3954 Cas13p and the crRNA sequence may be 44 to 47 nucleotides in length, with a 5′ 29-nt direct repeat (DR) and a 15-nt to 18-nt spacer.
In certain embodiments, the effector protein may be a Leptotrichia sp. Cas13p, preferably Leptotrichia shahii Cas13p, more preferably Leptotrichia shahii DSM 19757 Cas13p and the crRNA sequence may be 42 to 58 nucleotides in length, with a 5′ direct repeat of at least 24 nt, such as a 5′ 24-28-nt direct repeat (DR) and a spacer of at least 14 nt, such as a 14-nt to 28-nt spacer, or a spacer of at least 18 nt, such as 19, 20, 21, 22, or more nt, such as 18-28, 19-28, 20-28, 21-28, or 22-28 nt.
In certain example embodiments, the effector protein may be a Leptotrichia sp., Leptotrichia wadei F0279, or a Listeria sp., preferably Listeria newyorkensis FSL M6-0635.
In certain example embodiments, the Cas13 effector proteins of the invention include, without limitation, the following 21 ortholog species (including multiple CRISPR loci: Leptotrichia shahii; Leptotrichia wadei (Lw2); Listeria seeligeri; Lachnospiraceae bacterium MA2020; Lachnospiraceae bacterium NK4A179; [Clostridium] aminophilum DSM 10710; Carnobacterium gallinarum DSM 4847; Carnobacterium gallinarum DSM 4847 (second CRISPR Loci); Paludibacter propionicigenes WB4; Listeria weihenstephanensis FSL R9-0317; Listeriaceae bacterium FSL M6-0635; Leptotrichia wadei F0279; Rhodobacter capsulatus SB 1003; Rhodobacter capsulatus R121; Rhodobacter capsulatus DE442; Leptotrichia buccalis C-1013-b; Herbinix hemicellulosilytica; [Eubacterium] rectale; Eubacteriaceae bacterium CHKCI004; Blautia sp. Marseille-P2398; and Leptotrichia sp. oral taxon 879 str. F0557. Twelve (12) further non-limiting examples are: Lachnospiraceae bacterium NK4A144; Chloroflexus aggregans; Demequina aurantiaca; Thalassospira sp. TSL5-1; Pseudobutyrivibrio sp. OR37; Butyrivibrio sp. YAB3001; Blautia sp. Marseille-P2398; Leptotrichia sp. Marseille-P3007; Bacteroides ihuae; Porphyromonadaceae bacterium KH3CP3RA; Listeria riparia; and Insolitispirillum peregrinum.
In certain embodiments, the Cas13 protein according to the invention is or is derived from one of the orthologues as described, or is a chimeric protein of two or more of the orthologues as described below, or is a mutant or variant of one of the orthologues as described (or a chimeric mutant or variant), including dead Cas13, split Cas13, destabilized Cas13, etc. as defined herein elsewhere, with or without fusion with a heterologous/functional domain.
In certain example embodiments, the Cas13a effector protein is from an organism of a genus selected from the group consisting of: Leptotrichia, Listeria, Corynebacter, Sutterella, Legionella, Treponema, Filifactor, Eubacterium, Streptococcus, Lactobacillus, Mycoplasma, Bacteroides, Flaviivola, Flavobacterium, Sphaerochaeta, Azospirillum, Gluconacetobacter, Neisseria, Roseburia, Parvibaculum, Staphylococcus, Nitratifractor, Mycoplasma, Campylobacter, and Lachnospira.
In an embodiment of the invention, there is provided an effector protein which comprises an amino acid sequence having at least 80% sequence homology to the wild-type sequence of any of Leptotrichia shahii Cas13, Lachnospiraceae bacterium MA2020 Cas13, Lachnospiraceae bacterium NK4A179 Cas13, Clostridium aminophilum (DSM 10710) Cas13, Carnobacterium gallinarum (DSM 4847) Cas13, Paludibacter propionicigenes (WB4) Cas13, Listeria weihenstephanensis (FSL R9-0317) Cas13, Listeriaceae bacterium (FSL M6-0635) Cas13, Listeria newyorkensis (FSL M6-0635) Cas13, Leptotrichia wadei (F0279) Cas13, Rhodobacter capsulatus (SB 1003) Cas13, Rhodobacter capsulatus (R121) Cas13, Rhodobacter capsulatus (DE442) Cas13, Leptotrichia wadei (Lw2) Cas13, or Listeria seeligeri Cas13. According to the invention, a consensus sequence can be generated from multiple Cas13 orthologs, which can assist in locating conserved amino acid residues, and motifs, including but not limited to catalytic residues and HEPN motifs in Cas13 orthologs that mediate Cas13 function. One such consensus sequence, generated from selected orthologs.
In an embodiment of the invention, the effector protein comprises an amino acid sequence having at least 80% sequence homology to a Type VI effector protein consensus sequence including but not limited to a consensus sequence described herein.
In another non-limiting example, a sequence alignment tool to assist generation of a consensus sequence and identification of conserved residues is the MUSCLE alignment tool (www.ebi.ac.uk/Tools/msa/muscle/). For example, using MUSCLE, the following amino acid locations conserved among Cas13a orthologs can be identified in Leptotrichia wadei Cas13a:K2; K5; V6; E301; L331; 1335; N341; G351; K352; E375; L392; L396; D403; F446; 1466; 1470; R474 (HEPN); H475; H479 (HEPN), E508; P556; L561; 1595; Y596; F600; Y669; 1673; F681; L685; Y761; L676; L779; Y782; L836; D847; Y863; L869; 1872; K879; 1933; L954; 1958; R961; Y965; E970; R971; D972; R1046 (HEPN), H1051 (HEPN), Y1075; D1076; K1078; K1080; 11083; 11090.
In certain example embodiments, the RNA-targeting effector protein is a Type VI-B effector protein, such as Cas13b and Group 29 or Group 30 proteins. In certain example embodiments, the RNA-targeting effector protein comprises one or more HEPN domains. In certain example embodiments, the RNA-targeting effector protein comprises a C-terminal HEPN domain, a N-terminal HEPN domain, or both. Regarding example Type VI-B effector proteins that may be used in the context of this invention, reference is made to U.S. application Ser. No. 15/331,792 entitled “Novel CRISPR Enzymes and Systems” and filed Oct. 21, 2016, International Patent Application No. PCT/US2016/058302 entitled “Novel CRISPR Enzymes and Systems”, and filed Oct. 21, 2016, and Smargon et al. “Cas13b is a Type VI-B CRISPR-associated RNA-Guided RNase differentially regulated by accessory proteins Csx27 and Csx28” Molecular Cell, 65, 1-13 (2017); dx.doi.org/10.1016/j.molce1.2016.12.023. In certain example embodiments, the Cas13b effector protein is, or comprises an amino acid sequence having at least 80% sequence homology to any of the sequences of Table 1 of International Patent Application No. PCT/US2016/058302. Further reference is made to example Type VI-B effector proteins of U.S. Provisional Application Nos. 62/471,710, 62/566,829 and International Patent Publication No. WO2018/1703333, entitled “Novel Cas13b Orthologues CRISPR Enzymes and System”. In particular embodiments, the Cas13b enzyme is derived from Bergeyella zoohelcum. In certain other example embodiments, the effector protein is, or comprises an amino acid sequence having at least 80% sequence homology to any of the sequences listed in Tables 1A or 1B of International Patent Publication No. WO2018/1703333, specifically incorporated herein by reference. In certain embodiments, the Cas 13b effector protein is, or comprises an amino acid sequence having at least 80% sequence homology to any of the polypeptides in U.S. Provisional Applications 62/484,791, 62/561,662, 62/568,129 or International Patent Publication WO2018/191388, all entitled “Novel Type VI CRISPR Orthologs and Systems,” incorporated herein by reference. In certain embodiments, the Cas13b effector protein is, or comprises an amino acid sequence having at least 80% sequence homology to a polypeptide as set forth in FIG. 1 of International Patent Publication WO2018/191388, specifically incorporated herein by reference. In an aspect, the Cas13b protein is selected from the group consisting of Porphyromonas gulae Cas13b (accession number WP 039434803), Prevotella sp. P5-125 Cas 13b (accession number WP 044065294), Porphyromonas gingivalis Cas 13b (accession number WP 053444417), Porphyromonas sp. COT-052 OH4946 Cas 13b (accession number WP 039428968), Bacteroides pyogenes Cas 13b (accession number WP 034542281), Riemerella anatipestifer Cas13b (accession number WP 004919755).
In certain example embodiments, the RNA-targeting effector protein is a Cas13c effector protein as disclosed in U.S. Provisional Patent Application No. 62/525,165 filed Jun. 26, 2017, and International Patent Publication No. WO2018/035250 filed Aug. 16, 2017. In certain example embodiments, the Cas13c protein may be from an organism of a genus such as Fusobacterium or Anaerosalibacter. Example wildtype orthologue sequences of Cas13c are: EHO19081, WP 094899336, WP 040490876, WP 047396607, WP 035935671, WP 035906563, WP 042678931, WP 062627846, WP 005959231, WP 027128616, WP 062624740, WP 096402050.
In certain example embodiments, the Cas13 protein may be selected from any of the following: Cas13a: Leptotrichia shahii, Leptotrichia wadei (Lw2), Listeria seeligeri, Lachnospiraceae bacterium MA2020, Lachnospiraceae bacterium NK4A179, [Clostridium] aminophilum DSM 10710, Carnobacterium gallinarum DSM 4847, Carnobacterium gallinarum DSM 4847, Paludibacter propionicigenes WB4, Listeria weihenstephanensis FSL R9-0317, Listeriaceae bacterium FSL M6-0635, Leptotrichia wadei F0279, Rhodobacter capsulatus SB 1003, Rhodobacter capsulatus R121, Rhodobacter capsulatus DE442, Leptotrichia buccalis C-1013-b, Herbinix hemicellulosilytica, [Eubacterium] rectale, Eubacteriaceae bacterium CHKCI004, Blautia sp. Marseille-P2398, Leptotrichia sp. oral taxon 879 str. F0557; Cas 13b: Bergeyella zoohelcum, Prevotella intermedia, Prevotella buccae, Alistipes sp. ZOR0009, Prevotella sp. MA2016, Riemerella anatipestifer, Prevotella aurantiaca, Prevotella saccharolytica, Prevotella intermedia, Capnocytophaga canimorsus, Porphyromonas gulae, Prevotella sp. P5-125, Flavobacterium branchiophilum, Porphyromonas gingivalis, Prevotella intermedia; Cas13c: Fusobacterium necrophorum subsp. funduliforme ATCC 51357 contig00003, Fusobacterium necrophorum DJ-2 contig0065, whole genome shotgun sequence, Fusobacterium necrophorum BFTR-1 contig0068, Fusobacterium necrophorum subsp. funduliforme 1_1_36S cont1.14, Fusobacterium perfoetens ATCC 29250 T364DRAFT_scaffold00009.9_C, Fusobacterium ulcerans ATCC 49185 cont2.38, Anaerosalibacter sp. ND1 genome assembly Anaerosalibacter massiliensis ND1.
In certain example embodiments the orthologue is a Cas13a, Cas13b, Cas13c, or Cas13d. In certain example embodiments the orthologue is a Cas13 orthologue. In certain example embodiments, the Cas13a orthologues is derived from Herbinix hemicellulosilytica. In certain example embodiments, the Cas13a orthologue is derived from Herbinix hemicellulosilytica DSM 29228. In certain example embodiments, the Cas 13 orthologue is defined by SEQ ID NO: 75 of International Publication No. WO 2017/219027. In certain example embodiments, the Cas 13 orthologue is defined by a sequence from FIG. 1A of U.S. Provisional Application 62/967,408, filed Jan. 29, 2020, entitled “Novel CRISPR Enzymes and Systems” (loci QNRW01000010.1, OWPA01000389.1, 0153798_10014618, 0153978_10005171, and 0153798_10004687). In certain example embodiments, the Cas 13a orthologue is encoded by the nucleic acid sequence 0123519_10037894 or 0J26742_10014101. In certain other example embodiments, the Cas13 orthologue has at least 80% sequence identity to SEQ ID NO: 75 of International Publication No. WO 2017/219027. In certain other example embodiments, the Cas13 orthologue has at least 80% sequence identity to sequence from FIG. 1A of U.S. Provisional Application 62/967,408, filed Jan. 29, 2020, entitled “Novel CRISPR Enzymes and Systems” (loci QNRW01000010.1, OWPA01000389.1, 0153798_10014618, 0153978_10005171, and 0153798_10004687), incorporated herein by reference. In certain other example embodiments, the Cas13 orthologue has at least 80% sequence identity to a polypeptide encoded by the nucleic acid sequence 0123519_10037894 or 0J26742_10014101. In certain example embodiments, the Cas13 orthologue has at least one HEPN domain and at least 80% identity to SEQ ID NO: 75 of International Publication No. WO 2017/219027. In certain example embodiments, the Cas13 orthologue has at least one HEPN domain and at least 80% identity to sequence from loci QNRW01000010.1, OWPA01000389.1, 0153798_10014618, 0153978_10005171, and 0153798_10004687. In certain example embodiments, the Cas13 orthologue has at least one HEPN domain and at least 80% identity to a polypeptide encoded by the nucleic acid sequence of 0123519_10037894 or 0J26742_10014101 in BROD-4880P2_Cas13a_sequences.txt. In another example embodiment, the Cas13 orthologue has at least two HEPN domains and at least 80% identity to SEQ ID NO: 75 of International Publication No. WO 2017/219027. In another example embodiment, the Cas13 orthologue has at least two HEPN domains and at least 80% identity to sequence from FIG. 1A of U.S. Provisional Application 62/967,408, filed Jan. 29, 2020, entitled “Novel CRISPR Enzymes and Systems” loci QNRW01000010.1, OWPA01000389.1, 0153798_10014618, 0153978_10005171, and 0153798_10004687. The Cas13a thermostable proteins of FIG. 1A of U.S. Provisional Application 62/967,408, filed Jan. 29, 2020, entitled “Novel CRISPR Enzymes and Systems” were identified from stable anaerobic thermophilic methanogenic microbiomes fermenting switchgrass, supporting their thermostability. See, Liang et al., Biotechnol Biofuels 2018; 11:243 doi: 10.1186/s13068-018-1238-1. Similarly, the 0J26742_10014101 clusters with the verified thermophilic sourced Cas13a sequences detailed in FIG. 1A of U.S. Provisional Application 62/967,408, filed Jan. 29, 2020, entitled “Novel CRISPR Enzymes and Systems”. The nucleic acid identified at loci 123519_10037894 was identified from a study focusing on 70° C. organism. In certain example embodiments, the Cas13 orthologue has at least two HEPN domains and at least 80% identity to a polypeptide encoded by the nucleic acid sequence 0123519_10037894 or 0J26742_10014101. Accordingly, a person of ordinary skill in the art may use characteristics of the above identified orthologs to select other suitable thermostable orthologues from those disclosed herein.
In certain example embodiments, the assays may comprise a DNA-targeting effector protein. In certain example embodiments, the assays may comprise multiple DNA-targeting effectors or one or more orthologs in combination with one or more RNA-targeting effectors. In certain example embodiments, the DNA targeting are Type V Cas proteins, such as Cas12 proteins. In certain other example embodiments, the Cas12 proteins are Cas12a, Cas12b, Cas12c, Cas12d, Cas12e, Cas12g, or a combination thereof.
Cpf1 Orthologs
The present invention encompasses the use of a Cpf1 effector protein, derived from a Cpf1 locus denoted as subtype V-A. Herein such effector proteins are also referred to as “Cpf1p”, e.g., a Cpf1 protein (and such effector protein or Cpf1 protein or protein derived from a Cpf1 locus is also called “CRISPR enzyme”). Presently, the subtype V-A loci encompasses cas1, cas2, a distinct gene denoted cpf1 and a CRISPR array. Cpf1 (CRISPR-associated protein Cpf1, subtype PREFRAN) is a large protein (about 1300 amino acids) that contains a RuvC-like nuclease domain homologous to the corresponding domain of Cas9 along with a counterpart to the characteristic arginine-rich cluster of Cas9. However, Cpf1 lacks the HNH nuclease domain that is present in all Cas9 proteins, and the RuvC-like domain is contiguous in the Cpf1 sequence, in contrast to Cas9 where it contains long inserts including the HNH domain. Accordingly, in particular embodiments, the CRISPR-Cas enzyme comprises only a RuvC-like nuclease domain.
The programmability, specificity, and collateral activity of the RNA-guided Cpf1 also make it an ideal switchable nuclease for non-specific cleavage of nucleic acids. In one embodiment, a Cpf1 system is engineered to provide and take advantage of collateral non-specific cleavage of RNA. In another embodiment, a Cpf1 system is engineered to provide and take advantage of collateral non-specific cleavage of ssDNA. Accordingly, engineered Cpf1 systems provide platforms for nucleic acid detection and transcriptome manipulation. Cpf1 is developed for use as a mammalian transcript knockdown and binding tool. Cpf1 is capable of robust collateral cleavage of RNA and ssDNA when activated by sequence-specific targeted DNA binding.
Homologs and orthologs may be identified by homology modelling (see, e.g., Greer, Science vol. 228 (1985) 1055, and Blundell et al. Eur J Biochem vol 172 (1988), 513) or “structural BLAST” (Dey F, Cliff Zhang Q, Petrey D, Honig B. Toward a “structural BLAST”: using structural relationships to infer function. Protein Sci. 2013 April; 22(4):359-66. doi: 10.1002/pro.2225.). See also Shmakov et al. (2015) for application in the field of CRISPR-Cas loci. Homologous proteins may but need not be structurally related, or are only partially structurally related. The Cpf1 gene is found in several diverse bacterial genomes, typically in the same locus with cas1, cas2, and cas4 genes and a CRISPR cassette (for example, FNFX1_1431-FNFX1_1428 of Francisella cf. novicida Fx1). In particular embodiments, the effector protein is a Cpf1 effector protein from an organism from a genus comprising Streptococcus, Campylobacter, Nitratifractor, Staphylococcus, Parvibaculum, Roseburia, Neisseria, Gluconacetobacter, Azospirillum, Sphaerochaeta, Lactobacillus, Eubacterium, Corynebacter, Carnobacterium, Rhodobacter, Listeria, Paludibacter, Clostridium, Lachnospiraceae, Clostridiaridium, Leptotrichia, Francisella, Legionella, Alicyclobacillus, Methanomethyophilus, Porphyromonas, Prevotella, Bacteroidetes, Helcococcus, Letospira, Desulfovibrio, Desulfonatronum, Opitutaceae, Tuberibacillus, Bacillus, Brevibacilus, Methylobacterium or Acidaminococcus.
In further particular embodiments, the Cpf1 effector protein is from an organism selected from S. mutans, S. agalactiae, S. equisimilis, S. sanguinis, S. pneumonia; C. jejuni, C. coli; N. salsuginis, N. tergarcus; S. auricularis, S. carnosus; N. meningitides, N. gonorrhoeae; L. monocytogenes, L. ivanovii; C. botulinum, C. difficile, C. tetani, C. sordellii.
The effector protein may comprise a chimeric effector protein comprising a first fragment from a first effector protein (e.g., a Cpf1) ortholog and a second fragment from a second effector (e.g., a Cpf1) protein ortholog, and wherein the first and second effector protein orthologs are different. At least one of the first and second effector protein (e.g., a Cpf1) orthologs may comprise an effector protein (e.g., a Cpf1) from an organism comprising Streptococcus, Campylobacter, Nitratifractor, Staphylococcus, Parvibaculum, Roseburia, Neisseria, Gluconacetobacter, Azospirillum, Sphaerochaeta, Lactobacillus, Eubacterium, Corynebacter, Carnobacterium, Rhodobacter, Listeria, Paludibacter, Clostridium, Lachnospiraceae, Clostridiaridium, Leptotrichia, Francisella, Legionella, Alicyclobacillus, Methanomethyophilus, Porphyromonas, Prevotella, Bacteroidetes, Helcococcus, Letospira, Desulfovibrio, Desulfonatronum, Opitutaceae, Tuberibacillus, Bacillus, Brevibacilus, Methylobacterium or Acidaminococcus; e.g., a chimeric effector protein comprising a first fragment and a second fragment wherein each of the first and second fragments is selected from a Cpf1 of an organism comprising Streptococcus, Campylobacter, Nitratifractor, Staphylococcus, Parvibaculum, Roseburia, Neisseria, Gluconacetobacter, Azospirillum, Sphaerochaeta, Lactobacillus, Eubacterium, Corynebacter, Carnobacterium, Rhodobacter, Listeria, Paludibacter, Clostridium, Lachnospiraceae, Clostridiaridium, Leptotrichia, Francisella, Legionella, Alicyclobacillus, Methanomethyophilus, Porphyromonas, Prevotella, Bacteroidetes, Helcococcus, Letospira, Desulfovibrio, Desulfonatronum, Opitutaceae, Tuberibacillus, Bacillus, Brevibacilus, Methylobacterium or Acidaminococcus wherein the first and second fragments are not from the same bacteria; for instance a chimeric effector protein comprising a first fragment and a second fragment wherein each of the first and second fragments is selected from a Cpf1 of S. mutans, S. agalactiae, S. equisimilis, S. sanguinis, S. pneumonia; C. jejuni, C. coli; N. salsuginis, N. tergarcus; S. auricularis, S. carnosus; N. meningitides, N. gonorrhoeae; L. monocytogenes, L. ivanovii; C. botulinum, C. difficile, C. tetani, C. sordellii; Francisella tularensis 1, Prevotella albensis, Lachnospiraceae bacterium MC2017 1, Butyrivibrio proteoclasticus, Peregrinibacteria bacterium GW2011_GWA2_33_10, Parcubacteria bacterium GW2011_GWC2_44_17, Smithella sp. SCADC, Acidaminococcus sp. BV3L6, Lachnospiraceae bacterium MA2020, Candidatus Methanoplasma termitum, Eubacterium eligens, Moraxella bovoculi 237, Leptospira inadai, Lachnospiraceae bacterium ND2006, Porphyromonas crevioricanis 3, Prevotella disiens and Porphyromonas macacae, wherein the first and second fragments are not from the same bacteria. In a more preferred embodiment, the Cpf1p is derived from a bacterial species selected from Francisella tularensis 1, Prevotella albensis, Lachnospiraceae bacterium MC2017 1, Butyrivibrio proteoclasticus, Peregrinibacteria bacterium GW2011_GWA2_33_10, Parcubacteria bacterium GW2011_GWC2_44_17, Smithella sp. SCADC, Acidaminococcus sp. BV3L6, Lachnospiraceae bacterium MA2020, Candidatus Methanoplasma termitum, Eubacterium eligens, Moraxella bovoculi 237, Leptospira inadai, Lachnospiraceae bacterium ND2006, Porphyromonas crevioricanis 3, Prevotella disiens and Porphyromonas macacae. In certain embodiments, the Cpf1p is derived from a bacterial species selected from Acidaminococcus sp. BV3L6, Lachnospiraceae bacterium MA2020. In certain embodiments, the effector protein is derived from a subspecies of Francisella tularensis 1, including but not limited to Francisella tularensis subsp. Novicida.
In some embodiments, the Cpf1p is derived from an organism from the genus of Eubacterium. In some embodiments, the CRISPR effector protein is a Cpf1 protein derived from an organism from the bacterial species of Eubacterium rectale. In some embodiments, the amino acid sequence of the Cpf1 effector protein corresponds to NCBI Reference Sequence WP 055225123.1, NCBI Reference Sequence WP 055237260.1, NCBI Reference Sequence WP 055272206.1, or GenBank ID OLA16049.1. In some embodiments, the Cpf1 effector protein has a sequence homology or sequence identity of at least 60%, more particularly at least 70, such as at least 80%, more preferably at least 85%, even more preferably at least 90%, such as for instance at least 95%, with NCBI Reference Sequence WP 055225123.1, NCBI Reference Sequence WP_055237260.1, NCBI Reference Sequence WP_055272206.1, or GenBank ID OLA16049.1. The skilled person will understand that this includes truncated forms of the Cpf1 protein whereby the sequence identity is determined over the length of the truncated form. In some embodiments, the Cpf1 effector recognizes the PAM sequence of TTTN or CTTN.
In particular embodiments, the homologue or orthologue of Cpf1 as referred to herein has a sequence homology or identity of at least 80%, more preferably at least 85%, even more preferably at least 90%, such as for instance at least 95% with Cpf1. In further embodiments, the homologue or orthologue of Cpf1 as referred to herein has a sequence identity of at least 80%, more preferably at least 85%, even more preferably at least 90%, such as for instance at least 95% with the wild type Cpf1. Where the Cpf1 has one or more mutations (mutated), the homologue or orthologue of said Cpf1 as referred to herein has a sequence identity of at least 80%, more preferably at least 85%, even more preferably at least 90%, such as for instance at least 95% with the mutated Cpf1.
In an ambodiment, the Cpf1 protein may be an ortholog of an organism of a genus which includes, but is not limited to Acidaminococcus sp, Lachnospiraceae bacterium or Moraxella bovoculi; in particular embodiments, the type V Cas protein may be an ortholog of an organism of a species which includes, but is not limited to Acidaminococcus sp. BV3L6; Lachnospiraceae bacterium ND2006 (LbCpf1) or Moraxella bovoculi 237. In particular embodiments, the homologue or orthologue of Cpf1 as referred to herein has a sequence homology or identity of at least 80%, more preferably at least 85%, even more preferably at least 90%, such as for instance at least 95% with one or more of the Cpf1 sequences disclosed herein. In further embodiments, the homologue or orthologue of Cpf as referred to herein has a sequence identity of at least 80%, more preferably at least 85%, even more preferably at least 90%, such as for instance at least 95% with the wild type FnCpf1, AsCpf1 or LbCpf1. The skilled person will understand that this includes truncated forms of the Cpf1 protein whereby the sequence identity is determined over the length of the truncated form. In certain of the following, Cpf1 amino acids are followed by nuclear localization signals (NLS) (italics), a glycine-serine (GS) linker, and 3× HA tag. Further Cpf1 orthologs include NCBI WP_055225123.1, NCBI WP_055237260.1, NCBI WP_055272206.1, and GenBank OLA16049.1.
C2c1 Orthologs
The present invention encompasses the use of a C2c1 effector proteins, derived from a C2c1 locus denoted as subtype V-B. Herein such effector proteins are also referred to as “C2c1p”, e.g., a C2c1 protein (and such effector protein or C2c1 protein or protein derived from a C2c1 locus is also called “CRISPR enzyme”). Presently, the subtype V-B loci encompasses cas1-Cas4 fusion, cas2, a distinct gene denoted C2c1 and a CRISPR array. C2c1 (CRISPR-associated protein C2c1) is a large protein (about 1100-1300 amino acids) that contains a RuvC-like nuclease domain homologous to the corresponding domain of Cas9 along with a counterpart to the characteristic arginine-rich cluster of Cas9. However, C2c1 lacks the HNH nuclease domain that is present in all Cas9 proteins, and the RuvC-like domain is contiguous in the C2c1 sequence, in contrast to Cas9 where it contains long inserts including the HNH domain. Accordingly, in particular embodiments, the CRISPR-Cas enzyme comprises only a RuvC-like nuclease domain.
The programmability, specificity, and collateral activity of the RNA-guided C2c1 also make it an ideal switchable nuclease for non-specific cleavage of nucleic acids. In one embodiment, a C2c1 system is engineered to provide and take advantage of collateral non-specific cleavage of RNA. In another embodiment, a C2c1 system is engineered to provide and take advantage of collateral non-specific cleavage of ssDNA. Accordingly, engineered C2c1 systems provide platforms for nucleic acid detection and transcriptome manipulation, and inducing cell death. C2c1 is developed for use as a mammalian transcript knockdown and binding tool. C2c1 is capable of robust collateral cleavage of RNA and ssDNA when activated by sequence-specific targeted DNA binding.
In certain embodiments, C2c1 is provided or expressed in an in vitro system or in a cell, transiently or stably, and targeted or triggered to non-specifically cleave cellular nucleic acids. In one embodiment, C2c1 is engineered to knock down ssDNA, for example viral ssDNA. In another embodiment, C2c1 is engineered to knock down RNA. The system can be devised such that the knockdown is dependent on a target DNA present in the cell or in vitro system, or triggered by the addition of a target nucleic acid to the system or cell.
C2c1 (also known as Cas12b) proteins are RNA guided nucleases. In certain embodiments, the Cas protein may comprise at least 80% sequence identity to a polypeptide as described in International Patent Publication WO 2016/205749 at
In particular embodiments, the effector protein is a C2c1 effector protein from an organism from a genus comprising Alicyclobacillus, Desulfovibrio, Desulfonatronum, Opitutaceae, Tuberibacillus, Bacillus, Brevibacillus, Candidatus, Desulfatirhabdium, Citrobacter, Elusimicrobia, Methylobacterium, Omnitrophica, Phycisphaerae, Planctomycetes, Spirochaetes, and Verrucomicrobiaceae.
In further particular embodiments, the C2c1 effector protein is from a species selected from Alicyclobacillus acidoterrestris (e.g., ATCC 49025), Alicyclobacillus contaminans (e.g., DSM 17975), Alicyclobacillus macrosporangiidus (e.g. DSM 17980), Bacillus hisashii strain C4, Candidatus Lindowbacteria bacterium RIFCSPLOWO2, Desulfovibrio inopinatus (e.g., DSM 10711), Desulfonatronum thiodismutans (e.g., strain MLF-1), Elusimicrobia bacterium RIFOXYA12, Omnitrophica WOR_2 bacterium RIFCSPHIGHO2, Opitutaceae bacterium TAV5, Phycisphaerae bacterium ST-NAGAB-D1, Planctomycetes bacterium RBG_13_46_10, Spirochaetes bacterium GWB1_27_13, Verrucomicrobiaceae bacterium UBA2429, Tuberibacillus calidus (e.g., DSM 17572), Bacillus thermoamylovorans (e.g., strain B4166), Brevibacillus sp. CF112, Bacillus sp. NSP2.1, Desulfatirhabdium butyrativorans (e.g., DSM 18734), Alicyclobacillus herbarius (e.g., DSM 13609), Citrobacter freundii (e.g., ATCC 8090), Brevibacillus agri (e.g., BAB-2500), Methylobacterium nodulans (e.g., ORS 2060).
In one aspect, the CRISPR-Cas protein is a Cas12b from Table 2A or Table 2B. In certain embodiments, the CRISPR-Cas protein is a Cas12b from a thermostable species, for example Alicyclobacillus acidiphilus (AapCas12b). When the Aap protein is utilized, a related guide can be used, for example from the same or another Alicyclobacillus species, e.g. Alicyclobacillus acidoterrestrus (AacCas12b). In an aspect, the guide comprises at least 95%, 96%, 97% or more sequence identity to the DR and/or the tracr sequence from Aac. In certain embodiments, the AapCas12b protein comprises a sequence with 80%, 85%, 90%, 95% identity to, or consisting of the sequence:
In an aspect, the CRISPR-Cas protein is a BrCas12b. In certain embodiments, the BrCas12b protein comprises a sequence with 80%, 85%, 90%, 95% identity to, or consisting of the sequence:
In an aspect, when the CRISPR-Cas protein is a BrCas12b, the tracrRNA can be selected from one of tracrRNA design 1-tracrRNA design 6 as detailed below: tracrRdesign
In an aspect, when BrCas12b is utilized, the crNA design can be selected from one of crRNAdesign 1 to crRNA design 3, wherein N represents the spacer design:
NNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNN
In certain example embodiments, the guide sequence is selected from SEQ ID NOS: 40,500-61,643 or Table 10 or Table 16.
The effector protein may comprise a chimeric effector protein comprising a first fragment from a first effector protein (e.g., a C2c1) ortholog and a second fragment from a second effector (e.g., a C2c1) protein ortholog, and wherein the first and second effector protein orthologs are different. At least one of the first and second effector protein (e.g., a C2c1) orthologs may comprise an effector protein (e.g., a C2c1) from an organism comprising Alicyclobacillus, Desulfovibrio, Desulfonatronum, Opitutaceae, Tuberibacillus, Bacillus, Brevibacillus, Candidatus, Desulfatirhabdium, Elusimicrobia, Citrobacter, Methylobacterium, Omnitrophicai, Phycisphaerae, Planctomycetes, Spirochaetes, and Verrucomicrobiaceae; e.g., a chimeric effector protein comprising a first fragment and a second fragment wherein each of the first and second fragments is selected from a C2c1 of an organism comprising Alicyclobacillus, Desulfovibrio, Desulfonatronum, Opitutaceae, Tuberibacillus, Bacillus, Brevibacillus, Candidatus, Desulfatirhabdium, Elusimicrobia, Citrobacter, Methylobacterium, Omnitrophicai, Phycisphaerae, Planctomycetes, Spirochaetes, and Verrucomicrobiaceae wherein the first and second fragments are not from the same bacteria; for instance a chimeric effector protein comprising a first fragment and a second fragment wherein each of the first and second fragments is selected from a C2c1 of Alicyclobacillus acidoterrestris (e.g., ATCC 49025), Alicyclobacillus contaminans (e.g., DSM 17975), Alicyclobacillus macrosporangiidus (e.g. DSM 17980), Bacillus hisashii strain C4, Candidatus Lindowbacteria bacterium RIFCSPLOWO2, Desulfovibrio inopinatus (e.g., DSM 10711), Desulfonatronum thiodismutans (e.g., strain MLF-1), Elusimicrobia bacterium RIFOXYA12, Omnitrophica WOR_2 bacterium RIFCSPHIGHO2, Opitutaceae bacterium TAV5, Phycisphaerae bacterium ST-NAGAB-D1, Planctomycetes bacterium RBG_13_46_10, Spirochaetes bacterium GWB1_27_13, Verrucomicrobiaceae bacterium UBA2429, Tuberibacillus calidus (e.g., DSM 17572), Bacillus thermoamylovorans (e.g., strain B4166), Brevibacillus sp. CF112, Bacillus sp. NSP2.1, Desulfatirhabdium butyrativorans (e.g., DSM 18734), Alicyclobacillus herbarius (e.g., DSM 13609), Citrobacter freundii (e.g., ATCC 8090), Brevibacillus agri (e.g., BAB-2500), Methylobacterium nodulans (e.g., ORS 2060), wherein the first and second fragments are not from the same bacteria.
In a more preferred embodiment, the C2c1p is derived from a bacterial species selected from Alicyclobacillus acidoterrestris (e.g., ATCC 49025), Alicyclobacillus contaminans (e.g., DSM 17975), Alicyclobacillus macrosporangiidus (e.g. DSM 17980), Bacillus hisashii strain C4, Candidatus Lindowbacteria bacterium RIFCSPLOWO2, Desulfovibrio inopinatus (e.g., DSM 10711), Desulfonatronum thiodismutans (e.g., strain MLF-1), Elusimicrobia bacterium RIFOXYA12, Omnitrophica WOR_2 bacterium RIFCSPHIGHO2, Opitutaceae bacterium TAV5, Phycisphaerae bacterium ST-NAGAB-D1, Planctomycetes bacterium RBG_13_46_10, Spirochaetes bacterium GWB1_27_13, Verrucomicrobiaceae bacterium UBA2429, Tuberibacillus calidus (e.g., DSM 17572), Bacillus thermoamylovorans (e.g., strain B4166), Brevibacillus sp. CF112, Bacillus sp. NSP2.1, Desulfatirhabdium butyrativorans (e.g., DSM 18734), Alicyclobacillus herbarius (e.g., DSM 13609), Citrobacter freundii (e.g., ATCC 8090), Brevibacillus agri (e.g., BAB-2500), Methylobacterium nodulans (e.g., ORS 2060). In certain embodiments, the C2c1p is derived from a bacterial species selected from Alicyclobacillus acidoterrestris (e.g., ATCC 49025), Alicyclobacillus contaminans (e.g., DSM 17975).
In particular embodiments, the homologue or orthologue of C2c1 as referred to herein has a sequence homology or identity of at least 80%, more preferably at least 85%, even more preferably at least 90%, such as for instance at least 95% with C2c1. In further embodiments, the homologue or orthologue of C2c1 as referred to herein has a sequence identity of at least 80%, more preferably at least 85%, even more preferably at least 90%, such as for instance at least 95% with the wild type C2c1. Where the C2c1 has one or more mutations (mutated), the homologue or orthologue of said C2c1 as referred to herein has a sequence identity of at least 80%, more preferably at least 85%, even more preferably at least 90%, such as for instance at least 95% with the mutated C2c1.
In an embodiment, the C2c1 protein may be an ortholog of an organism of a genus which includes, but is not limited to Alicyclobacillus, Desulfovibrio, Desulfonatronum, Opitutaceae, Tuberibacillus, Bacillus, Brevibacillus, Candidatus, Desulfatirhabdium, Elusimicrobia, Citrobacter, Methylobacterium, Omnitrophicai, Phycisphaerae, Planctomycetes, Spirochaetes, and Verrucomicrobiaceae; in particular embodiments, the type V Cas protein may be an ortholog of an organism of a species which includes, but is not limited to Alicyclobacillus acidoterrestris (e.g., ATCC 49025), Alicyclobacillus contaminans (e.g., DSM 17975), Alicyclobacillus macrosporangiidus (e.g. DSM 17980), Bacillus hisashii strain C4, Candidatus Lindowbacteria bacterium RIFCSPLOWO2, Desulfovibrio inopinatus (e.g., DSM 10711), Desulfonatronum thiodismutans (e.g., strain MLF-1), Elusimicrobia bacterium RIFOXYA12, Omnitrophica WOR_2 bacterium RIFCSPHIGHO2, Opitutaceae bacterium TAV5, Phycisphaerae bacterium ST-NAGAB-D1, Planctomycetes bacterium RBG_13_46_10, Spirochaetes bacterium GWB1_27_13, Verrucomicrobiaceae bacterium UBA2429, Tuberibacillus calidus (e.g., DSM 17572), Bacillus thermoamylovorans (e.g., strain B4166), Brevibacillus sp. CF112, Bacillus sp. NSP2.1, Desulfatirhabdium butyrativorans (e.g., DSM 18734), Alicyclobacillus herbarius (e.g., DSM 13609), Citrobacter freundii (e.g., ATCC 8090), Brevibacillus agri (e.g., BAB-2500), Methylobacterium nodulans (e.g., ORS 2060),In particular embodiments, the homologue or orthologue of C2c1 as referred to herein has a sequence homology or identity of at least 80%, more preferably at least 85%, even more preferably at least 90%, such as for instance at least 95% with one or more of the C2c1 sequences disclosed herein. In further embodiments, the homologue or orthologue of C2c1 as referred to herein has a sequence identity of at least 80%, more preferably at least 85%, even more preferably at least 90%, such as for instance at least 95% with the wild type AacC2c1 or BthC2c1.
In particular embodiments, the C2c1 protein of the invention has a sequence homology or identity of at least 60%, more particularly at least 70, such as at least 80%, more preferably at least 85%, even more preferably at least 90%, such as for instance at least 95% with AacC2c1 or BthC2c1. In further embodiments, the C2c1 protein as referred to herein has a sequence identity of at least 60%, such as at least 70%, more particularly at least 80%, more preferably at least 85%, even more preferably at least 90%, such as for instance at least 95% with the wild type AacC2c1. In particular embodiments, the C2c1 protein of the present invention has less than 60% sequence identity with AacC2c1. The skilled person will understand that this includes truncated forms of the C2c1 protein whereby the sequence identity is determined over the length of the truncated form.
In certain methods according to the present invention, the CRISPR-Cas protein is preferably mutated with respect to a corresponding wild-type enzyme such that the mutated CRISPR-Cas protein lacks the ability to cleave one or both DNA strands of a target locus containing a target sequence. In particular embodiments, one or more catalytic domains of the C2c1 protein are mutated to produce a mutated Cas protein which cleaves only one DNA strand of a target sequence.
In particular embodiments, the CRISPR-Cas protein may be mutated with respect to a corresponding wild-type enzyme such that the mutated CRISPR-Cas protein lacks substantially all DNA cleavage activity. In some embodiments, a CRISPR-Cas protein may be considered to substantially lack all DNA and/or RNA cleavage activity when the cleavage activity of the mutated enzyme is about no more than 25%, 10%, 5%, 1%, 0.1%, 0.01%, or less of the nucleic acid cleavage activity of the non-mutated form of the enzyme; an example can be when the nucleic acid cleavage activity of the mutated form is nil or negligible as compared with the non-mutated form.
In certain embodiments of the methods provided herein the CRISPR-Cas protein is a mutated CRISPR-Cas protein which cleaves only one DNA strand, i.e. a nickase. More particularly, in the context of the present invention, the nickase ensures cleavage within the non-target sequence, i.e. the sequence which is on the opposite DNA strand of the target sequence and which is 3′ of the PAM sequence. By means of further guidance, and without limitation, an arginine-to-alanine substitution (R911A) in the Nuc domain of C2c1 from Alicyclobacillus acidoterrestris converts C2c1 from a nuclease that cleaves both strands to a nickase (cleaves a single strand). It will be understood by the skilled person that where the enzyme is not AacC2c1, a mutation may be made at a residue in a corresponding position. Cas 12c orthologs
In certain embodiments, the effector protein, particularly a Type V loci effector protein, more particularly a Type V-C loci effector protein, even more particularly a C2c3p, may originate, may be isolated or may be derived from a bacterial metagenome selected from the group consisting of the bacterial metagenomes listed in the Table in
In certain embodiments, the effector protein, particularly a Type V loci effector protein, more particularly a Type V-C loci effector protein, even more particularly a C2c3p, may comprise, consist essentially of or consist of an amino acid sequence selected from the group consisting of amino acid sequences shown in the multiple sequence alignment in
In certain embodiments, a Type V-C locus as intended herein may encode Cas1 and the C2c3p effector protein. See FIG. 14 of PCT/US2016/038238, specifically incorporated by reference, depicting the genomic architecture of the Cas12c CRISPR-Cas loci. In certain embodiments, a Cas1 protein encoded by a Type V-C locus as intended herein may cluster with Type I-B system. See
In certain embodiments, the effector protein, particularly a Type V loci effector protein, more particularly a Type V-C loci effector protein, even more particularly a C2c3p, such as a native C2c3p, may be about 1100 to about 1500 amino acids long, e.g., about 1100 to about 1200 amino acids long, or about 1200 to about 1300 amino acids long, or about 1300 to about 1400 amino acids long, or about 1400 to about 1500 amino acids long, e.g., about 1100, about 1200, about 1300, about 1400 or about 1500 amino acids long, or at least about 1100, at least about 1200, at least about 1300, at least about 1400 or at least about 1500 amino acids long.
In certain embodiments, the effector protein, particularly a Type V loci effector protein, more particularly a Type V-C loci effector protein, even more particularly a C2c3p, and preferably the C-terminal portion of said effector protein, comprises the three catalytic motifs of the RuvC-like nuclease (i.e., RuvCI, RuvCII and RuvCIII). In certain embodiments, said effector protein, and preferably the C-terminal portion of said effector protein, may further comprise a region corresponding to the bridge helix (also known as arginine-rich cluster) that in Cas9 protein is involved in crRNA-binding. In certain embodiments, said effector protein, and preferably the C-terminal portion of said effector protein, may further comprise a Zn finger region. Preferably, the Zn-binding cysteine residue(s) may be conserved in C2c3p. In certain embodiments, said effector protein, and preferably the C-terminal portion of said effector protein, may comprise the three catalytic motifs of the RuvC-like nuclease (i.e., RuvCI, RuvCII and RuvCIII), the region corresponding to the bridge helix, and the Zn finger region, preferably in the following order, from N to C terminus: RuvCI-bridge helix-RuvCII-Zinc finger-RuvCIII. See
In certain embodiments, Type V-C loci as intended herein may comprise CRISPR repeats between 20 and 30 bp long, more typically between 22 and 27 bp long, yet more typically 25 bp long, e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 bp long.
Orthologous proteins may but need not be structurally related, or are only partially structurally related. In particular embodiments, the homologue or orthologue of a Type V protein such as Cas12c as referred to herein has a sequence homology or identity of at least 80%, more preferably at least 85%, even more preferably at least 90%, such as for instance at least 95% with a Cas12c. In further embodiments, the homologue or orthologue of a Type V Cas12c as referred to herein has a sequence identity of at least 80%, more preferably at least 85%, even more preferably at least 90%, such as for instance at least 95% with the wild type Cas12c.
In an embodiment, the Type V RNA-targeting Cas protein may be a Cas12c ortholog of an organism of a genus which includes but is not limited to Corynebacter, Sutterella, Legionella, Treponema, Filifactor, Eubacterium, Streptococcus, Lactobacillus, Mycoplasma, Bacteroides, Flaviivola, Flavobacterium, Sphaerochaeta, Azospirillum, Gluconacetobacter, Neisseria, Roseburia, Parvibaculum, Staphylococcus, Nitratifractor, Mycoplasma and Campylobacter.
In an embodiment, the Cas12c or an ortholog or homolog thereof, may comprise one or more mutations (and hence nucleic acid molecule(s) coding for same may have mutation(s). The mutations may be artificially introduced mutations and may include but are not limited to one or more mutations in a catalytic domain. Examples of catalytic domains with reference to a Cas9 enzyme may include but are not limited to RuvC I, RuvC II, RuvC III and HNH domains. In an embodiment, the Cas12c or an ortholog or homolog thereof, may comprise one or more mutations. The mutations may be artificially introduced mutations and may include but are not limited to one or more mutations in a catalytic domain. Examples of catalytic domains with reference to a Cas enzyme may include but are not limited to RuvC I, RuvC II, RuvC III, HNH domains, and HEPN domains.
As used herein, the term “guide sequence” and “guide molecule” in the context of a CRISPR-Cas system, comprises any polynucleotide sequence having sufficient complementarity with a target nucleic acid sequence to hybridize with the target nucleic acid sequence and direct sequence-specific binding of a nucleic acid-targeting complex to the target nucleic acid sequence. The guide sequences made using the methods disclosed herein may be a full-length guide sequence, a truncated guide sequence, a full-length sgRNA sequence, a truncated sgRNA sequence, or an E+F sgRNA sequence. In some embodiments, the degree of complementarity of the guide sequence to a given target sequence, when optimally aligned using a suitable alignment algorithm, is about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or more. In certain example embodiments, the guide molecule comprises a guide sequence that may be designed to have at least one mismatch with the target sequence, such that a RNA duplex formed between the guide sequence and the target sequence. Accordingly, the degree of complementarity is preferably less than 99%. For instance, where the guide sequence consists of 24 nucleotides, the degree of complementarity is more particularly about 96% or less. In particular embodiments, the guide sequence is designed to have a stretch of two or more adjacent mismatching nucleotides, such that the degree of complementarity over the entire guide sequence is further reduced. For instance, where the guide sequence consists of 24 nucleotides, the degree of complementarity is more particularly about 96% or less, more particularly, about 92% or less, more particularly about 88% or less, more particularly about 84% or less, more particularly about 80% or less, more particularly about 76% or less, more particularly about 72% or less, depending on whether the stretch of two or more mismatching nucleotides encompasses 2, 3, 4, 5, 6 or 7 nucleotides, etc. In some embodiments, aside from the stretch of one or more mismatching nucleotides, the degree of complementarity, when optimally aligned using a suitable alignment algorithm, is about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or more. Optimal alignment may be determined with the use of any suitable algorithm for aligning sequences, non-limiting example of which include the Smith-Waterman algorithm, the Needleman-Wunsch algorithm, algorithms based on the Burrows-Wheeler Transform (e.g., the Burrows Wheeler Aligner), ClustalW, Clustal X, BLAT, Novoalign (Novocraft Technologies; available at www.novocraft.com), ELAND (Illumina, San Diego, Calif.), SOAP (available at soap.genomics.org.cn), and Maq (available at maq.sourceforge.net). The ability of a guide sequence (within a nucleic acid-targeting guide RNA) to direct sequence-specific binding of a nucleic acid-targeting complex to a target nucleic acid sequence may be assessed by any suitable assay. For example, the components of a nucleic acid-targeting CRISPR system sufficient to form a nucleic acid-targeting complex, including the guide sequence to be tested, may be provided to a host cell having the corresponding target nucleic acid sequence, such as by transfection with vectors encoding the components of the nucleic acid-targeting complex, followed by an assessment of preferential targeting (e.g., cleavage) within the target nucleic acid sequence, such as by Surveyor assay as described herein. Similarly, cleavage of a target nucleic acid sequence (or a sequence in the vicinity thereof) may be evaluated in a test tube by providing the target nucleic acid sequence, components of a nucleic acid-targeting complex, including the guide sequence to be tested and a control guide sequence different from the test guide sequence, and comparing binding or rate of cleavage at or in the vicinity of the target sequence between the test and control guide sequence reactions. Other assays are possible, and will occur to those skilled in the art. A guide sequence, and hence a nucleic acid-targeting guide RNA may be selected to target any target nucleic acid sequence.
As used herein, the term “guide sequence,” “crRNA,” “guide RNA,” or “single guide RNA,” or “gRNA” refers to a polynucleotide comprising any polynucleotide sequence having sufficient complementarity with a target nucleic acid sequence to hybridize with the target nucleic acid sequence and to direct sequence-specific binding of a RNA-targeting complex comprising the guide sequence and a CRISPR effector protein to the target nucleic acid sequence. In some example embodiments, the degree of complementarity, when optimally aligned using a suitable alignment algorithm, is about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or more. Optimal alignment may be determined with the use of any suitable algorithm for aligning sequences, non-limiting example of which include the Smith-Waterman algorithm, the Needleman-Wunsch algorithm, algorithms based on the Burrows-Wheeler Transform (e.g., the Burrows Wheeler Aligner), ClustalW, Clustal X, BLAT, Novoalign (Novocraft Technologies; available at www.novocraft.com), ELAND (Illumina, San Diego, Calif.), SOAP (available at soap.genomics.org.cn), and Maq (available at maq.sourceforge.net). The ability of a guide sequence (within a nucleic acid-targeting guide RNA) to direct sequence-specific binding of a nucleic acid-targeting complex to a target nucleic acid sequence may be assessed by any suitable assay. For example, the components of a nucleic acid-targeting CRISPR system sufficient to form a nucleic acid-targeting complex, including the guide sequence to be tested, may be provided to a host cell having the corresponding target nucleic acid sequence, such as by transfection with vectors encoding the components of the nucleic acid-targeting complex, followed by an assessment of preferential targeting (e.g., cleavage) within the target nucleic acid sequence, such as by Surveyor assay as described herein. Similarly, cleavage of a target nucleic acid sequence may be evaluated in a test tube by providing the target nucleic acid sequence, components of a nucleic acid-targeting complex, including the guide sequence to be tested and a control guide sequence different from the test guide sequence, and comparing binding or rate of cleavage at the target sequence between the test and control guide sequence reactions. Other assays are possible, and will occur to those skilled in the art. A guide sequence, and hence a nucleic acid-targeting guide may be selected to target any target nucleic acid sequence. The target sequence may be DNA. The target sequence may be any RNA sequence. In some embodiments, the target sequence may be a sequence within a RNA molecule selected from the group consisting of messenger RNA (mRNA), pre-mRNA, ribosomal RNA (rRNA), transfer RNA (tRNA), micro-RNA (miRNA), small interfering RNA (siRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), double stranded RNA (dsRNA), non-coding RNA (ncRNA), long non-coding RNA (lncRNA), and small cytoplasmatic RNA (scRNA). In some preferred embodiments, the target sequence may be a sequence within a RNA molecule selected from the group consisting of mRNA, pre-mRNA, and rRNA. In some preferred embodiments, the target sequence may be a sequence within a RNA molecule selected from the group consisting of ncRNA, and lncRNA. In some more preferred embodiments, the target sequence may be a sequence within an mRNA molecule or a pre-mRNA molecule.
In certain embodiments, the guide sequence or spacer length of the guide molecules is from 15 to 50 nt. In certain embodiments, the spacer length of the guide RNA is at least 15 nucleotides. In certain embodiments, the spacer length is from 15 to 17 nt, e.g., 15, 16, or 17 nt, from 17 to 20 nt, e.g., 17, 18, 19, or 20 nt, from 20 to 24 nt, e.g., 20, 21, 22, 23, or 24 nt, from 23 to 25 nt, e.g., 23, 24, or 25 nt, from 24 to 27 nt, e.g., 24, 25, 26, or 27 nt, from 27-30 nt, e.g., 27, 28, 29, or 30 nt, from 30-35 nt, e.g., 30, 31, 32, 33, 34, or 35 nt, or 35 nt or longer. In certain example embodiment, the guide sequence is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 nt.
The guide may be derived from a different species than the Cas protein. In certain embodiments, the CRISPR-Cas protein is a Cas12b from a thermostable species, for example Alicyclobacillus acidiphilus (Aap). When the Aap Cas protein is utilized, a related guide can be used, for example from the same or another Alicyclobacillus species, e.g. Alicyclobacillus acidoterrestrus (Aac). In an aspect, the guide comprises at least 95%, 96%, 97% or more sequence similarity to the DR and/or the tracr sequence from Aac Cas12b. The guide can be designed similarly for other Cas proteins, deriving the guide from a different species than the Cas protein species.
In an aspect, the CRISPR-Cas protein is a Cas12b from Aap, and the guide molecule is derived from Aac, or an Alicyclobacillus CRISPR Cas system direct repeat and tracrRNA. In certain embodiments, the guide is designed with a spacer sequence to target a molecule of interest, for example, SARS-CoV-2. While any portion of the SARS-CoV-2 can be targeted, as described elsewhere herein, in an aspect, the spacer is designed to target the Nucleocapsid protein of the SARS-CoV-2. In certain embodiments, the Aac guide has 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% sequence similarity to any one of Type 1 to Type 5 guide sequence below.
In an aspect, the guide comprises:
In certain embodiments, preservation of the underlined portions of the following guide sequence are maintained:
However, importance of particular bases of the guide sequence are not limited to the underlined areas in SEQ ID NO: 62011, and mutations of these bases can be performed when structure and activity of the guide sequence can be maintained. Such mutations can be tested and optimized in accordance with the guide optimization methods detailed elsewhere herein. In an aspect, the guide preserves the secondary structure as detailed in
In some embodiments, it is of interest to reduce the susceptibility of the guide molecule to RNA cleavage, such as to cleavage by Cas13. Accordingly, in particular embodiments, the guide molecule is adjusted to avoid cleavage by Cas13 or other RNA-cleaving enzymes.
In certain embodiments, the guide molecule comprises non-naturally occurring nucleic acids and/or non-naturally occurring nucleotides and/or nucleotide analogs, and/or chemically modifications. Preferably, these non-naturally occurring nucleic acids and non-naturally occurring nucleotides are located outside the guide sequence. Non-naturally occurring nucleic acids can include, for example, mixtures of naturally and non-naturally occurring nucleotides. Non-naturally occurring nucleotides and/or nucleotide analogs may be modified at the ribose, phosphate, and/or base moiety. In an embodiment of the invention, a guide nucleic acid comprises ribonucleotides and non-ribonucleotides. In one such embodiment, a guide comprises one or more ribonucleotides and one or more deoxyribonucleotides. In an embodiment of the invention, the guide comprises one or more non-naturally occurring nucleotide or nucleotide analog such as a nucleotide with phosphorothioate linkage, a locked nucleic acid (LNA) nucleotides comprising a methylene bridge between the 2′ and 4′ carbons of the ribose ring, or bridged nucleic acids (BNA). Other examples of modified nucleotides include 2′-O-methyl analogs, 2′-deoxy analogs, or 2′-fluoro analogs. Further examples of modified bases include, but are not limited to, 2-aminopurine, 5-bromo-uridine, pseudouridine, inosine, 7-methylguanosine. Examples of guide RNA chemical modifications include, without limitation, incorporation of 2′-O-methyl (M), 2′-O-methyl 3′phosphorothioate (MS), S-constrained ethyl(cEt), or 2′-O-methyl 3′thioPACE (MSP) at one or more terminal nucleotides. Such chemically modified guides can comprise increased stability and increased activity as compared to unmodified guides, though on-target vs. off-target specificity is not predictable. (See, Hendel, 2015, Nat Biotechnol. 33(9):985-9, doi: 10.1038/nbt.3290, published online 29 Jun. 2015 Ragdarm et al., 0215, PNAS, E7110-E7111; Allerson et al., J. Med. Chem. 2005, 48:901-904; Bramsen et al., Front. Genet., 2012, 3:154; Deng et al., PNAS, 2015, 112:11870-11875; Sharma et al., MedChemComm., 2014, 5:1454-1471; Hendel et al., Nat. Biotechnol. (2015) 33(9): 985-989; Li et al., Nature Biomedical Engineering, 2017, 1, 0066 DOI:10.1038/s41551-017-0066). In some embodiments, the 5′ and/or 3′ end of a guide RNA is modified by a variety of functional moieties including fluorescent dyes, polyethylene glycol, cholesterol, proteins, or detection tags. (See Kelly et al., 2016, J. Biotech. 233:74-83). In certain embodiments, a guide comprises ribonucleotides in a region that binds to a target RNA and one or more deoxyribonucletides and/or nucleotide analogs in a region that binds to Cas13. In an embodiment of the invention, deoxyribonucleotides and/or nucleotide analogs are incorporated in engineered guide structures, such as, without limitation, stem-loop regions, and the seed region. For Cas13 guide, in certain embodiments, the modification is not in the 5′-handle of the stem-loop regions. Chemical modification in the 5′-handle of the stem-loop region of a guide may abolish its function (see Li, et al., Nature Biomedical Engineering, 2017, 1:0066). In certain embodiments, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, or 75 nucleotides of a guide is chemically modified. In some embodiments, 3-5 nucleotides at either the 3′ or the 5′ end of a guide is chemically modified. In some embodiments, only minor modifications are introduced in the seed region, such as 2′-F modifications. In some embodiments, 2′-F modification is introduced at the 3′ end of a guide. In certain embodiments, three to five nucleotides at the 5′ and/or the 3′ end of the guide are chemicially modified with 2′-O-methyl (M), 2′-O-methyl 3′ phosphorothioate (MS), S-constrained ethyl(cEt), or 2′-O-methyl 3′ thioPACE (MSP). Such modification can enhance genome editing efficiency (see Hendel et al., Nat. Biotechnol. (2015) 33(9): 985-989). In certain embodiments, all of the phosphodiester bonds of a guide are substituted with phosphorothioates (PS) for enhancing levels of gene disruption. In certain embodiments, more than five nucleotides at the 5′ and/or the 3′ end of the guide are chemicially modified with 2′-O-Me, 2′-F or S-constrained ethyl(cEt). Such chemically modified guide can mediate enhanced levels of gene disruption (see Ragdarm et al., 0215, PNAS, E7110-E7111). In an embodiment of the invention, a guide is modified to comprise a chemical moiety at its 3′ and/or 5′ end. Such moieties include, but are not limited to amine, azide, alkyne, thio, dibenzocyclooctyne (DBCO), or Rhodamine. In certain embodiment, the chemical moiety is conjugated to the guide by a linker, such as an alkyl chain. In certain embodiments, the chemical moiety of the modified guide can be used to attach the guide to another molecule, such as DNA, RNA, protein, or nanoparticles. Such chemically modified guide can be used to identify or enrich cells generically edited by a CRISPR system (see Lee et al., eLife, 2017, 6:e25312, DOI:10.7554).
In some embodiments, a nucleic acid-targeting guide is selected to reduce the degree secondary structure within the nucleic acid-targeting guide. In some embodiments, about or less than about 75%, 50%, 40%, 30%, 25%, 20%, 15%, 10%, 5%, 1%, or fewer of the nucleotides of the nucleic acid-targeting guide participate in self-complementary base pairing when optimally folded. Optimal folding may be determined by any suitable polynucleotide folding algorithm. Some programs are based on calculating the minimal Gibbs free energy. An example of one such algorithm is mFold, as described by Zuker and Stiegler (Nucleic Acids Res. 9 (1981), 133-148). Another example folding algorithm is the online webserver RNAfold, developed at Institute for Theoretical Chemistry at the University of Vienna, using the centroid structure prediction algorithm (see e.g., A. R. Gruber et al., 2008, Cell 106(1): 23-24; and PA Carr and GM Church, 2009, Nature Biotechnology 27(12): 1151-62).
In some embodiments, a nucleic acid-targeting guide is designed or selected to modulate intermolecular interactions among guide molecules, such as among stem-loop regions of different guide molecules. It will be appreciated that nucleotides within a guide that base-pair to form a stem-loop are also capable of base-pairing to form an intermolecular duplex with a second guide and that such an intermolecular duplex would not have a secondary structure compatible with CRISPR complex formation. Accordingly, is useful to select or design DR sequences in order to modulate stem-loop formation and CRISPR complex formation. In some embodiments, about or less than about 75%, 50%, 40%, 30%, 25%, 20%, 15%, 10%, 5%, 1%, or fewer of nucleic acid-targeting guides are in intermolecular duplexes. It will be appreciated that stem-loop variation will often be within limits imposed by DR-CRISPR effector interactions. One way to modulate stem-loop formation or change the equilibrium between stem-loop and intermolecular duplex is to vary nucleotide pairs in the stem of the stem-loop of a DR. For example, in one embodiment, a G-C pair is replaced by an A-U or U-A pair. In another embodiment, an A-U pair is substituted for a G-C or a C-G pair. In another embodiment, a naturally occurring nucleotide is replaced by a nucleotide analog. Another way to modulate stem-loop formation or change the equilibrium between stem-loop and intermolecular duplex is to modify the loop of the stem-loop of a DR. Without be bound by theory, the loop can be viewed as an intervening sequence flanked by two sequences that are complementary to each other. When that intervening sequence is not self-complementary, its effect will be to destabilize intermolecular duplex formation. The same principle applies when guides are multiplexed: while the targeting sequences may differ, it may be advantageous to modify the stem-loop region in the DRs of the different guides. Moreover, when guides are multiplexed, the relative activities of the different guides can be modulated by balancing the activity of each individual guide. In certain embodiments, the equilibrium between intermolecular stem-loops vs. intermolecular duplexes is determined. The determination may be made by physical or biochemical means and can be in the presence or absence of a CRISPR effector.
In certain embodiments, a guide RNA or crRNA may comprise, consist essentially of, or consist of a direct repeat (DR) sequence and a guide sequence or spacer sequence. In certain embodiments, the guide RNA or crRNA may comprise, consist essentially of, or consist of a direct repeat sequence fused or linked to a guide sequence or spacer sequence. In certain embodiments, the direct repeat sequence may be located upstream (i.e., 5′) from the guide sequence or spacer sequence. In other embodiments, the direct repeat sequence may be located downstream (i.e., 3′) from the guide sequence or spacer sequence.
In certain embodiments, the crRNA comprises a stem loop, preferably a single stem loop. In certain embodiments, the direct repeat sequence forms a stem loop, preferably a single stem loop.
In certain embodiments, the spacer length of the guide RNA is from 15 to 35 nt. In certain embodiments, the spacer length of the guide RNA is at least 15 nucleotides. In certain embodiments, the spacer length is from 15 to 17 nt, e.g., 15, 16, or 17 nt, from 17 to 20 nt, e.g., 17, 18, 19, or 20 nt, from 20 to 24 nt, e.g., 20, 21, 22, 23, or 24 nt, from 23 to 25 nt, e.g., 23, 24, or 25 nt, from 24 to 27 nt, e.g., 24, 25, 26, or 27 nt, from 27-30 nt, e.g., 27, 28, 29, or 30 nt, from 30-35 nt, e.g., 30, 31, 32, 33, 34, or 35 nt, or 35 nt or longer.
In general, the CRISPR-Cas, CRISPR-Cas9 or CRISPR system may be as used in the foregoing documents, such as WO 2014/093622 (PCT/US2013/074667) and refers collectively to transcripts and other elements involved in the expression of or directing the activity of CRISPR-associated (“Cas”) genes, including sequences encoding a Cas gene, in particular a Cas9 gene in the case of CRISPR-Cas9, a tracr (trans-activating CRISPR) sequence (e.g. tracrRNA or an active partial tracrRNA), a tracr-mate sequence (encompassing a “direct repeat” and a tracrRNA-processed partial direct repeat in the context of an endogenous CRISPR system), a guide sequence (also referred to as a “spacer” in the context of an endogenous CRISPR system), or “RNA(s)” as that term is herein used (e.g., RNA(s) to guide Cas9, e.g. CRISPR RNA and transactivating (tracr) RNA or a single guide RNA (sgRNA) (chimeric RNA)) or other sequences and transcripts from a CRISPR locus. In general, a CRISPR system is characterized by elements that promote the formation of a CRISPR complex at the site of a target sequence (also referred to as a protospacer in the context of an endogenous CRISPR system). In the context of formation of a CRISPR complex, “target sequence” refers to a sequence to which a guide sequence is designed to have complementarity, where hybridization between a target sequence and a guide sequence promotes the formation of a CRISPR complex. The section of the guide sequence through which complementarity to the target sequence is important for cleavage activity is referred to herein as the seed sequence. A target sequence may comprise any polynucleotide, such as DNA or RNA polynucleotides. In some embodiments, a target sequence is located in the nucleus or cytoplasm of a cell, and may include nucleic acids in or from mitochondrial, organelles, vesicles, liposomes or particles present within the cell. In some embodiments, especially for non-nuclear uses, NLSs are not preferred. In some embodiments, a CRISPR system comprises one or more nuclear exports signals (NESs). In some embodiments, a CRISPR system comprises one or more NLSs and one or more NESs. In some embodiments, direct repeats may be identified in silico by searching for repetitive motifs that fulfill any or all of the following criteria: 1. found in a 2Kb window of genomic sequence flanking the type II CRISPR locus; 2. span from 20 to 50 bp; and 3. interspaced by 20 to 50 bp. In some embodiments, 2 of these criteria may be used, for instance 1 and 2, 2 and 3, or 1 and 3. In some embodiments, all 3 criteria may be used.
In embodiments of the invention the terms guide sequence and guide RNA, i.e. RNA capable of guiding Cas to a target genomic locus, are used interchangeably as in foregoing cited documents such as WO 2014/093622 (PCT/US2013/074667). In general, a guide sequence is any polynucleotide sequence having sufficient complementarity with a target polynucleotide sequence to hybridize with the target sequence and direct sequence-specific binding of a CRISPR complex to the target sequence. In some embodiments, the degree of complementarity between a guide sequence and its corresponding target sequence, when optimally aligned using a suitable alignment algorithm, is about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or more. Optimal alignment may be determined with the use of any suitable algorithm for aligning sequences, non-limiting example of which include the Smith-Waterman algorithm, the Needleman-Wunsch algorithm, algorithms based on the Burrows-Wheeler Transform (e.g. the Burrows Wheeler Aligner), ClustalW, Clustal X, BLAT, Novoalign (Novocraft Technologies; available at www.novocraft.com), ELAND (Illumina, San Diego, Calif.), SOAP (available at soap.genomics.org.cn), and Maq (available at maq.sourceforge.net). In some embodiments, a guide sequence is about or more than about 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 75, or more nucleotides in length. In some embodiments, a guide sequence is less than about 75, 50, 45, 40, 35, 30, 25, 20, 15, 12, or fewer nucleotides in length. Preferably the guide sequence is 10-30 nucleotides long. The ability of a guide sequence to direct sequence-specific binding of a CRISPR complex to a target sequence may be assessed by any suitable assay. For example, the components of a CRISPR system sufficient to form a CRISPR complex, including the guide sequence to be tested, may be provided to a host cell having the corresponding target sequence, such as by transfection with vectors encoding the components of the CRISPR sequence, followed by an assessment of preferential cleavage within the target sequence, such as by Surveyor assay as described herein. Similarly, cleavage of a target polynucleotide sequence may be evaluated in a test tube by providing the target sequence, components of a CRISPR complex, including the guide sequence to be tested and a control guide sequence different from the test guide sequence, and comparing binding or rate of cleavage at the target sequence between the test and control guide sequence reactions. Other assays are possible, and will occur to those skilled in the art.
In some embodiments of CRISPR-Cas systems, the degree of complementarity between a guide sequence and its corresponding target sequence can be about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or 100%; a guide or RNA or sgRNA can be about or more than about 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 75, or more nucleotides in length; or guide or RNA or sgRNA can be less than about 75, 50, 45, 40, 35, 30, 25, 20, 15, 12, or fewer nucleotides in length; and advantageously tracr RNA is 30 or 50 nucleotides in length. However, an aspect of the invention is to reduce off-target interactions, e.g., reduce the guide interacting with a target sequence having low complementarity. Indeed, in the examples, it is shown that the invention involves mutations that result in the CRISPR-Cas system being able to distinguish between target and off-target sequences that have greater than 80% to about 95% complementarity, e.g., 83%-84% or 88-89% or 94-95% complementarity (for instance, distinguishing between a target having 18 nucleotides from an off-target of 18 nucleotides having 1, 2 or 3 mismatches). Accordingly, in the context of the present invention the degree of complementarity between a guide sequence and its corresponding target sequence is greater than 94.5% or 95% or 95.5% or 96% or 96.5% or 97% or 97.5% or 98% or 98.5% or 99% or 99.5% or 99.9%, or 100%. Off target is less than 100% or 99.9% or 99.5% or 99% or 99% or 98.5% or 98% or 97.5% or 97% or 96.5% or 96% or 95.5% or 95% or 94.5% or 94% or 93% or 92% or 91% or 90% or 89% or 88% or 87% or 86% or 85% or 84% or 83% or 82% or 81% or 80% complementarity between the sequence and the guide, with it advantageous that off target is 100% or 99.9% or 99.5% or 99% or 99% or 98.5% or 98% or 97.5% or 97% or 96.5% or 96% or 95.5% or 95% or 94.5% complementarity between the sequence and the guide.
Provided herein are engineered polynucleotide sequences that can direct the activity of a CRISPR protein to multiple targets using a single crRNA. The engineered polynucleotide sequences, also referred to as a multiplexing polynucleotides, can include two or more direct repeats interspersed with two or more guide sequences. More specifically, the engineered polynucleotide sequences can include a direct repeat sequence having one or more mutations relative to the corresponding wild type direct repeat sequence. The engineered polynucleotide can be configured, for example, as: 5′ DR1-G1-DR2-G2 3′. In some embodiments, the engineered polynucleotide can be configured to include three, four, five, or more additional direct repeat and guide sequences, for example: 5′ DR1-G1-DR2-G2-DR3-G3 3′, 5″ DR1-G1-DR2-G2-DR3-G3-DR4-G4 3′, or 5′ DR1-G1-DR2-G2-DR3-G3-DR4-G4-DR5-G5 3′.
Regardless of the number of direct repeat sequences, the direct repeat sequences differ from one another. Thus, DR1 can be a wild type sequence and DR2 can include one or more mutations relative to the wild type sequence in accordance with the disclosure provided herein regarding direct repeats for Cas orthologs. The guide sequences can also be the same or different. In some embodiments, the guide sequences can bind to different nucleic acid targets, for example, nucleic acids encoding different polypeptides. The multiplexing polynucleotides can be as described, for example, at [0039]-[0072] in U.S. Application 62/780,748 entitled “CRISPR Cpf1 Direct Repeat Variants” and filed Dec. 17, 2018, incorporated herein in its entirety by reference.
Multiplex design of guide molecules for the detection of coronaviruses and/or other respiratory viruses in a sample to identify the cause of a respiratory infection is envisioned, and design can be according to the methods disclosed herein. Briefly, the design of guide molecules can encompass utilization of training models described herein using a variety of input features, which may include the particular Cas protein used for targeting of the sequences of interest. See U.S. Provisional Application 62/818,702
In certain embodiments, guides of the invention comprise non-naturally occurring nucleic acids and/or non-naturally occurring nucleotides and/or nucleotide analogs, and/or chemical modifications. Non-naturally occurring nucleic acids can include, for example, mixtures of naturally and non-naturally occurring nucleotides. Non-naturally occurring nucleotides and/or nucleotide analogs may be modified at the ribose, phosphate, and/or base moiety. In an embodiment of the invention, a guide nucleic acid comprises ribonucleotides and non-ribonucleotides. In one such embodiment, a guide comprises one or more ribonucleotides and one or more deoxyribonucleotides. In an embodiment of the invention, the guide comprises one or more non-naturally occurring nucleotide or nucleotide analog such as a nucleotide with phosphorothioate linkage, boranophosphate linkage, a locked nucleic acid (LNA) nucleotides comprising a methylene bridge between the 2′ and 4′ carbons of the ribose ring, or bridged nucleic acids (BNA). Other examples of modified nucleotides include 2′-O-methyl analogs, 2′-deoxy analogs, 2-thiouridine analogs, N6-methyladenosine analogs, or 2′-fluoro analogs. Further examples of modified bases include, but are not limited to, 2-aminopurine, 5-bromo-uridine, pseudouridine (Ψ), N1-methylpseudouridine (me1Ψ), 5-methoxyuridine(5moU), inosine, 7-methylguanosine. Examples of guide RNA chemical modifications include, without limitation, incorporation of 2′-O-methyl (M), 2′-O-methyl-3′-phosphorothioate (MS), phosphorothioate (PS), S-constrained ethyl(cEt), or 2′-O-methyl-3′-thioPACE (MSP) at one or more terminal nucleotides. Such chemically modified guides can comprise increased stability and increased activity as compared to unmodified guides, though on-target vs. off-target specificity is not predictable. (See, Hendel, 2015, Nat Biotechnol. 33(9):985-9, doi: 10.1038/nbt.3290, published online 29 Jun. 2015; Ragdarm et al., 0215, PNAS, E7110-E7111; Allerson et al., J. Med. Chem. 2005, 48:901-904; Bramsen et al., Front. Genet., 2012, 3:154; Deng et al., PNAS, 2015, 112:11870-11875; Sharma et al., MedChemComm., 2014, 5:1454-1471; Hendel et al., Nat. Biotechnol. (2015) 33(9): 985-989; Li et al., Nature Biomedical Engineering, 2017, 1, 0066 DOI:10.1038/s41551-017-0066). In some embodiments, the 5′ and/or 3′ end of a guide RNA is modified by a variety of functional moieties including fluorescent dyes, polyethylene glycol, cholesterol, proteins, or detection tags. (See Kelly et al., 2016, J. Biotech. 233:74-83). In certain embodiments, a guide comprises ribonucleotides in a region that binds to a target DNA and one or more deoxyribonucleotides and/or nucleotide analogs in a region that binds to Cas9, Cpf1, or C2c1. In an embodiment of the invention, deoxyribonucleotides and/or nucleotide analogs are incorporated in engineered guide structures, such as, without limitation, 5′ and/or 3′ end, stem-loop regions, and the seed region. In certain embodiments, the modification is not in the 5′-handle of the stem-loop regions. Chemical modification in the 5′-handle of the stem-loop region of a guide may abolish its function (see Li, et al., Nature Biomedical Engineering, 2017, 1:0066). In certain embodiments, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, or 75 nucleotides of a guide is chemically modified. In some embodiments, 3-5 nucleotides at either the 3′ or the 5′ end of a guide is chemically modified. In some embodiments, only minor modifications are introduced in the seed region, such as 2′-F modifications. In some embodiments, 2′-F modification is introduced at the 3′ end of a guide. In certain embodiments, three to five nucleotides at the 5′ and/or the 3′ end of the guide are chemically modified with 2′-O-methyl (M), 2′-O-methyl-3′-phosphorothioate (MS), S-constrained ethyl(cEt), or 2′-O-methyl-3′-thioPACE (MSP). Such modification can enhance genome editing efficiency (see Hendel et al., Nat. Biotechnol. (2015) 33(9): 985-989). In certain embodiments, all of the phosphodiester bonds of a guide are substituted with phosphorothioates (PS) for enhancing levels of gene disruption. In certain embodiments, more than five nucleotides at the 5′ and/or the 3′ end of the guide are chemically modified with 2′-O-Me, 2′-F or S-constrained ethyl(cEt). Such chemically modified guide can mediate enhanced levels of gene disruption (see Ragdarm et al., 0215, PNAS, E7110-E7111). In an embodiment of the invention, a guide is modified to comprise a chemical moiety at its 3′ and/or 5′ end. Such moieties include, but are not limited to amine, azide, alkyne, thio, dibenzocyclooctyne (DBCO), or Rhodamine. In certain embodiment, the chemical moiety is conjugated to the guide by a linker, such as an alkyl chain. In certain embodiments, the chemical moiety of the modified guide can be used to attach the guide to another molecule, such as DNA, RNA, protein, or nanoparticles. Such chemically modified guide can be used to identify or enrich cells generically edited by a CRISPR system (see Lee et al., eLife, 2017, 6:e25312, DOI:10.7554).
In certain embodiments, the CRISPR system as provided herein can make use of a crRNA or analogous polynucleotide comprising a guide sequence, wherein the polynucleotide is an RNA, a DNA or a mixture of RNA and DNA, and/or wherein the polynucleotide comprises one or more nucleotide analogs. The sequence can comprise any structure, including but not limited to a structure of a native crRNA, such as a bulge, a hairpin or a stem loop structure. In certain embodiments, the polynucleotide comprising the guide sequence forms a duplex with a second polynucleotide sequence which can be an RNA or a DNA sequence.
In certain embodiments, use is made of chemically modified guide RNAs. Examples of guide RNA chemical modifications include, without limitation, incorporation of 2′-O-methyl (M), 2′-O-methyl 3′phosphorothioate (MS), or 2′-O-methyl 3′thioPACE (MSP) at one or more terminal nucleotides. Such chemically modified guide RNAs can comprise increased stability and increased activity as compared to unmodified guide RNAs, though on-target vs. off-target specificity is not predictable. (See, Hendel, 2015, Nat Biotechnol. 33(9):985-9, doi: 10.1038/nbt.3290, published online 29 Jun. 2015). Chemically modified guide RNAs further include, without limitation, RNAs with phosphorothioate linkages and locked nucleic acid (LNA) nucleotides comprising a methylene bridge between the 2′ and 4′ carbons of the ribose ring.
In some embodiments, a guide sequence is about or more than about 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 75, or more nucleotides in length. In some embodiments, a guide sequence is less than about 75, 50, 45, 40, 35, 30, 25, 20, 15, 12, or fewer nucleotides in length. Preferably the guide sequence is 10 to 30 nucleotides long. The ability of a guide sequence to direct sequence-specific binding of a CRISPR complex to a target sequence may be assessed by any suitable assay. For example, the components of a CRISPR system sufficient to form a CRISPR complex, including the guide sequence to be tested, may be provided to a host cell having the corresponding target sequence, such as by transfection with vectors encoding the components of the CRISPR sequence, followed by an assessment of preferential cleavage within the target sequence, such as by Surveyor assay. Similarly, cleavage of a target RNA may be evaluated in a test tube by providing the target sequence, components of a CRISPR complex, including the guide sequence to be tested and a control guide sequence different from the test guide sequence, and comparing binding or rate of cleavage at the target sequence between the test and control guide sequence reactions. Other assays are possible, and will occur to those skilled in the art.
In some embodiments, the modification to the guide is a chemical modification, an insertion, a deletion or a split. In some embodiments, the chemical modification includes, but is not limited to, incorporation of 2′-O-methyl (M) analogs, 2′-deoxy analogs, 2-thiouridine analogs, N6-methyladenosine analogs, 2′-fluoro analogs, 2-aminopurine, 5-bromo-uridine, pseudouridine (Ψ), N1-methylpseudouridine (me1Ψ), 5-methoxyuridine(5moU), inosine, 7-methylguanosine, 2′-O-methyl-3′-phosphorothioate (MS), S-constrained ethyl(cEt), phosphorothioate (PS), or 2′-O-methyl-3′-thioPACE (MSP). In some embodiments, the guide comprises one or more of phosphorothioate modifications. In certain embodiments, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or 25 nucleotides of the guide are chemically modified. In certain embodiments, one or more nucleotides in the seed region are chemically modified. In certain embodiments, one or more nucleotides in the 3′-terminus are chemically modified. In certain embodiments, none of the nucleotides in the 5′-handle is chemically modified. In some embodiments, the chemical modification in the seed region is a minor modification, such as incorporation of a 2′-fluoro analog. In a specific embodiment, one nucleotide of the seed region is replaced with a 2′-fluoro analog. In some embodiments, 5 or 10 nucleotides in the 3′-terminus are chemically modified. Such chemical modifications at the 3′-terminus of the Cpf1 CrRNA improve gene cutting efficiency (see Li, et al., Nature Biomedical Engineering, 2017, 1:0066). In a specific embodiment, 5 nucleotides in the 3′-terminus are replaced with 2′-fluoro analogues. In a specific embodiment, 10 nucleotides in the 3′-terminus are replaced with 2′-fluoro analogues. In a specific embodiment, 5 nucleotides in the 3′-terminus are replaced with 2′-O-methyl (M) analogs.
In some embodiments, the loop of the 5′-handle of the guide is modified. In some embodiments, the loop of the 5′-handle of the guide is modified to have a deletion, an insertion, a split, or chemical modifications. In certain embodiments, the loop comprises 3, 4, or 5 nucleotides. In certain embodiments, the loop comprises the sequence of UCUU, UUUU, UAUU, or UGUU.
A guide sequence, and hence a nucleic acid-targeting guide RNA may be selected to target any target nucleic acid sequence. In the context of formation of a CRISPR complex, “target sequence” refers to a sequence to which a guide sequence is designed to have complementarity, where hybridization between a target sequence and a guide sequence promotes the formation of a CRISPR complex. A target sequence may comprise RNA polynucleotides. The term “target RNA” refers to a RNA polynucleotide being or comprising the target sequence. In other words, the target RNA may be a RNA polynucleotide or a part of a RNA polynucleotide to which a part of the gRNA, i.e. the guide sequence, is designed to have complementarity and to which the effector function mediated by the complex comprising CRISPR effector protein and a gRNA is to be directed. In some embodiments, a target sequence is located in the nucleus or cytoplasm of a cell. The target sequence may be DNA. The target sequence may be any RNA sequence. In some embodiments, the target sequence may be a sequence within a RNA molecule selected from the group consisting of messenger RNA (mRNA), pre-mRNA, ribosomal RNA (rRNA), transfer RNA (tRNA), micro-RNA (miRNA), small interfering RNA (siRNA), small nuclear RNA (snRNA), small nuclear RNA (snoRNA), double stranded RNA (dsRNA), non coding RNA (ncRNA), long non-coding RNA (lncRNA), and small cytoplasmic RNA (scRNA). In some preferred embodiments, the target sequence may be a sequence within a RNA molecule selected from the group consisting of mRNA, pre-mRNA, and rRNA. In some preferred embodiments, the target sequence may be a sequence within a RNA molecule selected from the group consisting of ncRNA, and lncRNA. In some more preferred embodiments, the target sequence may be a sequence within an mRNA molecule or a pre-mRNA molecule.
In certain embodiments, the spacer length of the guide RNA is less than 28 nucleotides. In certain embodiments, the spacer length of the guide RNA is at least 18 nucleotides and less than 28 nucleotides. In certain embodiments, the spacer length of the guide RNA is between 19 and 28 nucleotides. In certain embodiments, the spacer length of the guide RNA is between 19 and 25 nucleotides. In certain embodiments, the spacer length of the guide RNA is 20 nucleotides. In certain embodiments, the spacer length of the guide RNA is 23 nucleotides. In certain embodiments, the spacer length of the guide RNA is 25 nucleotides.
In certain embodiments, modulations of cleavage efficiency can be exploited by introduction of mismatches, e.g. 1 or more mismatches, such as 1 or 2 mismatches between spacer sequence and target sequence, including the position of the mismatch along the spacer/target. The more central (i.e. not 3′ or 5′) for instance a double mismatch is, the more cleavage efficiency is affected. Accordingly, by choosing mismatch position along the spacer, cleavage efficiency can be modulated. By means of example, if less than 100% cleavage of targets is desired (e.g. in a cell population), 1 or more, such as preferably 2 mismatches between spacer and target sequence may be introduced in the spacer sequences. The more central along the spacer of the mismatch position, the lower the cleavage percentage.
In certain example embodiments, the cleavage efficiency may be exploited to design single guides that can distinguish two or more targets that vary by a single nucleotide, such as a single nucleotide polymorphism (SNP), variation, or (point) mutation. The CRISPR effector may have reduced sensitivity to SNPs (or other single nucleotide variations) and continue to cleave SNP targets with a certain level of efficiency. Thus, for two targets, or a set of targets, a guide RNA may be designed with a nucleotide sequence that is complementary to one of the targets i.e. the on-target SNP. The guide RNA is further designed to have a synthetic mismatch. As used herein a “synthetic mismatch” refers to a non-naturally occurring mismatch that is introduced upstream or downstream of the naturally occurring SNP, such as at most 5 nucleotides upstream or downstream, for instance 4, 3, 2, or 1 nucleotide upstream or downstream, preferably at most 3 nucleotides upstream or downstream, more preferably at most 2 nucleotides upstream or downstream, most preferably 1 nucleotide upstream or downstream (i.e. adjacent the SNP). When the CRISPR effector binds to the on-target SNP, only a single mismatch will be formed with the synthetic mismatch and the CRISPR effector will continue to be activated and a detectable signal produced. When the guide RNA hybridizes to an off-target SNP, two mismatches will be formed, the mismatch from the SNP and the synthetic mismatch, and no detectable signal generated. Thus, the systems disclosed herein may be designed to distinguish SNPs within a population. For, example the systems may be used to distinguish pathogenic strains that differ by a single SNP or detect certain disease specific SNPs, such as but not limited to, disease associated SNPs, such as without limitation cancer associated SNPs.
In certain embodiments, the guide RNA is designed such that the SNP is located on position 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 of the spacer sequence (starting at the 5′ end). In certain embodiments, the guide RNA is designed such that the SNP is located on position 1, 2, 3, 4, 5, 6, 7, 8, or 9 of the spacer sequence (starting at the 5′ end). In certain embodiments, the guide RNA is designed such that the SNP is located on position 2, 3, 4, 5, 6, or 7 of the spacer sequence (starting at the 5′ end). In certain embodiments, the guide RNA is designed such that the SNP is located on position 3, 4, 5, or 6 of the spacer sequence (starting at the 5′ end). In certain embodiments, the guide RNA is designed such that the SNP is located on position 3 of the spacer sequence (starting at the 5′ end).
In certain embodiments, the guide RNA is designed such that the mismatch (e.g. the synthetic mismatch, i.e. an additional mutation besides a SNP) is located on position 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 of the spacer sequence (starting at the 5′ end). In certain embodiments, the guide RNA is designed such that the mismatch is located on position 1, 2, 3, 4, 5, 6, 7, 8, or 9 of the spacer sequence (starting at the 5′ end). In certain embodiments, the guide RNA is designed such that the mismatch is located on position 4, 5, 6, or 7 of the spacer sequence (starting at the 5′ end. In certain embodiments, the guide RNA is designed such that the mismatch is located at position 3, 4, 5, or 6 of the spacer, preferably position 3. In certain embodiments, the guide RNA is designed such that the mismatch is located on position 5 of the spacer sequence (starting at the 5′ end).
In certain embodiments, said mismatch is 1, 2, 3, 4, or 5 nucleotides upstream or downstream, preferably 2 nucleotides, preferably downstream of said SNP or other single nucleotide variation in said guide RNA.
In certain embodiments, the guide RNA is designed such that the mismatch is located 2 nucleotides upstream of the SNP (i.e. one intervening nucleotide).
In certain embodiments, the guide RNA is designed such that the mismatch is located 2 nucleotides downstream of the SNP (i.e. one intervening nucleotide).
In certain embodiments, the guide RNA is designed such that the mismatch is located on position 5 of the spacer sequence (starting at the 5′ end) and the SNP is located on position 3 of the spacer sequence (starting at the 5′ end).
In certain embodiments, the guide RNA comprises a spacer which is truncated relative to a wild type spacer. In certain embodiments, the guide RNA comprises a spacer which comprises less than 28 nucleotides, preferably between and including 20 to 27 nucleotides.
In certain embodiments, the guide RNA comprises a spacer which consists of 20-25 nucleotides or 20-23 nucleotides, such as preferably 20 or 23 nucleotides.
In certain embodiments, the one or more guide RNAs are designed to detect a single nucleotide polymorphism in a target RNA or DNA, or a splice variant of an RNA transcript.
In certain embodiments, the one or more guide RNAs may be designed to bind to one or more target molecules that are diagnostic for a disease state. In some embodiments, the disease may be cancer. In some embodiments, the disease state may be an autoimmune disease. In some embodiments, the disease state may be an infection. In some embodiments, the infection may be caused by a virus, a bacterium, a fungus, a protozoa, or a parasite. In specific embodiments, the infection is a viral infection. In specific embodiments, the viral infection is caused by a DNA virus.
The embodiments described herein comprehend inducing one or more nucleotide modifications in a eukaryotic cell (in vitro, i.e. in an isolated eukaryotic cell) as herein discussed comprising delivering to cell a vector as herein discussed. The mutation(s) can include the introduction, deletion, or substitution of one or more nucleotides at each target sequence of cell(s) via the guide(s) RNA(s). The mutations can include the introduction, deletion, or substitution of 1-75 nucleotides at each target sequence of said cell(s) via the guide(s) RNA(s). The mutations can include the introduction, deletion, or substitution of 1, 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, or 75 nucleotides at each target sequence of said cell(s) via the guide(s) RNA(s). The mutations can include the introduction, deletion, or substitution of 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, or 75 nucleotides at each target sequence of said cell(s) via the guide(s) RNA(s). The mutations include the introduction, deletion, or substitution of 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, or 75 nucleotides at each target sequence of said cell(s) via the guide(s) RNA(s). The mutations can include the introduction, deletion, or substitution of 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, or 75 nucleotides at each target sequence of said cell(s) via the guide(s) RNA(s). The mutations can include the introduction, deletion, or substitution of 40, 45, 50, 75, 100, 200, 300, 400 or 500 nucleotides at each target sequence of said cell(s) via the guide(s) RNA(s).
Typically, in the context of an endogenous CRISPR system, formation of a CRISPR complex (comprising a guide sequence hybridized to a target sequence and complexed with one or more Cas proteins) results in cleavage in or near (e.g. within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, or more base pairs from) the target sequence, but may depend on for instance secondary structure, in particular in the case of RNA targets.
A method for designing highly active guide molecules, e.g., guide RNAs, for use in the detection systems may comprise the steps of designing putative guide RNAs tiled across a target molecule of interest; creating a training model based on results of incubating guide RNAs with a Cas13 protein and the target molecule; predicting highly active guide RNAs for the target molecule, wherein the predicting comprises optimizing the nucleotide at each base position in the guide RNA based on the training model; and validating the predicted highly active guide RNAs by incubating the guide RNAs with the Cas13 protein and the target molecule. The method can be as described in U.S. Provisional Application Nos. 62/818,702 amd 62/890,555 (Attorney Reference BI-10504, Docket BROD-3980) incorporated by reference in their entirety. Guide RNAs generate by the design methods can be used with the systems for detecting coronavirus as described elsewhere herein.
In some embodiments, the invention provides a method for designing guide RNAs for use in the detection systems described herein. The method may comprise designing putative guide RNAs tiled across a target molecule of interest, such as a coronavirus, viruses that cause respiratory illness, including coronavirus, including 2019-nCov (Covid-19). The method may further comprise creating a training model based on results of incubating guide RNAs with a Cas13 protein and the target molecule. The method may further comprise predicting highly active guide RNAs for the target molecule. Predicting may comprise optimizing the nucleotide at each base position in the guide RNA based on the training model. The method may further comprise validating the predicted highly active guide RNAs by incubating the guide RNAs with the Cas13 protein and the target molecule.
In certain instances, the optimized guide for the target molecule is generated by pooling a set of guides, the guides produced by tiling guides across the target molecule; incubating the set of guides with a Cas polypeptide and the target molecule and measuring cleavage activity of each guide in the set; creating a training model based on the cleavage activity of the set of guides in the incubating step. Steps of predicting highly active guides for the target molecule and identifying the optimized guides by incubating the predicted highly active guides with the Cas polypeptide and the target molecule and selecting optimized guides may also be utilized in generating optimized guides. In embodiments, the training model comprises one or more input features selected from guide sequence, flanking target sequence, normalized positions of the guide in the target and guide GC content. In certain instances, the guide sequence and/or flanking sequence input comprises one hit encoding mono-nucleotide and/or dinucleotide In an embodiments, the training model comprises applying logistic regression model on the activity of the guides across the one or more input features.
In an aspect, the predicting highly active guides for the target molecule comprises selecting guides with an increase in activity of a guide relative to the median activity, or selecting guides with highest guide activity. In certain instances, the increase in activity is measured by an increase in fluorescence. Guides may be selected based on a particular cutoff, in certain instances based on activity relative to a median or above a particular cutoff-, for instance, are selected with a 1.5, 2, 2.5 or 3-fold activity relative to median, or are in the top quartile or quintile for each target tested.
The optimized guides may be generated for a Cas13 ortholog, in some instances, the optimized guide is generated for an LwaCas13a or a Cca13b ortholog.
In some embodiments, the invention provides a method for designing guide RNAs for use in the detection systems described herein. The method may comprise designing putative guide RNAs tiled across a target molecule of interest. The method may further comprise creating a training model based on results of incubating guide RNAs with a Cas13 protein and the target molecule. The method may further comprise predicting highly active guide RNAs for the target molecule. Predicting may comprise optimizing the nucleotide at each base position in the guide RNA based on the training model. The method may further comprise validating the predicted highly active guide RNAs by incubating the guide RNAs with the Cas13 protein and the target molecule.
Guides may be screened for on-target and off-target effects. When using LAMP amplification, the products of LAMP can help identify those guides with more minimal off-target effects relative to on-target products.
The design of putative guide RNAs for target molecules of interest is described elsewhere herein.
The creation of training models is known in the art. Machine learning can be generalized as the ability of a learning machine to perform accurately on new, unseen examples/tasks after having experienced a learning data set. Machine learning may include the following concepts and methods. Supervised learning concepts may include AODE; Artificial neural network, such as Backpropagation, Autoencoders, Hopfield networks, Boltzmann machines, Restricted Boltzmann Machines, and Spiking neural networks; Bayesian statistics, such as Bayesian network and Bayesian knowledge base; Case-based reasoning; Gaussian process regression; Gene expression programming; Group method of data handling (GMDH); Inductive logic programming; Instance-based learning; Lazy learning; Learning Automata; Learning Vector Quantization; Logistic Model Tree; Minimum message length (decision trees, decision graphs, etc.), such as Nearest Neighbor Algorithm and Analogical modeling; Probably approximately correct learning (PAC) learning; Ripple down rules, a knowledge acquisition methodology; Symbolic machine learning algorithms; Support vector machines; Random Forests; Ensembles of classifiers, such as Bootstrap aggregating (bagging) and Boosting (meta-algorithm); Ordinal classification; Information fuzzy networks (IFN); Conditional Random Field; ANOVA; Linear classifiers, such as Fisher's linear discriminant, Linear regression, Logistic regression, Multinomial logistic regression, Naive Bayes classifier, Perceptron, Support vector machines; Quadratic classifiers; k-nearest neighbor; Boosting; Decision trees, such as C4.5, Random forests, ID3, CART, SLIQ, SPRINT; Bayesian networks, such as Naive Bayes; and Hidden Markov models. Unsupervised learning concepts may include; Expectation-maximization algorithm; Vector Quantization; Generative topographic map; Information bottleneck method; Artificial neural network, such as Self-organizing map; Association rule learning, such as, Apriori algorithm, Eclat algorithm, and FP-growth algorithm; Hierarchical clustering, such as Single-linkage clustering and Conceptual clustering; Cluster analysis, such as, K-means algorithm, Fuzzy clustering, DBSCAN, and OPTICS algorithm; and Outlier Detection, such as Local Outlier Factor. Semi-supervised learning concepts may include; Generative models; Low-density separation; Graph-based methods; and Co-training. Reinforcement learning concepts may include; Temporal difference learning; Q-learning; Learning Automata; and SARSA. Deep learning concepts may include; Deep belief networks; Deep Boltzmann machines; Deep Convolutional neural networks; Deep Recurrent neural networks; and Hierarchical temporal memory.
The methods as disclosed herein designing putative guide RNAs may comprise design based on one or more variables, including guide sequence, flanking target sequence, guide position and guide GC content as input features. In certain embodiments, the length of the flanking target region can be considered a freeparameter and can be further selected during cross-validation. Additionally, mono-nucleotide and/or dinucleotide based identities across a guide length and flanking sequence in the target, varying one or more of flanking sequence length, normalized positions of the guide in the target, and GC content of the guide, or a combination thereof.
In embodiments, the training model for the guide design of highly active guides is Cas protein specific. In embodiments, the Cas protein is a Cas13a, Cas13b, a Cas12a and/or a Cas12b protein. In certain embodiments, the protein is LwaCas13a or CcaCas13b. Selection for the best guides can be dependent on each enzyme. In particular embodiments, where majority of guides have activity above background on a per-target basis, selection of guides may be based on 1.5 fold, 2, 2.5, 3 or more fold activity over the median activity. In other instances, the best performing guides may be at or near background fluorescence. In this instance, the guide selection may be based on a top percentile, e.g. quartile or quintile, of performing guides.
Codon optimization is described elsewhere herein. In specific embodiments, the nucleotide at each base position in the guide RNA may be optimized based on the training model, thus allowing for prediction of highly active guide RNAs for the target molecule.
The predicted highly active guide RNAs may then be validated or verified by incubating the guide RNAs with a Cas effector protein, such as Cas13 protein and the target molecule(s) for coronavirus, for example coronavirus sequence that is immunostimulatory to a host immune system, or a target sequence unique to the 2019-nCov, as described elsewhere herein.
In certain embodiments, optimization comprises validation of best performing models for a particular Cas polypeptide across multiple guides may comprise comparing the predicted score of each guide versus actual collateral activity upon target recognition. In embodiments, kinetic data of the best and worst predicted guides are evaluated. In embodiments, lateral flow performance of the predicted guides is evaluated for a target sequence.
In an aspect, the guide sequence is selected from SEQ ID NOS: 40,500-61,643. Guide sequences can also be selected from Table 5 or Table 10 or Table 16.
The systems and methods described herein comprise a detection construct. As used herein, a “detection construct” refers to a molecule that can be cleaved or otherwise deactivated by an activated CRISPR system effector protein described herein. The term “detection construct” may also be referred to in the alternative as a “masking construct.” Depending on the nuclease activity of the CRISPR effector protein, the masking construct may be a RNA-based masking construct or a DNA-based masking construct. The Nucleic Acid-based masking constructs comprises a nucleic acid element that is cleavable by a CRISPR effector protein. Cleavage of the nucleic acid element releases agents or produces conformational changes that allow a detectable signal to be produced. Example constructs demonstrating how the nucleic acid element may be used to prevent or mask generation of detectable signal are described below and embodiments of the invention comprise variants of the same. Prior to cleavage, or when the masking construct is in an ‘active’ state, the masking construct blocks the generation or detection of a positive detectable signal. In certain embodiments, detection constructs are designed for cutting motifs of particular Cas proteins. See, International Publication WO 2019/126577, incorporated herein by reference in its entirety, and specifically paragraphs [00314]-[00356], Table 25, and Examples 8-10, for teaching of design of detection constructs for Cas proteins with preferred cutting motifs. For example, when AapCas12b is used, a reporter designed with A and T bases can be utilized because of preferred cleavage specificity. In an aspect, a reporter comprising sequence TTTTTTT is utilized with AapCas12b systems. In embodiments, the reporter comprises a AAAAA sequence or a TTTTT sequence. In an aspect, the reporter is selected from WCV328, WCV329, WCV333. The reporter can be selected from WCV0333/5HEX/TTTTTTT/3IABkFQ/homopolymer hex probe, WCV0328/5HEX/AAAAA/3IABkFQ/homopolymer hex probe, and WCV0329/5HEX/TTTTT/3IABkFQ/homopolymer hex probe.
It will be understood that in certain example embodiments a minimal background signal may be produced in the presence of an active masking construct. A positive detectable signal may be any signal that can be detected using optical, fluorescent, chemiluminescent, electrochemical or other detection methods known in the art. The term “positive detectable signal” is used to differentiate from other detectable signals that may be detectable in the presence of the masking construct. For example, in certain embodiments a first signal may be detected when the masking agent is present or when a CRISPR system has not been activated (i.e. a negative detectable signal), which then converts to a second signal (e.g. the positive detectable signal) upon detection of the target molecules and cleavage or deactivation of the masking agent, or upon activation of the CRISPR effector protein. The positive detectable signal, then, is a signal detected upon activation of the CRISPR effector protein, and may be, in a colorimetric or fluorescent assay, a decrease in fluorescence or color relative to a control or an increase in fluorescence or color relative to a control, depending on the configuration of the lateral flow substrate, and as described further herein.
In certain example embodiments, the masking construct may comprise a HCR initiator sequence and a cutting motif, or a cleavable structural element, such as a loop or hairpin, that prevents the initiator from initiating the HCR reaction. The cutting motif may be preferentially cut by one of the activated CRISPR effector proteins. Upon cleavage of the cutting motif or structure element by an activated CRISPR effector protein, the initiator is then released to trigger the HCR reaction, detection thereof indicating the presence of one or more targets in the sample. In certain example embodiments, the masking construct comprises a hairpin with a RNA loop. When an activated CRISPR effector protein cuts the RNA loop, the initiator can be released to trigger the HCR reaction.
In certain example embodiments, the masking construct may suppress generation of a gene product. The gene product may be encoded by a reporter construct that is added to the sample. The masking construct may be an interfering RNA involved in a RNA interference pathway, such as a short hairpin RNA (shRNA) or small interfering RNA (siRNA). The masking construct may also comprise microRNA (miRNA). While present, the masking construct suppresses expression of the gene product. The gene product may be a fluorescent protein or other RNA transcript or proteins that would otherwise be detectable by a labeled probe, aptamer, or antibody but for the presence of the masking construct. Upon activation of the effector protein the masking construct is cleaved or otherwise silenced allowing for expression and detection of the gene product as the positive detectable signal. In preferred embodiments, the masking constructs comprise two or more detectable signals, for example, fluorescent signals, that can be read on different channels of a fluorimeter.
In specific embodiments, the masking construct comprises a silencing RNA that suppresses generation of a gene product encoded by a reporting construct, wherein the gene product generates the detectable positive signal when expressed.
In certain example embodiments, the masking construct may sequester one or more reagents needed to generate a detectable positive signal such that release of the one or more reagents from the masking construct results in generation of the detectable positive signal. The one or more reagents may combine to produce a colorimetric signal, a chemiluminescent signal, a fluorescent signal, or any other detectable signal and may comprise any reagents known to be suitable for such purposes. In certain example embodiments, the one or more reagents are sequestered by RNA aptamers that bind the one or more reagents. The one or more reagents are released when the effector protein is activated upon detection of a target molecule and the RNA or DNA aptamers are degraded.
In certain example embodiments, the masking construct may be immobilized on a solid substrate in an individual discrete volume (defined further below) and sequesters a single reagent. For example, the reagent may be a bead comprising a dye. When sequestered by the immobilized reagent, the individual beads are too diffuse to generate a detectable signal, but upon release from the masking construct are able to generate a detectable signal, for example by aggregation or simple increase in solution concentration. In certain example embodiments, the immobilized masking agent is a RNA- or DNA-based aptamer that can be cleaved by the activated effector protein upon detection of a target molecule.
In certain other example embodiments, the masking construct binds to an immobilized reagent in solution thereby blocking the ability of the reagent to bind to a separate labeled binding partner that is free in solution. Thus, upon application of a washing step to a sample, the labeled binding partner can be washed out of the sample in the absence of a target molecule. However, if the effector protein is activated, the masking construct is cleaved to a degree sufficient to interfere with the ability of the masking construct to bind the reagent thereby allowing the labeled binding partner to bind to the immobilized reagent. Thus, the labeled binding partner remains after the wash step indicating the presence of the target molecule in the sample. In certain aspects, the masking construct that binds the immobilized reagent is a DNA or RNA aptamer. The immobilized reagent may be a protein and the labeled binding partner may be a labeled antibody. Alternatively, the immobilized reagent may be streptavidin and the labeled binding partner may be labeled biotin. The label on the binding partner used in the above embodiments may be any detectable label known in the art. In addition, other known binding partners may be used in accordance with the overall design described herein.
In certain example embodiments, the masking construct may comprise a ribozyme. Ribozymes are RNA molecules having catalytic properties. Ribozymes, both naturally and engineered, comprise or consist of RNA that may be targeted by the effector proteins disclosed herein. The ribozyme may be selected or engineered to catalyze a reaction that either generates a negative detectable signal or prevents generation of a positive control signal. Upon deactivation of the ribozyme by the activated effector protein the reaction generating a negative control signal, or preventing generation of a positive detectable signal, is removed thereby allowing a positive detectable signal to be generated. In one example embodiment, the ribozyme may catalyze a colorimetric reaction causing a solution to appear as a first color. When the ribozyme is deactivated the solution then turns to a second color, the second color being the detectable positive signal. An example of how ribozymes can be used to catalyze a colorimetric reaction are described in Zhao et al. “Signal amplification of glucosamine phosphate based on ribozyme glmS,” Biosens Bioelectron. 2014; 16:337-42, and provide an example of how such a system could be modified to work in the context of the embodiments disclosed herein. Alternatively, ribozymes, when present can generate cleavage products of, for example, RNA transcripts. Thus, detection of a positive detectable signal may comprise detection of non-cleaved RNA transcripts that are only generated in the absence of the ribozyme.
In some embodiments, the masking construct may be a ribozyme that generates a negative detectable signal, and wherein a positive detectable signal is generated when the ribozyme is deactivated.
In certain example embodiments, the one or more reagents is a protein, such as an enzyme, capable of facilitating generation of a detectable signal, such as a colorimetric, chemiluminescent, or fluorescent signal, that is inhibited or sequestered such that the protein cannot generate the detectable signal by the binding of one or more DNA or RNA aptamers to the protein. Upon activation of the effector proteins disclosed herein, the DNA or RNA aptamers are cleaved or degraded to an extent that they no longer inhibit the protein's ability to generate the detectable signal. In certain example embodiments, the aptamer is a thrombin inhibitor aptamer. In certain example embodiments the thrombin inhibitor aptamer has a sequence of GGGAACAAAGCUGAAGUACUUACCC (SEQ ID NO: 62012). When this aptamer is cleaved, thrombin will become active and will cleave a peptide colorimetric or fluorescent substrate. In certain example embodiments, the colorimetric substrate is para-nitroanilide (pNA) covalently linked to the peptide substrate for thrombin. Upon cleavage by thrombin, pNA is released and becomes yellow in color and easily visible to the eye. In certain example embodiments, the fluorescent substrate is 7-amino-4-methylcoumarin a blue fluorophore that can be detected using a fluorescence detector. Inhibitory aptamers may also be used for horseradish peroxidase (HRP), beta-galactosidase, or calf alkaline phosphatase (CAP) and within the general principals laid out above.
In certain embodiments, RNAse or DNAse activity is detected colorimetrically via cleavage of enzyme-inhibiting aptamers. One potential mode of converting DNAse or RNAse activity into a colorimetric signal is to couple the cleavage of a DNA or RNA aptamer with the re-activation of an enzyme that is capable of producing a colorimetric output. In the absence of RNA or DNA cleavage, the intact aptamer will bind to the enzyme target and inhibit its activity. The advantage of this readout system is that the enzyme provides an additional amplification step: once liberated from an aptamer via collateral activity (e.g. Cpf1 collateral activity), the colorimetric enzyme will continue to produce colorimetric product, leading to a multiplication of signal.
In certain embodiments, an existing aptamer that inhibits an enzyme with a colorimetric readout is used. Several aptamer/enzyme pairs with colorimetric readouts exist, such as thrombin, protein C, neutrophil elastase, and subtilisin. These proteases have colorimetric substrates based upon pNA and are commercially available. In certain embodiments, a novel aptamer targeting a common colorimetric enzyme is used. Common and robust enzymes, such as beta-galactosidase, horseradish peroxidase, or calf intestinal alkaline phosphatase, could be targeted by engineered aptamers designed by selection strategies such as SELEX. Such strategies allow for quick selection of aptamers with nanomolar binding efficiencies and could be used for the development of additional enzyme/aptamer pairs for colorimetric readout.
In certain embodiments, the masking construct may be a DNA or RNA aptamer and/or may comprise a DNA or RNA-tethered inhibitor.
In certain embodiments, the masking construct may comprise a DNA or RNA oligonucleotide to which a detectable ligand and a masking component are attached.
In certain embodiments, RNAse or DNase activity is detected colorimetrically via cleavage of RNA-tethered inhibitors. Many common colorimetric enzymes have competitive, reversible inhibitors: for example, beta-galactosidase can be inhibited by galactose. Many of these inhibitors are weak, but their effect can be increased by increases in local concentration. By linking local concentration of inhibitors to DNase RNAse activity, colorimetric enzyme and inhibitor pairs can be engineered into DNase and RNAse sensors. The colorimetric DNase or RNAse sensor based upon small-molecule inhibitors involves three components: the colorimetric enzyme, the inhibitor, and a bridging RNA or DNA that is covalently linked to both the inhibitor and enzyme, tethering the inhibitor to the enzyme. In the uncleaved configuration, the enzyme is inhibited by the increased local concentration of the small molecule; when the DNA or RNA is cleaved (e.g. by Cas13 or Cas12 collateral cleavage), the inhibitor will be released and the colorimetric enzyme will be activated.
In certain embodiments, the aptamer or DNA- or RNA-tethered inhibitor may sequester an enzyme, wherein the enzyme generates a detectable signal upon release from the aptamer or DNA or RNA tethered inhibitor by acting upon a substrate. In some embodiments, the aptamer may be an inhibitor aptamer that inhibits an enzyme and prevents the enzyme from catalyzing generation of a detectable signal from a substance. In some embodiments, the DNA- or RNA-tethered inhibitor may inhibit an enzyme and may prevent the enzyme from catalyzing generation of a detectable signal from a substrate.
In certain embodiments, RNAse activity is detected colorimetrically via formation and/or activation of G-quadruplexes. G quadruplexes in DNA can complex with heme (iron (III)-protoporphyrin IX) to form a DNAzyme with peroxidase activity. When supplied with a peroxidase substrate (e.g. ABTS: (2,2′-Azinobis [3-ethylbenzothiazoline-6-sulfonic acid]-diammonium salt)), the G-quadruplex-heme complex in the presence of hydrogen peroxide causes oxidation of the substrate, which then forms a green color in solution. An example G-quadruplex forming DNA sequence is: GGGTAGGGCGGGTTGGGA (SEQ ID NO: 62013). By hybridizing an additional DNA or RNA sequence, referred to herein as a “staple,” to this DNA aptamer, formation of the G-quadraplex structure will be limited. Upon collateral activation, the staple will be cleaved allowing the G quadraplex to form and heme to bind. This strategy is particularly appealing because color formation is enzymatic, meaning there is additional amplification beyond collateral activation.
In certain embodiments, the masking construct may comprise an RNA oligonucleotide designed to bind a G-quadruplex forming sequence, wherein a G-quadruplex structure is formed by the G-quadruplex forming sequence upon cleavage of the masking construct, and wherein the G-quadruplex structure generates a detectable positive signal.
In certain example embodiments, the masking construct may be immobilized on a solid substrate in an individual discrete volume (defined further below) and sequesters a single reagent. For example, the reagent may be a bead comprising a dye. When sequestered by the immobilized reagent, the individual beads are too diffuse to generate a detectable signal, but upon release from the masking construct are able to generate a detectable signal, for example by aggregation or simple increase in solution concentration. In certain example embodiments, the immobilized masking agent is a DNA- or RNA-based aptamer that can be cleaved by the activated effector protein upon detection of a target molecule.
In one example embodiment, the masking construct comprises a detection agent that changes color depending on whether the detection agent is aggregated or dispersed in solution. For example, certain nanoparticles, such as colloidal gold, undergo a visible purple to red color shift as they move from aggregates to dispersed particles. Accordingly, in certain example embodiments, such detection agents may be held in aggregate by one or more bridge molecules. At least a portion of the bridge molecule comprises RNA or DNA. Upon activation of the effector proteins disclosed herein, the RNA or DNA portion of the bridge molecule is cleaved allowing the detection agent to disperse and resulting in the corresponding change in color. In certain example embodiments, the detection agent is a colloidal metal. The colloidal metal material may include water-insoluble metal particles or metallic compounds dispersed in a liquid, a hydrosol, or a metal sol. The colloidal metal may be selected from the metals in groups IA, IB, IIB and IIIB of the periodic table, as well as the transition metals, especially those of group VIII. Preferred metals include gold, silver, aluminum, ruthenium, zinc, iron, nickel and calcium. Other suitable metals also include the following in all of their various oxidation states: lithium, sodium, magnesium, potassium, scandium, titanium, vanadium, chromium, manganese, cobalt, copper, gallium, strontium, niobium, molybdenum, palladium, indium, tin, tungsten, rhenium, platinum, and gadolinium. The metals are preferably provided in ionic form, derived from an appropriate metal compound, for example the A13+, Ru3+, Zn2+, Fe3+, Ni2+ and Ca2+ ions.
When the RNA or DNA bridge is cut by the activated CRISPR effector, the aforementioned color shift is observed. In certain example embodiments the particles are colloidal metals. In certain other example embodiments, the colloidal metal is a colloidal gold. In certain example embodiments, the colloidal nanoparticles are 15 nm gold nanoparticles (AuNPs). Due to the unique surface properties of colloidal gold nanoparticles, maximal absorbance is observed at 520 nm when fully dispersed in solution and appear red in color to the naked eye. Upon aggregation of AuNPs, they exhibit a red-shift in maximal absorbance and appear darker in color, eventually precipitating from solution as a dark purple aggregate. In certain example embodiments the nanoparticles are modified to include DNA linkers extending from the surface of the nanoparticle. Individual particles are linked together by single-stranded RNA (ssRNA) or single-stranded DNA bridges that hybridize on each end to at least a portion of the DNA linkers. Thus, the nanoparticles will form a web of linked particles and aggregate, appearing as a dark precipitate. Upon activation of the CRISPR effectors disclosed herein, the ssRNA or ssDNA bridge will be cleaved, releasing the AU NPS from the linked mesh and producing a visible red color. Example DNA linkers and bridge sequences are listed below. Thiol linkers on the end of the DNA linkers may be used for surface conjugation to the AuNPS. Other forms of conjugation may be used. In certain example embodiments, two populations of AuNPs may be generated, one for each DNA linker. This will help facilitate proper binding of the ssRNA bridge with proper orientation. In certain example embodiments, a first DNA linker is conjugated by the 3′ end while a second DNA linker is conjugated by the 5′ end.
In certain other example embodiments, the masking construct may comprise an RNA or DNA oligonucleotide to which are attached a detectable label and a masking agent of that detectable label. An example of such a detectable label/masking agent pair is a fluorophore and a quencher of the fluorophore. Quenching of the fluorophore can occur as a result of the formation of a non-fluorescent complex between the fluorophore and another fluorophore or non-fluorescent molecule. This mechanism is known as ground-state complex formation, static quenching, or contact quenching. Accordingly, the RNA or DNA oligonucleotide may be designed so that the fluorophore and quencher are in sufficient proximity for contact quenching to occur. Fluorophores and their cognate quenchers are known in the art and can be selected for this purpose by one having ordinary skill in the art. The particular fluorophore/quencher pair is not critical in the context of this invention, only that selection of the fluorophore/quencher pairs ensures masking of the fluorophore. Upon activation of the effector proteins disclosed herein, the RNA or DNA oligonucleotide is cleaved thereby severing the proximity between the fluorophore and quencher needed to maintain the contact quenching effect. Accordingly, detection of the fluorophore may be used to determine the presence of a target molecule in a sample.
In certain other example embodiments, the masking construct may comprise one or more RNA oligonucleotides to which are attached one or more metal nanoparticles, such as gold nanoparticles. In some embodiments, the masking construct comprises a plurality of metal nanoparticles crosslinked by a plurality of RNA or DNA oligonucleotides forming a closed loop. In one embodiment, the masking construct comprises three gold nanoparticles crosslinked by three RNA or DNA oligonucleotides forming a closed loop. In some embodiments, the cleavage of the RNA or DNA oligonucleotides by the CRISPR effector protein leads to a detectable signal produced by the metal nanoparticles.
In certain other example embodiments, the masking construct may comprise one or more RNA or DNA oligonucleotides to which are attached one or more quantum dots. In some embodiments, the cleavage of the RNA or DNA oligonucleotides by the CRISPR effector protein leads to a detectable signal produced by the quantum dots.
In one example embodiment, the masking construct may comprise a quantum dot. The quantum dot may have multiple linker molecules attached to the surface. At least a portion of the linker molecule comprises RNA or DNA. The linker molecule is attached to the quantum dot at one end and to one or more quenchers along the length or at terminal ends of the linker such that the quenchers are maintained in sufficient proximity for quenching of the quantum dot to occur. The linker may be branched. As above, the quantum dot/quencher pair is not critical, only that selection of the quantum dot/quencher pair ensures masking of the fluorophore. Quantum dots and their cognate quenchers are known in the art and can be selected for this purpose by one having ordinary skill in the art. Upon activation of the effector proteins disclosed herein, the RNA or DNA portion of the linker molecule is cleaved thereby eliminating the proximity between the quantum dot and one or more quenchers needed to maintain the quenching effect. In certain example embodiments the quantum dot is streptavidin conjugated. RNA or DNA are attached via biotin linkers and recruit quenching molecules with the sequences/5Biosg/UCUCGUACGUUC/3IAbRQSp/(SEQ ID NO: 62014) or /5Biosg/UCUCGUACGUUCUCUCGUACGUUC/3IAbRQSp/(SEQ ID NO: 62015) where /5Biosg/ is a biotin tag and/31AbRQSp/ is an Iowa black quencher (Iowa Black FQ). Upon cleavage, by the activated effectors disclosed herein the quantum dot will fluoresce visibly.
In specific embodiments, the detectable ligand may be a fluorophore and the masking component may be a quencher molecule.
In a similar fashion, fluorescence energy transfer (FRET) may be used to generate a detectable positive signal. FRET is a non-radiative process by which a photon from an energetically excited fluorophore (i.e. “donor fluorophore”) raises the energy state of an electron in another molecule (i.e. “the acceptor”) to higher vibrational levels of the excited singlet state. The donor fluorophore returns to the ground state without emitting a fluoresce characteristic of that fluorophore. The acceptor can be another fluorophore or non-fluorescent molecule. If the acceptor is a fluorophore, the transferred energy is emitted as fluorescence characteristic of that fluorophore. If the acceptor is a non-fluorescent molecule the absorbed energy is loss as heat. Thus, in the context of the embodiments disclosed herein, the fluorophore/quencher pair is replaced with a donor fluorophore/acceptor pair attached to the oligonucleotide molecule. When intact, the masking construct generates a first signal (negative detectable signal) as detected by the fluorescence or heat emitted from the acceptor. Upon activation of the effector proteins disclosed herein the RNA oligonucleotide is cleaved and FRET is disrupted such that fluorescence of the donor fluorophore is now detected (positive detectable signal).
In certain example embodiments, the masking construct comprises the use of intercalating dyes which change their absorbance in response to cleavage of long RNAs or DNAs to short nucleotides. Several such dyes exist. For example, pyronine-Y will complex with RNA and form a complex that has an absorbance at 572 nm. Cleavage of the RNA results in loss of absorbance and a color change. Methylene blue may be used in a similar fashion, with changes in absorbance at 688 nm upon RNA cleavage. Accordingly, in certain example embodiments the masking construct comprises a RNA and intercalating dye complex that changes absorbance upon the cleavage of RNA by the effector proteins disclosed herein.
In certain example embodiments, the masking construct may comprise an initiator for an HCR reaction. See e.g. Dirks and Pierce. PNAS 101, 15275-15728 (2004). HCR reactions utilize the potential energy in two hairpin species. When a single-stranded initiator having a portion of complementary to a corresponding region on one of the hairpins is released into the previously stable mixture, it opens a hairpin of one speces. This process, in turn, exposes a single-stranded region that opens a hairpin of the other species. This process, in turn, exposes a single stranded region identical to the original initiator. The resulting chain reaction may lead to the formation of a nicked double helix that grows until the hairpin supply is exhausted. Detection of the resulting products may be done on a gel or colorimetrically. Example colorimetric detection methods include, for example, those disclosed in Lu et al. “Ultra-sensitive colorimetric assay system based on the hybridization chain reaction-triggered enzyme cascade amplification ACS Appl Mater Interfaces, 2017, 9(1):167-175, Wang et al. “An enzyme-free colorimetric assay using hybridization chain reaction amplification and split aptamers” Analyst 2015, 150, 7657-7662, and Song et al. “Non-covalent fluorescent labeling of hairpin DNA probe coupled with hybridization chain reaction for sensitive DNA detection.” Applied Spectroscopy, 70(4): 686-694 (2016).
In certain example embodiments, the masking construct suppresses generation of a detectable positive signal until cleaved, or modified by an activated CRISPR effector protein. In some embodiments, the masking construct may suppress generation of a detectable positive signal by masking the detectable positive signal, or generating a detectable negative signal instead.
In certain embodiments, the detection assay can be provided on a cartridge or chip. In an aspect, the cartridge can comprise one or more ampoules and one or more wells that are communicatively coupled, allowing for the transfer, exchange or movement of reagents and sample with or without the use of beads through the chambers of the cartridge and facilitating detection assays utilizing systems/devices for facilitating the detection assay on the cartridge.
The cartridge, also referred to herein as a chip, according to the present invention comprises a series of components of ampoules and chambers that are communicatively coupled with one or more other components on the cartridge. The coupling is typically a fluidic communication, for example, via channels. The cartridge may comprise a membrane that seals one or more of the chambers and/or ampoules. In an aspect, the membrane allows for storage of reagents, buffers and other solid or fluid components which cover and seal the cartridge. The membrane can be configured to be punctured, pierced or otherwise released from sealing or covering one or more components of the cartridge by a means for releasing reagents.
As noted above, certain embodiments enable the use of nucleic acid binding beads to concentrate target nucleic acid but that do not require elution of the isolated nucleic acid. Thus, in certain example embodiments, the cartridge may further comprise an activatable magnet, such as an electro-magnet. A means for activating the magnet may be located on the device, or the means for supplying the magnet or activating the magnet on the cartridge may be provided by a second device, such as those disclosed in further detail below.
An exemplary cartridge is depicted in
The overall size of the device may be between 10, 15, 20, 25, 30, 35, 40, 45, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 mm in width, and 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, or 200 mm. The sizing of ampoules, chambers, and channels can be selected to be in line with the reaction volumes discussed herein and to fit within the general size parameters of the overall cartridge.
The ampoules, also referred to as blisters, allow for storage and release of reagents throughout the cartridge. Ampoules can include liquid or solid reagents, for example, lysis reagents in one ampoule and reaction reagents in another ampoule. The reagents can be as described elsewhere herein, and can be adapted for the use in the cartridge. The ampoule may be sealed by a film that allows for the bursting, puncture or other release of the contents of the ampoules. See, e.g. Becker, H. & Gartner, C. Microfluidics-enabled diagnostic systems: markets, challenges, and examples. In Microchip Diagnostics: Methods and Protocols (eds Taly, V. et al.) (Springer, New York, 2017); Czurratis et al., doi: 10.1088/0960-1317/25/4/045002. Considerations for ampoules can include as discussed in, for example, Smith, S., et al., Blister pouches for effective reagent storage on microfluidic chips for blood cell counting. Microfluid Nanofluid 20, 163 (2016). DOI:10.1007/s10404-016-1830-2. In an aspect, the seal is a frangible seal formed of a composite-layer film that is assembled to the cartride main body. While referred to herein as an ampoule, the ampoule may comprise a cavity on a chip which comprises a sealed film that is opened by the release means.
The chambers on the chip may located and sized for fluidic communication via channels or other communication means with ampoules and/or other chambers on the chip, see, e.g.
When the cartridge comprises a magnet, it may be configured near one or more of the chambers. In an aspect, the magnet is near the lysis well, and may be configured such that the device has a means for activating the magnet. Embodiments comprising a magnet in the cartridge may be utilized with methodologies using magnetic beads for extraction of particular target molecules.
A system configured for use with the cartridge and to perform an assay, also referred to as a sample analysis apparatus, detection system or detection device, is configured system to receive the cartridge and conduct an assay comprising isothermal amplification of nucleic acids and detection of target nucleic acids on the cartridge. The system may comprise: a body; a door housing which may be provided in an opened state or a closed state, and configured to be coupled to the body of the sample analysis apparatus by a hinge or other closure means; a cartridge accommodating unit included in the detection system and configured to accommodate the cartridge. The system may further comprise one or more means for releasing reagents for extractions, amplification and/or detection; one or more heating means for extractions, amplification and/or detection, a means for mixing reagents for extraction, amplification, and/or detections, and/or a menas for reading the results of the assay. The device may further comprise a user interface for programming the device and/or readout of the results of the assay.
The system may comprise means for releasing reagents for extraction, amplification and/or detection. Release of reagents can be performed by a crushing, puncturing, applying heat or pressure until burst, cutting, or other means for the opening of the ampoule and release of contents. e.g. Becker, H. & Gartner, C. Microfluidics-enabled diagnostic systems: markets, challenges, and examples. In Microchip Diagnostics: Methods and Protocols (eds Taly, V. et al.) (Springer, New York, 2017); Czurratis et al., doi: 10.1088/0960-1317/25/4/045002. Mechanical actuators
The heating means or heating element can be provided, for example, by electrical or chemical elements. One or more heating means can be utilized, or circuits providing regulation of temperature to one or more locations within the detection device can be utilized. In one preferred embodiment the device is configured to comprise a heating means for heating the lysis (extraction) chamber and at the amplification chamber of the cartridge. In an aspect, the heating element is disposed under the extraction well. The system can be designed with one or more heating means for extraction, amplification and/or detection.
A means for mixing reagents for extraction, amplification and/or detection can be provided. A means for mixing reagents may comprise a means for mixing one or more fluids, or a fluid with a solid or lyophilized reaction mixture can also be provided. Means for mixing that disturb the laminar flow can be provided. In an aspect, the mixing means is a passive mixer, in another aspect, the mixing means is an active mixer. See, e.g. Nam-Trung Nguyen and Zhigang Wu 2005 J. Micromech. Microeng. 15 R1, doi: 10.1088/0960-1317/15/2/R01 for discussion of mixing approaches. In an aspect, the active mixer can be based on external sources such as pressure, temperature, hydrodynamics (with electrical or magnetic forces), dielectrophoresis, electrokinetics, or acoustics. Examples of passive mixing means can be provided by use of geometric approaches, such as a curved path or channel, see, e.g. U.S. Pat. No. 7,160,025, or an expansion/contraction of a channel cross section or diameter. When the cartridge is utilized with beads, channels and wells are configured and sized for the flow of beads.
A means for reading the results of the assay can be provided in the system. The means for reading the results of the assay will depend in part on the type of detectable signal generated by the assay. In particular embodiments, the assay generates a detectable fluorescent or color readout. In these instances, the means for reading the results of the assay will be an optic means, for example a single channel or multi-channel optical means such as a fluorimeter, colorimeter or other spectroscopic sensor.
A combination of means for reading the results of the assay can be utilized, and may include readings such as turbidity, temperature, magnetic, radio, or electrical properties and or optical properties, including scattering, polarization effects, etc.
The system may further comprise a user interface for programming the device and/or readout of the results of the assay. The user interface may comprise an LED screen. The system can be further configured for a USB port that can allow for docking of four or more devices.
In an aspect, the system comprises a means for activating a magnet that is disposed within or on the cartridge.
In certain embodiments, the detection assay can be provided on a lateral flow device, as described in International Publication WO 2019/071051, incorporated herein by reference. The lateral flow device can be adapted to detect one or more coronaviruses and/or other viruses in combination of the coronavirus. The lateral flow device may comprise a flexible substrate, such as a paper substrate or a flexible polymer-based substrate, which can include freeze-dried reagents for detection assays with a visual readout of the assay results. See, WO 2019/071051 at [0145]-[0151] and Example 2, specifically incorporated herein by reference. In an aspect, lyophilized reagents can include preferred excipients that aid in rate of reaction, specificity, or other variables. The excipients may comprise trehalose, histidine, and/or glycine. In certain embodiments, the coronavirus assay can be utilized with isothermal amplification reagents, allowing amplification without complex instrumentation that may be unavailable in the field, as described in WO 2019/071051. Accordingly, the assay can be adapted for field diagnostics, including use of visual readout on a lateral flow device, rapid, sensitive detection and can be deployed for early and direct detection. Colorimetric detection can be utilized and may be particularly suited for field deployable applications, as described in International Application PCT/US2019/015726, published as WO2019/148206. In particular, colorimetric detection can be as described in WO2019/148206 at
In one embodiment, the invention provides a lateral flow device comprising a substrate comprising a first end and a second end. The first end may comprise a sample loading portion, a first region comprising a detectable ligand, two or more CRISPR effector systems, two or more detection constructs, and one or more first capture regions, each comprising a first binding agent. The substrate may also comprise two or more second capture regions between the first region of the first end and the second end, each second capture region comprising a different binding agent. Each of the two or more CRISPR effector systems may comprise a CRISPR effector protein and one or more guide sequences, each guide sequence configured to bind one or more target molecules.
The embodiments disclosed herein are directed to lateral flow detection devices that comprise SHERLOCK systems.
The device may comprise a lateral flow substrate for detecting a SHERLOCK reaction. Substrates suitable for use in lateral flow assays are known in the art. These may include, but are not necessarily limited to membranes or pads made of cellulose and/or glass fiber, polyesters, nitrocellulose, or absorbent pads (J Saudi Chem Soc 19(6):689-705; 2015), and other embodiments further described herein. The SHERLOCK system, i.e. one or more CRISPR systems and corresponding reporter constructs are added to the lateral flow substrate at a defined reagent portion of the lateral flow substrate, typically on one end of the lateral flow substrate. Reporting constructs used within the context of the present invention can comprise a first molecule and a second molecule linked by an RNA or DNA linker. The lateral flow substrate further comprises a sample portion. The sample portion may be equivalent to, continuous with, or adjacent to the reagent portion. In an aspect, the lateral flow substrate can be contained within a further device (see, e.g.
In certain example embodiments, a lateral flow device comprises a lateral flow substrate on which detection can be performed. Substrates suitable for use in lateral flow assays are known in the art. These may include, but are not necessarily limited to, membranes or pads made of cellulose and/or glass fiber, polyesters, nitrocellulose, or absorbent pads (J Saudi Chem Soc 19(6):689-705; 2015).
Lateral support substrates comprise a first and second end, and one or more capture regions that each comprise binding agents. The first end may comprise a sample loading portion, a first region comprising a detectable ligand, two or more CRISPR effector systems, two or more detection constructs, and one or more first capture regions, each comprising a first binding agent. The substrate may also comprise two or more second capture regions between the first region of the first end and the second end, each second capture region comprising a different binding agent. Each of the two or more CRISPR effector systems may comprise a CRISPR effector protein and one or more guide sequences, each guide sequence configured to bind one or more target molecules. The lateral flow substrates may be configured to detect a SHERLOCK reaction.
Lateral support substrates may be located within a housing (see for example, “Rapid Lateral Flow Test Strips” Merck Millipore 2013). The housing may comprise at least one opening for loading samples and a second single opening or separate openings that allow for reading of detectable signal generated at the first and second capture regions.
The embodiments disclosed herein can be prepared in freeze-dried format for convenient distribution and point-of-care (POC) applications. Such embodiments are useful in multiple scenarios in human health including, for example, viral detection, bacterial strain typing, sensitive genotyping, and detection of disease-associated cell free DNA. Accordingly, the lateral substrate comprising one or more of the elements of the system, including detectable ligands, CRISPR effector systems, detection constructs and binding agents may be freeze-dried to the lateral flow substrate and packaged as a ready to use device. Alternatively, all or a portion of the elements of the system may be added to the reagent portion of the lateral flow substrate at the time of using the device.
The substrate of the lateral flow device comprises a first and second end. The SHERLOCK system, i.e. one or more CRISPR systems and corresponding reporter constructs are added to the lateral flow substrate at a defined reagent portion of the lateral flow substrate, typically on a first end of the lateral flow substrate. Reporting constructs used within the context of the present invention comprise a first molecule and a second molecule linked by an RNA or DNA linker. The lateral flow substrate further comprises a sample portion. The sample portion may be equivalent to, continuous with, or adjacent to the reagent portion.
In certain example embodiments, the first end comprises a first region. The first region comprises a detectable ligand, two or more CRISPR effector systems, two or more detection constructs, and one or more first capture regions, each comprising a first binding agent.
The lateral flow substrate can comprise one or more capture regions. In embodiments the first end of the lateral flow substrate comprises one or more first capture regions, with two or more second capture regions between the first region of the first end of the substrate and the second end of the substrate. The capture regions may be provided as a capture line, typically a horizontal line running across the device, but other configurations are possible. The first capture region is proximate to and on the same end of the lateral flow substrate as the sample loading portion.
Specific binding-integrating molecules comprise any members of binding pairs that can be used in the present invention. Such binding pairs are known to those skilled in the art and include, but are not limited to, antibody-antigen pairs, enzyme-substrate pairs, receptor-ligand pairs, and streptavidin-biotin. In addition to such known binding pairs, novel binding pairs may be specifically designed. A characteristic of binding pairs is the binding between the two members of the binding pair.
A first binding agent that specifically binds the first molecule of the reporter construct is fixed or otherwise immobilized to the first capture region. The second capture region is located towards the opposite end of the lateral flow substrate from the first capture region. A second binding agent is fixed or otherwise immobilized at the second capture region. The second binding agent specifically binds the second molecule of the reporter construct, or the second binding agent may bind a detectable ligand. For example, the detectable ligand may be a particle, such as a colloidal particle, that when it aggregates can be detected visually, and generates a detectable positive signal. The particle may be modified with an antibody that specifically binds the second molecule on the reporter construct. If the reporter construct is not cleaved it will facilitate accumulation of the detectable ligand at the first binding region. If the reporter construct is cleaved the detectable ligand is released to flow to the second binding region. In such an embodiment, the second binding region comprises a second binding agent capable of specifically or non-specifically binding the detectable ligand on the antibody of the detectable ligand. Binding agents can be, for example, antibodies, that recognize a particular affinity tag. Such binding agents can further contain, for example, detectable labels, such as isotope labels and/or nucleic acid barcodes. A barcode is a short sequence of nucleotides (for example, DNA, RNA, or combinations thereof) that is used as an identifier. A nucleic acid barcode may have a length of 4-100 nucleotides and be either single or double-stranded. Methods for identifying cells with barcodes are known in the art. Accordingly, guide RNAs of the CRISPR effector systems described herein may be used to detect the barcode.
The first region is loaded with a detectable ligand, such as those disclosed herein, for example a gold nanoparticle. The detectable ligand may be a particle, such as a colloidal particle, that when it aggregates can be detected visually. The particle may be modified with an antibody that specifically binds the second molecule on the reporter construct. If the reporter construct is not cleaved it will facilitate accumulation of the detectable ligand at the first binding region. If the reporter construct is cleaved the detectable ligand is released to flow to the second binding region. In such an embodiment, the second binding agent is an agent capable of specifically or non-specifically binding the detectable ligand on the antibody on the detectable ligand. Examples of suitable binding agents for such an embodiment include, but are not limited to, protein A and protein G. In some examples, the detectable ligand is a gold nanoparticle, which may be modified with a first antibody, such as an anti-FITC antibody.
The first region also comprises a detection construct. In one example embodiment, a RNA detection construct and a CRISPR effector system (a CRISPR effector protein and one or more guide sequences configured to bind to one or more target sequences) as disclosed herein. In one example embodiment, and for purposes of further illustration, the RNA construct may comprise a FAM molecule on a first end of the detection construction and a biotin on a second end of the detection construct. Upstream of the flow of solution from the first end of the lateral flow substrate is a first test band. The test band may comprise a biotin ligand. Accordingly, when the RNA detection construct is present it its initial state, i.e. in the absence of target, the FAM molecule on the first end will bind the anti-FITC antibody on the gold nanoparticle, and the biotin on the second end of the RNA construct will bind the biotin ligand allowing for the detectable ligand to accumulate at the first test, generating a detectable signal. Generation of a detectable signal at the first band indicates the absence of the target ligand. In the presence of target, the CRISPR effector complex forms and the CRISPR effector protein is activated resulting in cleavage of the RND detection construct. In the absence of intact RNA detection construct the colloidal gold will flow past the second strip. The lateral flow device may comprise a second band, upstream of the first band. The second band may comprise a molecule capable of binding the antibody-labeled colloidal gold molecule, for example an anti-rabbit antibody capable of binding a rabbit anti-FITC antibody on the colloidal gold. Therefore, in the presence of one or more targets, the detectable ligand will accumulate at the second band, indicating the presence of the one or more targets in the sample.
In some embodiments, the first end of the lateral flow device comprises two detection constructs and each of the two detection constructs comprises an RNA or DNA oligonucleotide, comprising a first molecule on a first end and a second molecule on a second end. The first molecule and the second molecule may be linked by an RNA or DNA linker.
In some embodiments, the first molecule on the first end of the first detection construct may be FAM and the second molecule on the second end of the first detection construct may be biotin, or vice versa. In some embodiments, the first molecule on the first end of the second detection construct may be FAM and the second molecule on the second end of the second detection construct may be Digoxigenin (DIG), or vice versa.
In some embodiments, the first end may comprise three detection constructs, wherein each of the three detection constructs comprises an RNA or DNA oligonucleotide, comprising a first molecule on a first end and a second molecule on a second end. In specific embodiments, the first and second molecules on the detection constructs comprise Tye 665 and Alexa 488; Tye 665 and FAM, and Tye 665 and Digoxigenin (DIG), respectively.
In some embodiments, the first end of the lateral flow device comprises two or more CRISPR effector systems, also referred to as a CRISPR-Cas or CRISPR system. In some embodiments, such a CRISPR effector system may include a CRISPR effector protein and one or more guide sequences configured to bind to one or more target sequences.
When utilizing the detection systems with a lateral flow substrate, samples to be screened are loaded at the sample loading portion of the lateral flow substrate. The samples must be liquid samples or samples dissolved in an appropriate solvent, usually aqueous. The liquid sample reconstitutes the SHERLOCK reagents such that a SHERLOCK reaction can occur. The liquid sample begins to flow from the sample portion of the substrate towards the first and second capture regions.
A sample for use with the invention may be a biological or environmental sample, such as a surface sample, a fluid sample, or a food sample (fresh fruits or vegetables, meats). Food samples may include a beverage sample, a paper surface, a fabric surface, a metal surface, a wood surface, a plastic surface, a soil sample, a freshwater sample, a wastewater sample, a saline water sample, exposure to atmospheric air or other gas sample, or a combination thereof. For example, household/commercial/industrial surfaces made of any materials including, but not limited to, metal, wood, plastic, rubber, or the like, may be swabbed and tested for contaminants. Soil samples may be tested for the presence of pathogenic bacteria or parasites, or other microbes, both for environmental purposes and/or for human, animal, or plant disease testing. Water samples such as freshwater samples, wastewater samples, or saline water samples can be evaluated for cleanliness and safety, and/or potability, to detect the presence of, for example, Cryptosporidium parvum, Giardia lamblia, or other microbial contamination. In further embodiments, a biological sample may be obtained from a source including, but not limited to, a tissue sample, saliva, blood, plasma, sera, stool, urine, sputum, mucous, lymph, synovial fluid, spinal fluid, cerebrospinal fluid, ascites, pleural effusion, seroma, pus, bile, aqueous or vitreous humor, transudate, exudate, or swab of skin or a mucosal membrane surface. In some particular embodiments, an environmental sample or biological samples may be crude samples and/or the one or more target molecules may not be purified or amplified from the sample prior to application of the method. Identification of microbes may be useful and/or needed for any number of applications, and thus any type of sample from any source deemed appropriate by one of skill in the art may be used in accordance with the invention.
In particular embodiments, the methods and systems can be utilized for direct detection from patient samples. In an aspect, the methods and systems can further allow for direct detection from patient samples with a visual readout to further facilitate field-deployability. In an aspect, a field depoloyable version can include, for example the lateral flow devices and systems as described herein, and/or colorimetric detection. The methods and systems can be utilized to distinguish multiple viral species and strains and identify clinically relevant mutations, important with viral outbreaks such as the coronavirus outbreak in Wuhan (2019-nCoV). In an aspect, the sample is from a nasophyringeal swab or a saliva sample. See., e.g.
Methods for Detecting and/or Quantifying Target Nucleic Acids
In some embodiments, the invention provides methods for detecting target nucleic acids in a sample. Such methods may comprise contacting a sample with the first end of a lateral flow device as described herein. The first end of the lateral flow device may comprise a sample loading portion, wherein the sample flows from the sample loading portion of the substrate towards the first and second capture regions and generates a detectable signal.
A positive detectable signal may be any signal that can be detected using optical, fluorescent, chemiluminescent, electrochemical or other detection methods known in the art, as described elsewhere herein.
In some embodiments, the lateral flow device may be capable of detecting two different target nucleic acid sequences. In some embodiments, this detection of two different target nucleic acid sequences may occur simultaneously.
In some embodiments, the absence of target nucleic acid sequences in a sample elicits a detectable fluorescent signal at each capture region. In such instances, the absence of any target nucleic acid sequences in a sample may cause a detectable signal to appear at the first and second capture regions.
In some embodiments, the lateral flow device as described herein is capable of detecting three different target nucleic acid sequences. In specific embodiments, when the target nucleic acid sequences are absent from the sample, a fluorescent signal may be generated at each of the three capture regions. In such exemplary embodiments, a fluorescent signal may be absent at the capture region for the corresponding target nucleic acid sequence when the sample contains one or more target nucleic acid sequences.
Samples to be screened are loaded at the sample loading portion of the lateral flow substrate. The samples must be liquid samples or samples dissolved in an appropriate solvent, usually aqueous. The liquid sample reconstitutes the system reagents such that a SHERLOCK reaction can occur. Intact reporter construct is bound at the first capture region by binding between the first binding agent and the first molecule. Likewise, the detection agent will begin to collect at the first binding region by binding to the second molecule on the intact reporter construct. If target molecule(s) are present in the sample, the CRISPR effector protein collateral effect is activated. As activated CRISPR effector protein comes into contact with the bound reporter construct, the reporter constructs are cleaved, releasing the second molecule to flow further down the lateral flow substrate towards the second binding region. The released second molecule is then captured at the second capture region by binding to the second binding agent, where additional detection agent may also accumulate by binding to the second molecule. Accordingly, if the target molecule(s) is not present in the sample, a detectable signal will appear at the first capture region, and if the target molecule(s) is present in the sample, a detectable signal will appear at the location of the second capture region.
In some embodiments, the invention provides a method for quantifying target nucleic acids in samples comprising distributing a sample or set of samples into one or more individual discrete volumes comprising two or more CRISPR systems as described herein. The method may comprise using HDA to amplify one or more target molecules in the sample or set of samples, as described herein. The method may further comprise incubating the sample or set of samples under conditions sufficient to allow binding of the guide RNAs to one or more target molecules. The method may further comprise activating the CRISPR effector protein via binding of the guide RNAs to the one or more target molecules. Activating the CRISPR effector protein may result in modification of the detection construct such that a detectable positive signal is generated. The method may further comprise detecting the one or more detectable positive signals, wherein detection indicates the presence of one or more target molecules in the sample. The method may further comprise comparing the intensity of the one or more signals to a control to quantify the nucleic acid in the sample. The steps of amplifying, incubating, activating, and detecting may all be performed in the same individual discrete volume.
An “individual discrete volume” is a discrete volume or discrete space, such as a container, receptacle, or other defined volume or space that can be defined by properties that prevent and/or inhibit migration of nucleic acids and reagents necessary to carry out the methods disclosed herein, for example a volume or space defined by physical properties such as walls, for example the walls of a well, tube, or a surface of a droplet, which may be impermeable or semipermeable, or as defined by other means such as chemical, diffusion rate limited, electro-magnetic, or light illumination, or any combination thereof. By “diffusion rate limited” (for example diffusion defined volumes) is meant spaces that are only accessible to certain molecules or reactions because diffusion constraints effectively defining a space or volume as would be the case for two parallel laminar streams where diffusion will limit the migration of a target molecule from one stream to the other. By “chemical” defined volume or space is meant spaces where only certain target molecules can exist because of their chemical or molecular properties, such as size, where for example gel beads may exclude certain species from entering the beads but not others, such as by surface charge, matrix size or other physical property of the bead that can allow selection of species that may enter the interior of the bead. By “electro-magnetically” defined volume or space is meant spaces where the electro-magnetic properties of the target molecules or their supports such as charge or magnetic properties can be used to define certain regions in a space such as capturing magnetic particles within a magnetic field or directly on magnets. By “optically” defined volume is meant any region of space that may be defined by illuminating it with visible, ultraviolet, infrared, or other wavelengths of light such that only target molecules within the defined space or volume may be labeled. One advantage to the used of non-walled, or semipermeable is that some reagents, such as buffers, chemical activators, or other agents maybe passed in Applicants' through the discrete volume, while other material, such as target molecules, maybe maintained in the discrete volume or space. Typically, a discrete volume will include a fluid medium, (for example, an aqueous solution, an oil, a buffer, and/or a media capable of supporting cell growth) suitable for labeling of the target molecule with the indexable nucleic acid identifier under conditions that permit labeling. Exemplary discrete volumes or spaces useful in the disclosed methods include droplets (for example, microfluidic droplets and/or emulsion droplets), hydrogel beads or other polymer structures (for example poly-ethylene glycol di-acrylate beads or agarose beads), tissue slides (for example, fixed formalin paraffin embedded tissue slides with particular regions, volumes, or spaces defined by chemical, optical, or physical means), microscope slides with regions defined by depositing reagents in ordered arrays or random patterns, tubes (such as, centrifuge tubes, microcentrifuge tubes, test tubes, cuvettes, conical tubes, and the like), bottles (such as glass bottles, plastic bottles, ceramic bottles, Erlenmeyer flasks, scintillation vials and the like), wells (such as wells in a plate), plates, pipettes, or pipette tips among others. In certain example embodiments, the individual discrete volumes are the wells of a microplate. In certain example embodiments, the microplate is a 96 well, a 384 well, or a 1536 well microplate.
Incubating the sample at either the amplification step or the extraction steps as described herein can be performed using heat sources known in the art. Advantageously, the heat source can be readily commercially available heating sources that do not require complicated instrumentation. The heating sources can be included in a device that allows for the one-pot reaction detailed herein. Exemplary heating systems can include heating blocks, incubators, and/or water baths with temperatures maintained by commercially available sous-vide cookers. In this way, sample diagnostics can be performed without the requirement of expensive and proprietary equipment found primarily in diagnostic laboratory and hospital settings.
In certain example embodiments, paper-based microfluidics may be used for transfer of samples or reagents. For example, paper strips having wax barrier printed at a defined distance from the end of a paper dipstick may be used to define a volume of reagent or sample to be transferred. For example, a wax barrier may be printed across a paper dipstick to define a microliter volume such that when the dipstick is transferred into a volume of a reagent or sample only a microliter of said reagent or sample is absorbed onto the dipstick. The dipstick may be place in a second reagent mix, where the reagent or sample will diffuse into the reaction mixture. Such components allow for preparation and use of the assay without specialized equipment such as pipettors.
Optical means may be used to assess the presence and level of a given target molecule. In certain embodiments, an optical sensor detects unmasking of a fluorescent masking agent. In certain embodiments, the device of the present invention may include handheld portable devices for diagnostic reading of an assay (see e.g., Vashist et al., Commercial Smartphone-Based Devices and Smart Applications for Personalized Healthcare Monitoring and Management, Diagnostics 2014, 4(3), 104-128; mReader from Mobile Assay; and Holomic Rapid Diagnostic Test Reader). As provided in Example 10, Applicants have developed an application for mobile devices that aid a user in interpreting lateral flow results (
As noted herein, certain embodiments allow detection via colorimetric change which has certain attendant benefits when embodiments are utilized in POC situations and or in resource poor environments where access to more complex detection equipment to readout the signal may be limited. However, portable embodiments disclosed herein may also be coupled with hand-held spectrophotometers that enable detection of signals outside the visible range. An example of a hand-held spectrophotometer device that may be used in combination with the present invention is described in Das et al. “Ultra-portable, wireless smartphone spectrophotometer for rapid, non-destructive testing of fruit ripeness.” Nature Scientific Reports. 2016, 6:32504, DOI: 10.1038/srep32504. Finally, in certain embodiments utilizing quantum dot-based masking constructs, use of a hand-held UV light, or other suitable device, may be successfully used to detect a signal owing to the near complete quantum yield provided by quantum dots.
The step of amplifying one or more target molecules can comprise amplification systems known in the art. In some embodiments, amplification is isothermal. In certain example embodiments, target RNAs and/or DNAs may be amplified prior to activating the CRISPR effector protein. Any suitable RNA or DNA amplification technique may be used. In certain embodiments, the amplifying step may take less than about 1 hour, 50 minutes, 40 minutes, 30 minutes, 25 minutes, 20 minutes or 15 minutes, which may depend on the sample, starting concentrations and nature of amplification used.
In certain embodiments, the amplifying of the target molecules and the detection of the target molecules can be performed in a single reaction, for example, a ‘one-pot’ method. Guidance for use of a single-pot approach can be as described in Gootenberg, et al., Science 2018 Apr. 27:360 (6387) 439-444 (using Cas13, Cas12a and Csm6 generally, detecting multiple targets in a single reaction, and specifically performing DNA extraction in a sample and using as input for direct detection at Figure S33); and Ding et al., “All-in-One Dual CRISPR-Cas12a (AIOD-CRISPR) Assay: A Case for Rapid, Ultrasensitive and Visual Detection of Novel Coronavirus SARS-CoV-2 and HIV Virus,” doi:10.1101/2020.03.19.998724, biorxiv preprint (utilizing a pair of crRNAs with dual CRISPR-Cas12a detection for a one-pot approach to target-specific nucleic acid detection); and International Patent Application PCT/US2020/022795, filed Mar. 13, 2020, incorporated herein by reference in its entirety.
In certain example embodiments, the RNA or DNA amplification is an isothermal amplification. In certain example embodiments, the isothermal amplification may be nucleic-acid sequenced-based amplification (NASBA), recombinase polymerase amplification (RPA), loop-mediated isothermal amplification (LAMP), strand displacement amplification (SDA), helicase-dependent amplification (HDA), or nicking enzyme amplification reaction (NEAR). In certain example embodiments, non-isothermal amplification methods may be used which include, but are not limited to, PCR, multiple displacement amplification (MDA), rolling circle amplification (RCA), ligase chain reaction (LCR), or ramification amplification method (RAM).
The amplifying of target molecules can be optimized by methods as detailed herein. In an aspect, the design optimizes the primers used in the amplification, In particular aspects, the isothermal amplification is used alone. In another aspect, the iotheraml amplification is used with CRISPR-Cas systems. In either approach, design considerations can follow a rational design for optimization of the reactions. Optimization of the methods as disclosed herein can include first screening primers to identify one or more sets of primers that work well for a particular target, Cas protein and/or reaction. Once the primers have been screened, titration of magnesium concentration can be performed to identify an optimal magnesium concentration for higher signal to noise readout. Once an optimum magnesium concentration is identified, additional additives are screened at around 20-25% of the reaction, and once additives are identified, these additives, such as those additives identified in
In certain example embodiments, a loop-mediated isothermal amplification (LAMP) reaction may be used to target nucleic acids, which encompasses both LAMP and RT-LAMP reactions. LAMP can be performed with a four-primer system for isothermal nucleic acid amplification in conjunction with a polymerase. Notomi et al., Nucleic Acids Res. 2000, 28, 12, Nagamine et al., Molecular and Cellular Probes (2002) 16, 223-229, doi: 10.1006/mcpr.2002.0415. When performing LAMP with a 4-primer system, two loop-forming inner primers, denoted as FIP and BIP, are provided with two outer primers, F3 and B3. The inner primers each contain two distinct sequences, one for priming in the first stage of the amplification and the other sequence for self-priming in subsequent amplification states. The two outer primers initiate strand displacement of nucleic acid strands initiated from the FIP and BIP primers, thereby generating formation of loops and strand displacement nucleic acid synthesis utilizing the provided polymerase. LAMP can be conducted with two to six primers, ranging from only the two loop-forming primers, up to at least the addition of 2 additional primers, LF and LB along with the two outer primers and two inner primers. LAMP technologies advantageously have high specificity and can work at a variety of pH and temperature. In a preferred aspect, the LAMP is an isothermal reaction at between about 45° C. to 75° C., 55 to 70° C. or 60° C. to 65° C. Colorimetric LAMP (Y. Zhang et al., doi:10.1101/2020.92.26.20028373), RT-LAMP (Lamb et al., doi: 10.1101/2020.02.19.20025155; and Yang et al., doi:10.1101/2020.03.02.20030130) have been developed for detection of COVID-19, and are incorporated herein by reference in their entirety.
In certain embodiments, the LAMP reagents may include Bst 2.0+RTx or Bst 3.0 from New England Biolabs. In certain embodiments, the LAMP reagents may comprise colorimetric or fluorescent detection. Detection of LAMP products can be accomplished using colorimetric tools, such as hydroxy napthol blue (see, e.g. Goto, M., et al., Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. Biotechniques, 2009. 46 (3): p. 167-72.) leuco triphenylmethane dyes (see, e.g. Miyamoto, S., et al., Method for colorimetric detection of double-stranded nucleic acid using leuco triphenylmethane dyes. Anal Biochem, 2015. 473: p. 28-33) and pH-sensitive dyes (see, e.g. Tanner, N. A., Y. Zhang, and T. C. Evans, Jr., Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes. Biotechniques, 2015. 58 (2): p. 59-68); as well as fluorescent detection (see, e.g. Yu et al., Clinical Chemistry, hvaa102, doi:10.1093/clinchem/hvaa102 12 May 2020), including use of quenching probes (see, e.g. Shirato et al., J Virol Methods. 2018 August; 258:41-48. doi: 10.1016/j.jviromet.2018.05.006).
In an aspect, the primer sets for LAMP are designed to amplify one or more target sequences, generating amplicons that comprise the one or more target sequences. Optionally, the primers can comprise barcodes that can be designed as described elsewhere herein. Incubating to a temperature sufficient for LAMP amplification, e.g. 50° C.−72° C., more preferably 55° C. to 65° C., using a polymerase and, optionally a reverse transcriptase (in the event RT-LAMP is utilized). Preferably the enzymes utilized in the LAMP reaction are heat-stabilized. LAMP primer sites have been designed, see, e.g. Park et al., “Development of Reverse Transcription Loop-Mediated Isothermal Amplification Assays Targeting SARS-CoV-2” J. of Mol. Diag. (2020). Optionally, a control template is further provided with the sample, which may differ from the target sequence but share primer binding sites. In an exemplary embodiment, visual read out of the detection results can be accomplished using commercially-available lateral flow substrate, e.g. a commercially available paper substrate. In certain embodiments, the LAMP control can comprise ACTB Set 1, and may be optionally be provided in a multiplexed format with the primer set of the target sequence at about 15% to about 50% of the total primer amount, preferably about 20% of the total primer amount.
In certain embodiments, the LAMP primer can be selected from SEQ ID NOS: 1-40499, or Table 1A. In certain embodiments, the primers are designed to target one or more of the targets in Table 1B, for example, Chlamydia trachomatis D/UW-3/CX chromosome, Hepatitis A virus, Hepatitis B virus (strain ayw) genome, Hepatitis C virus (isolate H77) genotype 1, complete cds, Hepatitis C virus genotype 1, Hepatitis C virus genotype 2, Hepatitis C virus genotype 3, genome, Hepatitis C virus genotype 4, genome, Hepatitis C virus genotype 5, genome, Hepatitis C virus genotype 6, Hepatitis C virus genotype 7, Hepatitis delta virus, Hepatitis E virus, Hepatitis E virus rat/R63/DEU/2009, Hepatitis GB virus A, Hepatitis GB virus B, Human adenovirus 54, Human adenovirus A, Human betaherpesvirus 6A, variant A DNA, complete virion genome, isolate U1102, Human coronavirus 229E, Human coronavirus HKU1, Human Coronavirus NL63, Human coronavirus OC43 strain ATCC VR-759, Human gammaherpesvirus 4, Human genital-associated circular DNA virus-1 isolate 349, Human herpesvirus 1 strain 17, Human herpesvirus 2 strain HG52, Human herpesvirus 3, Human herpesvirus 4, Human herpesvirus 5 strain Merlin, Human herpesvirus 6B, Human herpesvirus 7, Human herpesvirus 8 strain GK18, Human immunodeficiency virus 1, Human immunodeficiency virus 2, Human papillomavirus 54, Human papillomavirus 116, Human papillomavirus—1, Human papillomavirus—2, Human papillomavirus—18, Human papillomavirus—61, Human papillomavirus isolate SE379, Human papillomavirus KCS, Human papillomavirus type 4, Human papillomavirus type 6b, Human papillomavirus type 7 genomic DNA, Human papillomavirus type 9, Human papillomavirus type 10 genomic DNA, Human papillomavirus type 16, Human papillomavirus type 26, Human papillomavirus type 30 genomic DNA, Human papillomavirus type 32, Human papillomavirus type 34, Human papillomavirus type 41, Human papillomavirus type 48, Human papillomavirus type 49, Human papillomavirus type 50, Human papillomavirus type 53, Human papillomavirus type 60, Human papillomavirus type 63, Human papillomavirus type 71 DNA, Human papillomavirus type 85 isolate 114B, Human papillomavirus type 88, Human papillomavirus type 90, Human papillomavirus type 92, Human papillomavirus type 96, Human papillomavirus type 101, Human papillomavirus type 103, Human papillomavirus type 108, Human papillomavirus type 109, Human papillomavirus type 112, Human papillomavirus type 121, Human papillomavirus type 126, Human papillomavirus type 128, Human papillomavirus type 129, Human papillomavirus type 131, Human papillomavirus type 132, Human papillomavirus type 134, Human papillomavirus type 135, Human papillomavirus type 136, Human papillomavirus type 137, Human papillomavirus type 140, Human papillomavirus type 144, Human papillomavirus type 154 isolate PV77, Human papillomavirus type 156 isolate GC01, Human papillomavirus type 161 isolate KCl, Human papillomavirus type 163 isolate KC3, Human papillomavirus type 166 isolate KC9, Human papillomavirus type 167 isolate KC10, Human papillomavirus type 172, Human papillomavirus type 175 isolate SE87, Human, apillomavirus type 178, Human papillomavirus type 179 isolate SIBX16, Human papillomavirus type 184 isolate SIBX17, Human papillomavirus type 187 isolate ACS447, Human papillomavirus type 201 isolate HPV201, Human papillomavirus type 204 isolate A342, Human papillomoavirus type 5, Human parainfluenza virus 1, Human parainfluenza virus 3, Human rhinovirus 1 strain ATCC VR-1559, Human rhinovirus 3, Human rhinovirus 14, Human rhinovirus 89, Human rhinovirus C, Human rhinovirus NAT001 polyprotein gene, complete cds, Human T-lymphotropic virus 1, Influenza A virus (A/California/07/2009(H1N1)) segment 1 polymerase PB2 (PB2) gene, complete cds, Influenza A virus (A/California/07/2009(H1N1)) segment 2 polymerase PB1 (PB1) gene, complete cds; and nonfunctional PB1-F2 protein (PB1-F2) gene, Influenza A virus (A/California/07/2009(H1N1)) segment 3 polymerase PA (PA) gene, complete cds, Influenza A virus (A/California/07/2009(H1N1)) segment 4 hemagglutinin (HA) gene, complete cds, Influenza A virus (A/California/07/2009(H1N1)) segment 5 nucleocapsid protein (NP) gene, complete cds, Influenza A virus (A/California/07/2009(H1N1)) segment 6 neuraminidase (NA) gene, complete cds, Influenza A virus (A/California/07/2009(H1N1)) segment 7 matrix protein 2 (M2) and matrix protein 1 (M1) genes, complete cds, Influenza A virus (A/California/07/2009(H1N1)) segment 8 nuclear export protein (NEP) and nonstructural protein 1 (NS1) genes, complete cds, Influenza A virus (A/Goose/Guangdong/1/96(H5N1)) neuraminidase (NA) gene, complete cds, Influenza A virus (A/Goose/Guangdong/1/96(H5N1)) nucleocapsid protein (NP) gene, complete cds, Influenza A virus (A/Goose/Guangdong/1/96(H5N1)) polymerase (PB2) gene, complete cds, Influenza A virus (A/goose/Guangdong/1/1996(H5N1)) hemagglutinin (HA) gene, complete cds, Influenza A virus (A/goose/Guangdong/1/1996(H5N1)) polymerase (PA) and PA-X protein (PA-X) genes, complete cds, Influenza A virus (A/goose/Guangdong/1/1996(H5N1)) polymerase (PB1) and PB1-F2 protein (PB1-F2) genes, complete cds, Influenza A virus (A/goose/Guangdong/1/1996(H5N1)) segment 7, Influenza A virus (A/goose/Guangdong/1/1996(H5N1)) segment 8, Influenza A virus (A/Hong Kong/1073/99(H9N2)) segment 5, Influenza A virus (A/Hong Kong/1073/99(H9N2)) segment 7, Influenza A virus (A/Hong Kong/1073/99(H9N2)) segment 8, Influenza A virus (A/Korea/426/1968(H2N2)) segment 1, Influenza A virus (A/Korea/426/1968(H2N2)) segment 2, Influenza A virus (A/Korea/426/1968(H2N2)) segment 3, Influenza A virus (A/Korea/426/1968(H2N2)) segment 4, Influenza A virus (A/Korea/426/1968(H2N2)) segment 5, Influenza A virus (A/Korea/426/1968(H2N2)) segment 6, Influenza A virus (A/Korea/426/1968(H2N2)) segment 7, Influenza A virus (A/Korea/426/1968(H2N2)) segment 8, Influenza A virus (A/New York/392/2004(H3N2)) segment 1, Influenza A virus (A/New York/392/2004(H3N2)) segment 2, Influenza A virus (A/New York/392/2004(H3N2)) segment 3, Influenza A virus (A/New York/392/2004(H3N2)) segment 4, Influenza A virus (A/New York/392/2004(H3N2)) segment 5, Influenza A virus (A/New York/392/2004(H3N2)) segment 6, Influenza A virus (A/New York/392/2004(H3N2)) segment 7, Influenza A virus (A/New York/392/2004(H3N2)) segment 8, Influenza A virus (A/Puerto Rico/8/1934(H1N1)) segment 1, Influenza A virus (A/Puerto Rico/8/1934(H1N1)) segment 2, Influenza A virus (A/Puerto Rico/8/1934(H1N1)) segment 3, Influenza A virus (A/Puerto Rico/8/1934(H1N1)) segment 4, Influenza A virus (A/Puerto Rico/8/1934(H1N1)) segment 5, Influenza A virus (A/Puerto Rico/8/1934(H1N1)) segment 6, Influenza A virus (A/Puerto Rico/8/1934(H1N1)) segment 7, Influenza A virus (A/Puerto Rico/8/1934(H1N1)) segment 8, Influenza A virus (A/Shanghai/02/2013(H7N9)) segment 1 polymerase PB2 (PB2) gene, complete cds, Influenza A virus (A/Shanghai/02/2013(H7N9)) segment 2 polymerase PB1 (PB1) and PB1-F2 protein (PB1-F2) genes, complete cds, Influenza A virus (A/Shanghai/02/2013(H7N9)) segment 3 polymerase PA (PA) and PA-X protein (PA-X) genes, complete cds, Influenza A virus (A/Shanghai/02/2013(H7N9)) segment 4 hemagglutinin (HA) gene, complete cds, Influenza A virus (A/Shanghai/02/2013(H7N9)) segment 5 nucleocapsid protein (NP) gene, complete cds, Influenza A virus (A/Shanghai/02/2013(H7N9)) segment 6 neuraminidase (NA) gene, complete cds, Influenza A virus (A/Shanghai/02/2013(H7N9)) segment 7 matrix protein 2 (M2) and matrix protein 1 (M1) genes, complete cds, Influenza A virus (A/Shanghai/02/2013(H7N9)) segment 8 nuclear export protein (NEP) and nonstructural protein 1 (NS1) genes, complete cds, Influenza A virus ha gene for Hemagglutinin, genomic RNA, strain A/Hong Kong/1073/99(H9N2), Influenza A virus na gene for neuraminidase, genomic RNA, strain A/Hong Kong/1073/99(H9N2), Influenza A virus pa gene for polymerase PA, genomic RNA, strain A/Hong Kong/1073/99(H9N2), Influenza A virus pb1 gene for polymerase Pb1, genomic RNA, strain A/Hong Kong/1073/99(H9N2), Influenza A virus pb2 gene for polymerase Pb2, genomic RNA, strain A/Hong Kong/1073/99(H9N2), Influenza B virus (B/Lee/1940) segment 2, Influenza B virus (B/Lee/1940) segment 3, Influenza B virus (B/Lee/1940) segment 4, Influenza B virus (B/Lee/1940) segment 5, Influenza B virus (B/Lee/1940) segment 6, Influenza B virus (B/Lee/1940) segment 7, Influenza B virus (B/Lee/1940) segment 8, Influenza B virus RNA 1, Influenza C virus (C/Ann Arbor/1/50) HEF gene for hemagglutinin-esterase-fusion, complete cds, Influenza C virus (C/Ann Arbor/1/50) M1, CM2 genes for matrix protein, CM2 protein, complete cds, Influenza C virus (C/Ann Arbor/1/50) P3 gene for polymerase 3, complete cds, Influenza C virus (C/Ann Arbor/1/50) PB1 gene for polymerase 1, complete cds, Influenza C virus (C/Ann Arbor/1/50) PB2 gene for polymerase 2, complete cds, Influenza C virus (C/Ann Arbor/1/50) segment 5, Influenza C virus (C/Ann Arbor/1/50) segment 7, Neisseria gonorrhoeae strain WHO F chromosome 1, Respiratory syncytial virus, SARS coronavirus, or Streptococcus pyogenes strain NCTC8198 chromosome 1.
In certain example embodiments, the RNA or DNA amplification is NASBA, which is initiated with reverse transcription of target RNA by a sequence-specific reverse primer to create a RNA/DNA duplex. RNase H is then used to degrade the RNA template, allowing a forward primer containing a promoter, such as the T7 promoter, to bind and initiate elongation of the complementary strand, generating a double-stranded DNA product. The RNA polymerase promoter-mediated transcription of the DNA template then creates copies of the target RNA sequence. Importantly, each of the new target RNAs can be detected by the guide RNAs thus further enhancing the sensitivity of the assay. Binding of the target RNAs by the guide RNAs then leads to activation of the CRISPR effector protein and the methods proceed as outlined above. The NASBA reaction has the additional advantage of being able to proceed under moderate isothermal conditions, for example at approximately 41° C., making it suitable for systems and devices deployed for early and direct detection in the field and far from clinical laboratories.
In certain other example embodiments, a recombinase polymerase amplification (RPA) reaction may be used to amplify the target nucleic acids. RPA reactions employ recombinases which are capable of pairing sequence-specific primers with homologous sequence in duplex DNA. If target DNA is present, DNA amplification is initiated and no other sample manipulation such as thermal cycling or chemical melting is required. The entire RPA amplification system is stable as a dried formulation and can be transported safely without refrigeration. RPA reactions may also be carried out at isothermal temperatures with an optimum reaction temperature of 37-42o C. The sequence specific primers are designed to amplify a sequence comprising the target nucleic acid sequence to be detected. In certain example embodiments, a RNA polymerase promoter, such as a T7 promoter, is added to one of the primers. This results in an amplified double-stranded DNA product comprising the target sequence and a RNA polymerase promoter. After, or during, the RPA reaction, a RNA polymerase is added that will produce RNA from the double-stranded DNA templates. The amplified target RNA can then in turn be detected by the CRISPR effector system. In this way target DNA can be detected using the embodiments disclosed herein. RPA reactions can also be used to amplify target RNA. The target RNA is first converted to cDNA using a reverse transcriptase, followed by second strand DNA synthesis, at which point the RPA reaction proceeds as outlined above.
Embodiments disclosed herein provide systems and methods for isothermal amplification of target nucleic acid sequences by contacting oligonucleotides containing the target nucleic acid sequence with a transposon complex. The oligonucleotides may be single stranded or double stranded RNA, DNA, or RNA/DNA hybrid oligonucleotides. The transposon complex comprises a transposase and a transposon sequence comprising one or more RNA polymerase promoters. The transposase facilitates insertion of the one or more RNA polymerase promoters into the oligonucleotide. A RNA polymerase promoter can then transcribe the target nucleic acid sequence from the inserted one or more RNA polymerase promoters. One advantage of this system is that there is no need to heat or melt double-stranded DNA templates, since RNA polymerase polymerases require a double-stranded template. Such isothermal amplification is fast and simple, obviating the need for complicated and expensive instrumentation for denaturation and cooling. In certain example embodiment the RNA polymerase promoter is a native of modified T7 RNA promoter.
The term “transposon”, as used herein, refers to a nucleic acid segment, which is recognized by a transposase or an integrase enzyme and which is an essential component of a functional nucleic acid-protein complex (i.e. a transposome) capable of transposition. The term “transposase” as used herein refers to an enzyme, which is a component of a functional nucleic acid-protein complex capable of transposition and which is mediating transposition. The term “transposase” also refers to integrases from retrotransposons or of retroviral origin. Transposon complexes form between a transposase enzyme and a fragment of double stranded DNA that contains a specific binding sequence for the enzyme, termed “transposon end”. The sequence of the transposon binding site can be modified with other bases, at certain positions, without affecting the ability for transposon complex to form a stable structure that can efficiently transpose into target DNA.
In embodiments provided herein, the transposon complex may comprise a transposase and a transposon sequence comprising one or more RNA polymerase promoters. The term “promoter” refers to a region of DNA involved in binding the RNA polymerase to initiate transcription. In specific embodiments, the RNA polymerase promoter may be a T7 RNA polymerase promoter. The T7 RNA promoter may be inserted into the double-stranded polynucleotide using the transposase. In some embodiments, insertion of the T7 RNA polymerase promoter into the oligonucleotide may be random.
The frequency of transposition is very low for most transposons, which use complex mechanisms to limit activity. Tn5 transposase, for example, utilizes a DNA binding sequence that is suboptimal and the C-terminus of the transposase interferes with DNA binding. Mechanisms involved in Tn5 transposition have been carefully characterized by Reznikoff and colleagues. Tn5 transposes by a cut-and-paste mechanism. The transposon has two pairs of 19 bp elements that are utilized by the transposase: outside elements (OE) and inside elements (IE). One transposase monomer binds to each of the two elements that are utilized. After a monomer is bound to each end of the transposon, the two monomers dimerize, forming a synapse. Vectors with donor backbones of at least 200 bp, but less than 1000 bp, are most functional for transposition in bacteria. Transposon cleavage occurs by trans catalysis and only when monomers bound to each DNA end are in a synaptic complex. Tn5 transposes with a relaxed target site selection and can therefore insert into target DNA with little to no target sequence specificity.
The natural downregulation of Tn5 transposition can be overcome by selection of a hyperactive transposase and by optimizing the transposase-binding elements [Yorket al. 1998]. A mosaic element (ME), made by modification of three bases of the wild type OE, led to a 50-fold increase in transposition events in bacteria as well as cell-free systems. The combined effect of the optimized ME and hyperactive mutant transposase is estimated to result in a 100-fold increase in transposition activity. Goryshin et al showed that preformed Tn5 transposition complexes could be functionally introduced into bacterial or yeast by electroporation [Goryshin et al. 2000]. Linearization of the DNA, to have inverted repeats precisely positioned at both ends of the transposon, allowed Goryshin and coworkers to bypass the cutting step of transposition thus enhancing transposition efficiency.
In some embodiments, the transposase may be used to tagment the oligonucleotide sequence comprising the target sequence. The term “tagmentation” refers to a step in the Assay for Transposase Accessible Chromatin using sequencing (ATAC-seq) as described. (See, Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., Greenleaf, W. J., Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature methods 2013; 10 (12): 1213-1218). Specifically, a hyperactive Tn5 transposase loaded in vitro with adapters for high-throughput DNA sequencing, can simultaneously fragment and tag a genome with sequencing adapters. In one embodiment the adapters are compatible with the methods described herein.
In some embodiments, the transposase may be a Tn5 transposase. In some embodiments, the transposase may be a variant of a Tn5 transposase, or an engineered transposase. Transposases may be engineered using any method known in the art. The engineered transposase may be optimized to function at a temperature ranging from 30° C. to 45° C., 35° C. to 40° C. or any temperature in between. The engineered transposase may be optimized to release from the oligonucleotide at a faster rate compared to a wild type transposase.
In some embodiments, the transposase may be a Tn5 transposase, a Mu transposase, or a Tn7 transposase. Transposition efficiency in vitro may vary depending on the transposon system used. Generally, Tn5 and Mu transposases effect higher levels of transposition efficiency. In some embodiments, insertion may be random. In some embodiments, insertion may occur in GC rich regions of the target sequence.
In some embodiments, the transposon sequence may comprise two 19 base pair Mosaic End (ME) Tn5 transposase recognition sequences. Tn5 transposases will generally transpose any DNA sequence contained between such short 19 base pair ME Tn5 transposase recognition sequences.
In some embodiments, use of a transposase allows for separation of a double-stranded polynucleotide in the absence of heat or melting. Embodiments can be as described in PCT/US2019/039195, entitled CRISPR/Cas and Transposase Based Amplification Compositions, Systems and Methods, incorporated herein by reference.
In an embodiment of the invention may comprise nickase-based amplification. The nicking enzyme may be a CRISPR protein. Accordingly, the introduction of nicks into dsDNA can be programmable and sequence-specific. In an embodiment of the invention, two guides can be designed to target opposite strands of a dsDNA target. According to the invention, the nickase can be Cpf1, C2c1, Cas9 or any ortholog or CRISPR protein that cleaves or is engineered to cleave a single strand of a DNA duplex. The nicked strands may then be extended by a polymerase. In an embodiment, the locations of the nicks are selected such that extension of the strands by a polymerase is towards the central portion of the target duplex DNA between the nick sites. In certain embodiments, primers are included in the reaction capable of hybridizing to the extended strands followed by further polymerase extension of the primers to regenerate two dsDNA pieces: a first dsDNA that includes the first strand Cpf1 guide site or both the first and second strand Cpf1 guide sites, and a second dsDNA that includes the second strand Cpf1 guide site or both the first and second strand Cprf guide sites. These pieces continue to be nicked and extended in a cyclic reaction that exponentially amplifies the region of the target between nicking sites.
The amplification can be isothermal and selected for temperature. In one embodiment, the amplification proceeds rapidly at 37 degrees. In other embodiments, the temperature of the isothermal amplification may be chosen by selecting a polymerase (e.g. Bsu, Bst, Phi29, klenow fragment etc.) operable at a different temperature.
Thus, whereas nicking isothermal amplification techniques use nicking enyzmes with fixed sequence preference (e.g. in nicking enzyme amplification reaction or NEAR), which requires denaturing of the original dsDNA target to allow annealing and extension of primers that add the nicking substrate to the ends of the target, use of a CRISPR nickase wherein the nicking sites can be programed via guide RNAs means that no denaturing step is necessary, enabling the entire reaction to be truly isothermal. This also simplifies the reaction because these primers that add the nicking substrate are different than the primers that are used later in the reaction, meaning that NEAR requires two primer sets (i.e. 4 primers) while Cpf1 nicking amplification only requires one primer set (i.e. two primers). This makes nicking Cpf1 amplification much simpler and easier to operate without complicated instrumentation to perform the denaturation and then cooling to the isothermal temperature.
In an aspect, the isothermal amplification reagents may be utilized with a thermostable CRISPR-Cas protein. The combination of thermostable protein and isothermal amplification reagents may be utilized to further improve reaction times for detection and diagnostics.
Accordingly, in certain example embodiments the systems disclosed herein may include amplification reagents. Different components or reagents useful for amplification of nucleic acids are described herein. For example, an amplification reagent as described herein may include a buffer, such as a Tris buffer. A Tris buffer may be used at any concentration appropriate for the desired application or use, for example including, but not limited to, a concentration of 1 mM, 2 mM, 3 mM, 4 mM, 5 mM, 6 mM, 7 mM, 8 mM, 9 mM, 10 mM, 11 mM, 12 mM, 13 mM, 14 mM, 15 mM, 25 mM, 50 mM, 75 mM, 1 M, or the like. One of skill in the art will be able to determine an appropriate concentration of a buffer such as Tris for use with the present invention.
A salt, such as magnesium chloride (MgCl2), potassium chloride (KCl), or sodium chloride (NaCl), may be included in an amplification reaction, such as PCR, in order to improve the amplification of nucleic acid fragments. Although the salt concentration will depend on the particular reaction and application, in some embodiments, nucleic acid fragments of a particular size may produce optimum results at particular salt concentrations. Larger products may require altered salt concentrations, typically lower salt, in order to produce desired results, while amplification of smaller products may produce better results at higher salt concentrations. One of skill in the art will understand that the presence and/or concentration of a salt, along with alteration of salt concentrations, may alter the stringency of a biological or chemical reaction, and therefore any salt may be used that provides the appropriate conditions for a reaction of the present invention and as described herein. In certain preferred embodiments, when polynucleotide extraction beads such as magnetic beads are utilized, a Plant QuickExtract solution can be used in combination with a KCl buffer in optimized detection methods according to the present disclosure. Such a combination of beads and polynucleotide solutions in the one pot reactions provides methods for detecting without a separate extraction (extraction-free) step. The reagents and examples detailed herein further allow for the use of polynucleotide binding beads without additional step such as rinsing, with further efficencies in the reactions and sample processing, and permitting reduced operator time and laboratory resources.
Other components of a biological or chemical reaction may include a cell lysis component in order to break open or lyse a cell for analysis of the materials therein. A cell lysis component may include, but is not limited to, a detergent, a salt as described above, such as NaCl, KCl, ammonium sulfate [(NH4)2SO4], or others. Detergents that may be appropriate for the invention may include Triton X-100, sodium dodecyl sulfate (SDS), CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate), ethyl trimethyl ammonium bromide, nonyl phenoxypolyethoxylethanol (NP-40). Concentrations of detergents may depend on the particular application, and may be specific to the reaction in some cases. Amplification reactions may include dNTPs and nucleic acid primers used at any concentration appropriate for the invention, such as including, but not limited to, a concentration of 100 nM, 150 nM, 200 nM, 250 nM, 300 nM, 350 nM, 400 nM, 450 nM, 500 nM, 550 nM, 600 nM, 650 nM, 700 nM, 750 nM, 800 nM, 850 nM, 900 nM, 950 nM, 1 mM, 2 mM, 3 mM, 4 mM, 5 mM, 6 mM, 7 mM, 8 mM, 9 mM, 10 mM, 20 mM, 30 mM, 40 mM, 50 mM, 60 mM, 70 mM, 80 mM, 90 mM, 100 mM, 150 mM, 200 mM, 250 mM, 300 mM, 350 mM, 400 mM, 450 mM, 500 mM, or the like. Likewise, a polymerase useful in accordance with the invention may be any specific or general polymerase known in the art and useful or the invention, including Taq polymerase, Q5 polymerase, or the like.
In some embodiments, amplification reagents as described herein may be appropriate for use in hot-start amplification. Hot start amplification may be beneficial in some embodiments to reduce or eliminate dimerization of adaptor molecules or oligos, or to otherwise prevent unwanted amplification products or artifacts and obtain optimum amplification of the desired product. Many components described herein for use in amplification may also be used in hot-start amplification. In some embodiments, reagents or components appropriate for use with hot-start amplification may be used in place of one or more of the composition components as appropriate. For example, a polymerase or other reagent may be used that exhibits a desired activity at a particular temperature or other reaction condition. In some embodiments, reagents may be used that are designed or optimized for use in hot-start amplification, for example, a polymerase may be activated after transposition or after reaching a particular temperature. Such polymerases may be antibody-based or aptamer-based. Polymerases as described herein are known in the art. Examples of such reagents may include, but are not limited to, hot-start polymerases, hot-start dNTPs, and photo-caged dNTPs. Such reagents are known and available in the art. One of skill in the art will be able to determine the optimum temperatures as appropriate for individual reagents.
Amplification of nucleic acids may be performed using specific thermal cycle machinery or equipment, and may be performed in single reactions or in bulk, such that any desired number of reactions may be performed simultaneously. In some embodiments, amplification may be performed using microfluidic or robotic devices, or may be performed using manual alteration in temperatures to achieve the desired amplification. In some embodiments, optimization may be performed to obtain the optimum reactions conditions for the particular application or materials. One of skill in the art will understand and be able to optimize reaction conditions to obtain sufficient amplification.
In certain embodiments, detection of DNA with the methods or systems of the invention requires transcription of the (amplified) DNA into RNA prior to detection.
It will be evident that detection methods of the invention can involve nucleic acid amplification and detection procedures in various combinations. The nucleic acid to be detected can be any naturally occurring or synthetic nucleic acid, including but not limited to DNA and RNA, which may be amplified by any suitable method to provide an intermediate product that can be detected. Detection of the intermediate product can be by any suitable method including but not limited to binding and activation of a CRISPR protein which produces a detectable signal moiety by direct or collateral activity.
In helicase-dependent amplification, a helicase enzyme is used to unwind a double stranded nucleic acid to generate templates for primer hybridization and subsequent primer-extension. This process utilizes two oligonucleotide primers, each hybridizing to the 3′-end of either the sense strand containing the target sequence or the anti-sense strand containing the reverse-complementary target sequence. The HDA reaction is a general method for helicase-dependent nucleic acid amplification.
In combining this method with a CRISPR-SHERLOCK system, the target nucleic acid may be amplified by opening R-loops of the target nucleic acid using first and second CRISPR/Cas complexes. The first and second strand of the target nucleic acid may thus be unwound using a helicase, allowing primers and polymerase to bind and extend the DNA under isothermal conditions.
The term “helicase” refers here to any enzyme capable of unwinding a double stranded nucleic acid enzymatically. For example, helicases are enzymes that are found in all organisms and in all processes that involve nucleic acid such as replication, recombination, repair, transcription, translation and RNA splicing. (Kornberg and Baker, DNA Replication, W. H. Freeman and Company (2nd ed. (1992)), especially chapter 11). Any helicase that translocates along DNA or RNA in a 5′ to 3′ direction or in the opposite 3′ to 5′ direction may be used in present embodiments of the invention. This includes helicases obtained from prokaryotes, viruses, archaea, and eukaryotes or recombinant forms of naturally occurring enzymes as well as analogues or derivatives having the specified activity. Examples of naturally occurring DNA helicases, described by Kornberg and Baker in chapter 11 of their book, DNA Replication, W. H. Freeman and Company (2nd ed. (1992)), include E. coli helicase I, II, III, & IV, Rep, DnaB, PriA, PcrA, T4 Gp4lhelicase, T4 Dda helicase, T7 Gp4 helicases, SV40 Large T antigen, yeast RAD. Additional helicases that may be useful in HDA include RecQ helicase (Harmon and Kowalczykowski, J. Biol. Chem. 276:232-243 (2001)), thermostable UvrD helicases from T. tengcongensis (disclosed in this invention, Example XII) and T. thermophilus (Collins and McCarthy, Extremophiles. 7:35-41. (2003)), thermostable DnaB helicase from T. aquaticus (Kaplan and Steitz, J. Biol. Chem. 274:6889-6897 (1999)), and MCM helicase from archaeal and eukaryotic organisms ((Grainge et al., Nucleic Acids Res. 31:4888-4898 (2003)).
A traditional definition of a helicase is an enzyme that catalyzes the reaction of separating/unzipping/unwinding the helical structure of nucleic acid duplexes (DNA, RNA or hybrids) into single-stranded components, using nucleoside triphosphate (NTP) hydrolysis as the energy source (such as ATP). However, it should be noted that not all helicases fit this definition anymore. A more general definition is that they are motor proteins that move along the single-stranded or double stranded nucleic acids (usually in a certain direction, 3′ to 5′ or 5 to 3, or both), i.e. translocases, that can or cannot unwind the duplexed nucleic acid encountered. In addition, some helicases simply bind and “melt” the duplexed nucleic acid structure without an apparent translocase activity.
Helicases exist in all living organisms and function in all aspects of nucleic acid metabolism. Helicases are classified based on the amino acid sequences, directionality, oligomerization state and nucleic-acid type and structure preferences. The most common classification method was developed based on the presence of certain amino acid sequences, called motifs. According to this classification helicases are divided into 6 super families: SF1, SF2, SF3, SF4, SF5 and SF6. SF1 and SF2 helicases do not form a ring structure around the nucleic acid, whereas SF3 to SF6 do. Superfamily classification is not dependent on the classical taxonomy.
DNA helicases are responsible for catalyzing the unwinding of double-stranded DNA (dsDNA) molecules to their respective single-stranded nucleic acid (ssDNA) forms. Although structural and biochemical studies have shown how various helicases can translocate on ssDNA directionally, consuming one ATP per nucleotide, the mechanism of nucleic acid unwinding and how the unwinding activity is regulated remains unclear and controversial (T. M. Lohman, E. J. Tomko, C. G. Wu, “Non-hexameric DNA helicases and translocases: mechanisms and regulation,” Nat Rev Mol Cell Biol 9:391-401 (2008)). Since helicases can potentially unwind all nucleic acids encountered, understanding how their unwinding activities are regulated can lead to harnessing helicase functions for biotechnology applications.
The term “HDA” refers to Helicase Dependent Amplification, which is an in vitro method for amplifying nucleic acids by using a helicase preparation for unwinding a double stranded nucleic acid to generate templates for primer hybridization and subsequent primer-extension. This process utilizes two oligonucleotide primers, each hybridizing to the 3′-end of either the sense strand containing the target sequence or the anti-sense strand containing the reverse-complementary target sequence. The HDA reaction is a general method for helicase-dependent nucleic acid amplification.
The invention comprises use of any suitable helicase known in the art. These include, but are not necessarily limited to, UvrD helicase, CRISPR-Cas3 helicase, E. coli helicase I, E. coli helicase II, E. coli helicase III, E. coli helicase IV, Rep helicase, DnaB helicase, PriA helicase, PcrA helicase, T4 Gp41 helicase, T4 Dda helicase, SV40 Large T antigen, yeast RAD helicase, RecD helicase, RecQ helicase, thermostable T. tengcongensis UvrD helicase, thermostable T. thermophilus UvrD helicase, thermostable T. aquaticus DnaB helicase, Dda helicase, papilloma virus E1 helicase, archaeal MCM helicase, eukaryotic MCM helicase, and T7 Gp4 helicase.
In particularly preferred embodiments, the helicase comprises a super mutation. In particular embodiments, although the E. coli mutation has been described, the mutations were generated by sequence alignment (e.g. D409A/D410A for TteUvrd) and result in thermophilic enzymes working at lower temperatures like 37° C., which is advantageous for amplification methods and systems described herein. In some embodiments, the super mutations is an aspartate to alanine mutation, with position based on sequence alignment. In some embodiments, the super mutant helicase is selected from WP_003870487.1 Thermoanaerobacter ethanolicus 403/404, WP_049660019.1 Bacillus sp. FJAT-27231 407/408, WP_034654680.1 Bacillus megaterium 415/416, WP_095390358.1 Bacillus simplex 407/408, and WP_055343022.1 Paeniclostridium sordellii 402/403.
Methods of detection and/or extraction using the systems disclosed herein can comprise incubating the sample or set of samples under conditions sufficient to allow binding of the guide RNAs to one or more target molecules. Exstraction can comprise incubating the sample under conditions sufficient to allow release of viral RNA present in the sample, which may comprise incubating at 22° C. to 60° C. for 30 to 70 minutes or at 90° C.-100° C. for about 10 minutes.
In certain example embodiments, the incubation time of the amplifying and detecting in the present invention may be shortened. The assay may be performed in a period of time required for an enzymatic reaction to occur. One skilled in the art can perform biochemical reactions in 5 minutes (e.g., 5 minute ligation). Incubating may occur at one or more temperatures over timeframes between about 10 minutes and 90 minutes, preferably less than 90 minutes, 75 minutes, 60 minutes, 45 minutes, 30 minutes, 25 minutes, 20 minutes, 15 minutes, or 10 minutes depending on sample, reagents and components of the system. In some embodiments, incubating for the amplification is performed at one or more temperatures between about 20° C. and 80° C., in some embodiments, about 37° C. In some embodiments, incubating for the amplification is performed at one or more temperatures between about 55° C. and 65° C., between about 59° C. and 61° C., in some embodiments, about 60° C.
In certain example embodiment, activating of the Cas protein occurs via binding of the CRISPR-Cas complex via the guide molecule to the one or more target molecules, wherein activating the CRISPR effector protein results in modification of the detection construct such that a detectable positive signal is generated.
Detecting may comprise visual observance of a positive signal relative to a control. Detecting may comprise a loss of signal or presence of signal at one or more capture regions, for example colorimetric detection, or fluorescent detection. In certain example embodiments, further modifications may be introduced that further amplify the detectable positive signal. For example, activated CRISPR effector protein collateral activation may be used to generate a secondary target or additional guide sequence, or both. In one example embodiment, the reaction solution would contain a secondary target that is spiked in at high concentration. The secondary target may be distinct from the primary target (i.e. the target for which the assay is designed to detect) and in certain instances may be common across all reaction volumes. A secondary guide sequence for the secondary target may be protected, e.g. by a secondary structural feature such as a hairpin with an RNA loop, and unable to bind the second target or the CRISPR effector protein. Cleavage of the protecting group by an activated CRISPR effector protein (i.e. after activation by formation of complex with the primary target(s) in solution) and formation of a complex with free CRISPR effector protein in solution and activation from the spiked in secondary target. In certain other example embodiments, a similar concept is used with free guide sequence to a secondary target and protected secondary target. Cleavage of a protecting group off the secondary target would allow additional CRISPR effector protein, guide sequence, secondary target sequence to form. In yet another example embodiment, activation of CRISPR effector protein by the primary target(s) may be used to cleave a protected or circularized primer, which would then be released to perform an isothermal amplification reaction, such as those disclosed herein, on a template for either secondary guide sequence, secondary target, or both. Subsequent transcription of this amplified template would produce more secondary guide sequence and/or secondary target sequence, followed by additional CRISPR effector protein collateral activation.
In particular methods, comparing the intensity of the one or more signals to a control is performed to quantify the nucleic acid in the sample. The term “control” refers to any reference standard suitable to provide a comparison to the expression products in the test sample. In one embodiment, the control comprises obtaining a “control sample” from which expression product levels are detected and compared to the expression product levels from the test sample. Such a control sample may comprise any suitable sample, including but not limited to a sample from a control patient (can be stored sample or previous sample measurement) with a known outcome; normal tissue, fluid, or cells isolated from a subject, such as a normal patient or the patient having a condition of interest.
The intensity of a signal is “significantly” higher or lower than the normal intensity if the signal is greater or less, respectively, than the normal or control level by an amount greater than the standard error of the assay employed to assess amount, and preferably at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 150%, 200%, 300%, 350%, 400%, 500%, 600%, 700%, 800%, 900%, 1000% or than that amount. Alternatively, the signal can be considered “significantly” higher or lower than the normal and/or control signal if the amount is at least about two, and preferably at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 105%, 110%, 115%, 120%, 125%, 130%, 135%, 140%, 145%, 150%, 155%, 160%, 165%, 170%, 175%, 180%, 185%, 190%, 195%, two times, three times, four times, five times, or more, or any range in between, such as 5%-100%, higher or lower, respectively, than the normal and/or control signal. Such significant modulation values can be applied to any metric described herein, such as altered level of expression, altered activity, changes in biomarker inhibition, changes in test agent binding, and the like.
In some embodiments, the detectable positive signal may be a loss of fluorescent signal or colorimetric relative to a control, as described herein. In some embodiments, the detectable positive signal may be detected on a lateral flow device, as described herein.
Systems and methods can be designed for the detection and diagnosis of microbes, including bacterial, fungi and viral microbes. In an aspect, the systems may comprise multiplex detection of multiple variants of viral infections, including coronavirus, different viruses which may be related coronaviruses or respiratory viruses, or a combination thereof. In embodiments, assays can be performed for a variety of viruses and viral infections, including acute respiratory infections using the disclosure detailed herein. The systems can comprise two or more CRISPR Cas systems to multiplex, as described elsewhere herein, to detect a plurality of respiratory infections or viral infections, including coronavirus. The coronavirus is a positive-sense single stranded RNA family of viruses, infecting a variety of animals and humans. SARS-CoV is one type of coronavirus infection, as well as MERS-CoV Detection of one or more coronaviruses are envisioned, including the 2019-nCoV detected in Wuhan City. Sequences of the 2019-nCoV are available at GISAID accession no. EPI_ISL_402124 and EPI_ISL_402127-402130, and described in DOI: 10.1101/2020.01.22.914952. Further deposits of the SARS-CoV-2 deposited in the GISAID platform include EP_ISL_402119-402121 and EP_ISL 402123-402124; see also GenBank Accession No. MN908947.3.
Target molecule detection can comprise two or more detection systems utilizing RNA targeting Cas effector proteins; DNA targeting Cas effector proteins, or a combination thereof. The RNA-targeting effector proteins may be a Cas13 protein, such as Cas13a, Cas13b, or Cas13c, including one of the thermostable Cas13a proteins described herein. The DNA-targeting effector protein may be a Type V protein, e.g. Cas12 protein such as Cpf1 and C2c1. The Cas protein may preferably be thermostable, such as BrCas12b or Aap Cas12b. Multiplexing systems can be designed such that different Cas proteins with different sequence specificities or other motif cutting preferences can be used, including, in certain embodiments, at least one Cas. thermostable protein described herein. See International Publication WO 2019/126577. Type VI and Type V Cas proteins are known to possess different cutting motif preferences. See Gootenberg et al. “Multiplexed and portable nucleic acid detection platform with Cas13b, Cas12a, and Csm6.” Science. Apr. 27, 2018, 360:439-444; International Publication WO 2019/051318. Thus, embodiments disclosed herein may further comprise multiplex embodiments comprising two or more Type VI Cas proteins with different cutting preferences, or one or more Type VI Cas proteins and one or more Type V Cas proteins.
Multiplex approaches and selection of Cas effector proteins can be as described in International Publication WO 2019/126577 at [0415]-[0416] and Examples 1-10, incorporated herein by reference. In certain example embodiments, the coronavirus assay comprises a Type VI Cas protein disclosed herein and guide molecule comprising a guide sequence configured to directed binding of the CRISPR-Cas complex to a target molecule and a labeled detection molecule (“RNA-based masking construct”). A multiplex embodiment can be designed to track one or more variants of coronavirus or one or more variants of coronavirus, including SARS-CoV-2, in combination with other viruses, for example, Human respiratory syncytial virus, Middle East respiratory syndrome (MERS) coronavirus, Severe acute respiratory syndrome-related (SARS) coronavirus, and influenza. In embodiments, assays can be done in multiplex to detect multiple variants of coronavirus, different viruses which may be related coronaviruses or respiratory viruses, or a combination thereof. In an aspect, each assay can take place in an individual discrete volume. An “individual discrete volume” is a discrete volume or discrete space, such as a container, receptacle, or other defined volume or space that can be defined by properties that prevent and/or inhibit migration of nucleic acids and reagents necessary to carry out the methods disclosed herein, for example a volume or space defined by physical properties such as walls, for example the walls of a well, tube, or a surface of a droplet, which may be impermeable or semipermeable, or as defined by other means such as chemical, diffusion rate limited, electro-magnetic, or light illumination, or any combination thereof. By “diffusion rate limited” (for example diffusion defined volumes) is meant spaces that are only accessible to certain molecules or reactions because diffusion constraints effectively defining a space or volume as would be the case for two parallel laminar streams where diffusion will limit the migration of a target molecule from one stream to the other. By “chemical” defined volume or space is meant spaces where only certain target molecules can exist because of their chemical or molecular properties, such as size, where for example gel beads may exclude certain species from entering the beads but not others, such as by surface charge, matrix size or other physical property of the bead that can allow selection of species that may enter the interior of the bead. By “electro-magnetically” defined volume or space is meant spaces where the electro-magnetic properties of the target molecules or their supports such as charge or magnetic properties can be used to define certain regions in a space such as capturing magnetic particles within a magnetic field or directly on magnets. By “optically” defined volume is meant any region of space that may be defined by illuminating it with visible, ultraviolet, infrared, or other wavelengths of light such that only target molecules within the defined space or volume may be labeled. One advantage to the used of non-walled, or semipermeable is that some reagents, such as buffers, chemical activators, or other agents maybe passed in Applicants' through the discrete volume, while other material, such as target molecules, maybe maintained in the discrete volume or space. Typically, a discrete volume will include a fluid medium, (for example, an aqueous solution, an oil, a buffer, and/or a media capable of supporting cell growth) suitable for labeling of the target molecule with the indexable nucleic acid identifier under conditions that permit labeling. Exemplary discrete volumes or spaces useful in the disclosed methods include droplets (for example, microfluidic droplets and/or emulsion droplets), hydrogel beads or other polymer structures (for example poly-ethylene glycol di-acrylate beads or agarose beads), tissue slides (for example, fixed formalin paraffin embedded tissue slides with particular regions, volumes, or spaces defined by chemical, optical, or physical means), microscope slides with regions defined by depositing reagents in ordered arrays or random patterns, tubes (such as, centrifuge tubes, microcentrifuge tubes, test tubes, cuvettes, conical tubes, and the like), bottles (such as glass bottles, plastic bottles, ceramic bottles, Erlenmeyer flasks, scintillation vials and the like), wells (such as wells in a plate), plates, pipettes, or pipette tips among others. In certain example embodiments, the individual discrete volumes are the wells of a microplate. In certain example embodiments, the microplate is a 96 well, a 384 well, or a 1536 well microplate.
In certain example embodiments, the systems, devices, and methods, disclosed herein are directed to detecting the presence of one or more microbial agents in a sample, such as a biological sample obtained from a subject. In certain example embodiments, the microbe may be a bacterium, a fungus, a yeast, a protozoan, a parasite, or a virus. Accordingly, the methods disclosed herein can be adapted for use in other methods (or in combination) with other methods that require quick identification of microbe species, monitoring the presence of microbial proteins (antigens), antibodies, antibody genes, detection of certain phenotypes (e.g. bacterial resistance), monitoring of disease progression and/or outbreak, and antibiotic screening. Because of the rapid and sensitive diagnostic capabilities of the embodiments disclosed here, detection of microbe species type, down to a single nucleotide difference, and the ability to be deployed as a POC device, the embodiments disclosed herein may be used as guide therapeutic regimens, such as a selection of the appropriate antibiotic or antiviral. The embodiments disclosed herein may also be used to screen environmental samples (air, water, surfaces, food etc.) for the presence of microbial contamination.
Disclosed is a method to identify microbial species, such as bacterial, viral, fungal, yeast, or parasitic species, or the like. Particular embodiments disclosed herein describe methods and systems that will identify and distinguish microbial species within a single sample, or across multiple samples, allowing for recognition of many different microbes. The present methods allow the detection of pathogens and distinguishing between two or more species of one or more organisms, e.g., bacteria, viruses, yeast, protozoa, and fungi or a combination thereof, in a biological or environmental sample, by detecting the presence of a target nucleic acid sequence in the sample. A positive signal obtained from the sample indicates the presence of the microbe. Multiple microbes can be identified simultaneously using the methods and systems of the invention, by employing the use of more than one effector protein, wherein each effector protein targets a specific microbial target sequence. In this way, a multi-level analysis can be performed for a particular subject in which any number of microbes can be detected at once, for example, a subject with unknown respiratory infection, having symptoms of coronavirus, or an individual at risk or having been exposed to coronavirus. In some embodiments, simultaneous detection of multiple microbes may be performed using a set of probes that can identify one or more microbial species.
In some embodiments, a method for detecting microbes in samples is provided comprising distributing a sample or set of samples into one or more individual discrete volumes, the individual discrete volumes comprising a CRISPR system as described herein; incubating the sample or set of samples under conditions sufficient to allow binding of the one or more guide RNAs to one or more microbe-specific targets; activating the CRISPR effector protein via binding of the one or more guide RNAs to the one or more target molecules, wherein activating the CRISPR effector protein results in modification of the RNA-based masking construct such that a detectable positive signal is generated; and detecting the detectable positive signal, wherein detection of the detectable positive signal indicates a presence of one or more target molecules in the sample. The one or more target molecules may be mRNA, gDNA (coding or non-coding), trRNA, or rRNA comprising a target nucleotide tide sequence that may be used to distinguish two or more microbial species/strains from one another. The guide RNAs may be designed to detect target sequences. The embodiments disclosed herein may also utilize certain steps to improve hybridization between guide RNA and target RNA sequences. Methods for enhancing ribonucleic acid hybridization are disclosed in WO 2015/085194, entitled “Enhanced Methods of Ribonucleic Acid Hybridization” which is incorporated herein by reference. The microbe-specific target may be RNA or DNA or a protein. If DNA method may further comprise the use of DNA primers that introduce a RNA polymerase promoter as described herein. If the target is a protein then the method will utilize aptamers and steps specific to protein detection described herein.
In some embodiments, one or more identified target sequences may be detected using guide RNAs that are specific for and bind to the target sequence as described herein. The systems and methods of the present invention can distinguish even between single nucleotide polymorphisms present among different microbial species and therefore, use of multiple guide RNAs in accordance with the invention may further expand on or improve the number of target sequences that may be used to distinguish between species. For example, in some embodiments, the one or more guide RNAs may distinguish between microbes at the species, genus, family, order, class, phylum, kingdom, or phenotype, or a combination thereof.
Detection Based on rRNA Sequences
In certain example embodiments, the devices, systems, and methods disclosed herein may be used to distinguish multiple microbial species in a sample. In certain example embodiments, identification may be based on ribosomal RNA sequences, including the 16S, 23S, and 5S subunits. Methods for identifying relevant rRNA sequences are disclosed in U.S. Patent Application Publication No. 2017/0029872. In certain example embodiments, a set of guide RNA may designed to distinguish each species by a variable region that is unique to each species or strain. Guide RNAs may also be designed to target RNA genes that distinguish microbes at the genus, family, order, class, phylum, kingdom levels, or a combination thereof. In certain example embodiments where amplification is used, a set of amplification primers may be designed to flanking constant regions of the ribosomal RNA sequence and a guide RNA designed to distinguish each species by a variable internal region. In certain example embodiments, the primers and guide RNAs may be designed to conserved and variable regions in the 16S subunit respectfully. Other genes or genomic regions that uniquely variable across species or a subset of species such as the RecA gene family, RNA polymerase β subunit, may be used as well. Other suitable phylogenetic markers, and methods for identifying the same, are discussed for example in Wu et al. arXiv:1307.8690 [q-bio.GN].
In certain example embodiments, a method or diagnostic is designed to screen microbes across multiple phylogenetic and/or phenotypic levels at the same time. For example, the method or diagnostic may comprise the use of multiple CRISPR systems with different guide RNAs. A first set of guide RNAs may distinguish, for example, between mycobacteria, gram positive, and gram-negative bacteria. These general classes can be even further subdivided. For example, guide RNAs could be designed and used in the method or diagnostic that distinguish enteric and non-enteric within gram negative bacteria. A second set of guide RNA can be designed to distinguish microbes at the genus or species level. Thus, a matrix may be produced identifying all mycobacteria, gram positive, gram negative (further divided into enteric and non-enteric) with each genus of species of bacteria identified in a given sample that fall within one of those classes. The foregoing is for example purposes only. Other means for classifying other microbe types are also contemplated and would follow the general structure described above.
In certain example embodiments, the devices, systems and methods disclosed herein may be used to screen for microbial genes of interest, for example antibiotic and/or antiviral resistance genes. Guide RNAs may be designed to distinguish between known genes of interest. Samples, including clinical samples, may then be screened using the embodiments disclosed herein for detection of such genes. The ability to screen for drug resistance at POC would have tremendous benefit in selecting an appropriate treatment regime. In certain example embodiments, the antibiotic resistance genes are carbapenemases including KPC, NDM1, CTX-M15, OXA-48. Other antibiotic resistance genes are known and may be found for example in the Comprehensive Antibiotic Resistance Database (Jia et al. “CARD 2017: expansion and model-centric curation of the Comprehensive Antibiotic Resistance Database.” Nucleic Acids Research, 45, D566-573).
Ribavirin is an effective antiviral that hits a number of RNA viruses. Several clinically important viruses have evolved ribavirin resistance including Foot and Mouth Disease Virus doi:10.1128/JVI.03594-13; polio virus (Pfeifer and Kirkegaard. PNAS, 100(12):7289-7294, 2003); and hepatitis C virus (Pfeiffer and Kirkegaard, J. Virol. 79(4):2346-2355, 2005). A number of other persistent RNA viruses, such as hepatitis and HIV, have evolved resistance to existing antiviral drugs: hepatitis B virus (lamivudine, tenofovir, entecavir) doi:10/1002/hep22900; hepatitis C virus (telaprevir, BILN2061, ITMN-191, SCh6, boceprevir, AG-021541, ACH-806) doi:10.1002/hep.22549; and HIV (many drug resistance mutations) hivb.standford.edu. The embodiments disclosed herein may be used to detect such variants among others.
Aside from drug resistance, there are a number of clinically relevant mutations that could be detected with the embodiments disclosed herein, such as persistent versus acute infection in LCMV (doi:10.1073/pnas.1019304108), and increased infectivity of Ebola (Diehl et al. Cell. 2016, 167(4):1088-1098.
As described herein elsewhere, closely related microbial species (e.g. having only a single nucleotide difference in a given target sequence) may be distinguished by introduction of a synthetic mismatch in the gRNA.
In some embodiments, a CRISPR system or methods of use thereof as described herein may be used to determine the evolution of a pathogen outbreak. The method may comprise detecting one or more target sequences from a plurality of samples from one or more subjects, wherein the target sequence is a sequence from a microbe causing the outbreaks. Such a method may further comprise determining a pattern of pathogen transmission, or a mechanism involved in a disease outbreak caused by a pathogen.
The pattern of pathogen transmission may comprise continued new transmissions from the natural reservoir of the pathogen or subject-to-subject transmissions (e.g. human-to-human transmission) following a single transmission from the natural reservoir or a mixture of both. In one embodiment, the pathogen transmission may be bacterial or viral transmission, in such case, the target sequence is preferably a microbial genome or fragments thereof. In one embodiment, the pattern of the pathogen transmission is the early pattern of the pathogen transmission, i.e. at the beginning of the pathogen outbreak. Determining the pattern of the pathogen transmission at the beginning of the outbreak increases likelihood of stopping the outbreak at the earliest possible time thereby reducing the possibility of local and international dissemination.
Determining the pattern of the pathogen transmission may comprise detecting a pathogen sequence according to the methods described herein. Determining the pattern of the pathogen transmission may further comprise detecting shared intra-host variations of the pathogen sequence between the subjects and determining whether the shared intra-host variations show temporal patterns. Patterns in observed intrahost and interhost variation provide important insight about transmission and epidemiology (Gire, et al., 2014).
Detection of shared intra-host variations between the subjects that show temporal patterns is an indication of transmission links between subject (in particular between humans) because it can be explained by subject infection from multiple sources (superinfection), sample contamination recurring mutations (with or without balancing selection to reinforce mutations), or co-transmission of slightly divergent viruses that arose by mutation earlier in the transmission chain (Park, et al., Cell 161(7):1516-1526, 2015). Detection of shared intra-host variations between subjects may comprise detection of intra-host variants located at common single nucleotide polymorphism (SNP) positions. Positive detection of intra-host variants located at common (SNP) positions is indicative of superinfection and contamination as primary explanations for the intra-host variants. Superinfection and contamination can be parted on the basis of SNP frequency appearing as inter-host variants (Park, et al., 2015). Otherwise superinfection and contamination can be ruled out. In this latter case, detection of shared intra-host variations between subjects may further comprise assessing the frequencies of synonymous and nonsynonymous variants and comparing the frequency of synonymous and nonsynonymous variants to one another. A nonsynonymous mutation is a mutation that alters the amino acid of the protein, likely resulting in a biological change in the microbe that is subject to natural selection. Synonymous substitution does not alter an amino acid sequence. Equal frequency of synonymous and nonsynonymous variants is indicative of the intra-host variants evolving neutrally. If frequencies of synonymous and nonsynonymous variants are divergent, the intra-host variants are likely to be maintained by balancing selection. If frequencies of synonymous and nonsynonymous variants are low, this is indicative of recurrent mutation. If frequencies of synonymous and nonsynonymous variants are high, this is indicative of co-transmission (Park, et al., 2015).
Like Ebola virus, Lassa virus (LASV) can cause hemorrhagic fever with high case fatality rates. Andersen et al. generated a genomic catalog of almost 200 LASV sequences from clinical and rodent reservoir samples (Andersen, et al., Cell Volume 162, Issue 4, p 738-750, 13 Aug. 2015). Andersen et al. show that whereas the 2013-2015 EVD epidemic is fueled by human-to-human transmissions, LASV infections mainly result from reservoir-to-human infections. Andersen et al. elucidated the spread of LASV across West Africa and show that this migration was accompanied by changes in LASV genome abundance, fatality rates, codon adaptation, and translational efficiency. The method may further comprise phylogenetically comparing a first pathogen sequence to a second pathogen sequence, and determining whether there is a phylogenetic link between the first and second pathogen sequences. The second pathogen sequence may be an earlier reference sequence. If there is a phylogenetic link, the method may further comprise rooting the phylogeny of the first pathogen sequence to the second pathogen sequence. Thus, it is possible to construct the lineage of the first pathogen sequence. (Park, et al., 2015).
The method may further comprise determining whether the mutations are deleterious or adaptive. Deleterious mutations are indicative of transmission-impaired viruses and dead-end infections, thus normally only present in an individual subject. Mutations unique to one individual subject are those that occur on the external branches of the phylogenetic tree, whereas internal branch mutations are those present in multiple samples (i.e. in multiple subjects). Higher rate of nonsynonymous substitution is a characteristic of external branches of the phylogenetic tree (Park, et al., 2015).
In internal branches of the phylogenetic tree, selection has had more opportunity to filter out deleterious mutants. Internal branches, by definition, have produced multiple descendent lineages and are thus less likely to include mutations with fitness costs. Thus, lower rate of nonsynonymous substitution is indicative of internal branches (Park, et al., 2015).
Synonymous mutations, which likely have less impact on fitness, occurred at more comparable frequencies on internal and external branches (Park, et al., 2015).
By analyzing the sequenced target sequence, such as viral genomes, it is possible to discover the mechanisms responsible for the severity of the epidemic episode such as during the 2014 Ebola outbreak. For example, Gire et al. made a phylogenetic comparison of the genomes of the 2014 outbreak to all 20 genomes from earlier outbreaks suggests that the 2014 West African virus likely spread from central Africa within the past decade. Rooting the phylogeny using divergence from other ebolavirus genomes was problematic (6, 13). However, rooting the tree on the oldest outbreak revealed a strong correlation between sample date and root-to-tip distance, with a substitution rate of 8×10-4 per site per year (13). This suggests that the lineages of the three most recent outbreaks all diverged from a common ancestor at roughly the same time, around 2004, which supports the hypothesis that each outbreak represents an independent zoonotic event from the same genetically diverse viral population in its natural reservoir. They also found out that the 2014 EBOV outbreak might be caused by a single transmission from the natural reservoir, followed by human-to-human transmission during the outbreak. Their results also suggested that the epidemic episode in Sierra Leon might stem from the introduction of two genetically distinct viruses from Guinea around the same time (Gire, et al., 2014).
It has been also possible to determine how the Lassa virus spread out from its origin point, in particular thanks to human-to-human transmission and even retrace the history of this spread 400 years back (Andersen, et al., Cell 162(4):738-50, 2015).
In relation to the work needed during the 2013-2015 EBOV outbreak and the difficulties encountered by the medical staff at the site of the outbreak, and more generally, the method of the invention makes it possible to carry out sequencing using fewer selected probes such that sequencing can be accelerated, thus shortening the time needed from sample taking to results procurement. Further, kits and systems can be designed to be usable on the field so that diagnostics of a patient can be readily performed without need to send or ship samples to another part of the country or the world.
In any method described above, sequencing the target sequence or fragment thereof may be used any of the sequencing processes described above. Further, sequencing the target sequence or fragment thereof may be a near-real-time sequencing. Sequencing the target sequence or fragment thereof may be carried out according to previously described methods (Experimental Procedures: Matranga et al., 2014; and Gire, et al., 2014). Sequencing the target sequence or fragment thereof may comprise parallel sequencing of a plurality of target sequences. Sequencing the target sequence or fragment thereof may comprise Illumina sequencing.
Analyzing the target sequence or fragment thereof that hybridizes to one or more of the selected probes may be an identifying analysis, wherein hybridization of a selected probe to the target sequence or a fragment thereof indicates the presence of the target sequence within the sample.
Currently, primary diagnostics are based on the symptoms a patient has. However, various diseases may share identical symptoms so that diagnostics rely much on statistics. For example, malaria triggers flu-like symptoms: headache, fever, shivering, joint pain, vomiting, hemolytic anemia, jaundice, hemoglobin in the urine, retinal damage, and convulsions. These symptoms are also common for septicemia, gastroenteritis, and viral diseases. Amongst the latter, Ebola hemorrhagic fever has the following symptoms fever, sore throat, muscular pain, headaches, vomiting, diarrhea, rash, decreased function of the liver and kidneys, internal and external hemorrhage.
When a patient is presented to a medical unit, for example in tropical Africa, basic diagnostics will conclude to malaria because statistically, malaria is the most probable disease within that region of Africa. The patient is consequently treated for malaria although the patient might not actually have contracted the disease and the patient ends up not being correctly treated. This lack of correct treatment can be life-threatening especially when the disease the patient contracted presents a rapid evolution. It might be too late before the medical staff realizes that the treatment given to the patient is ineffective and comes to the correct diagnostics and administers the adequate treatment to the patient.
The method of the invention provides a solution to this situation. Indeed, because the number of guide RNAs can be dramatically reduced, this makes it possible to provide on a single chip selected probes divided into groups, each group being specific to one disease, such that a plurality of diseases, e.g. viral infection, can be diagnosed at the same time. Thanks to the invention, more than 3 diseases can be diagnosed on a single chip, preferably more than 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 diseases at the same time, preferably the diseases that most commonly occur within the population of a given geographical area. Since each group of selected probes is specific to one of the diagnosed diseases, a more accurate diagnosis can be performed, thus diminishing the risk of administering the wrong treatment to the patient.
In other cases, a disease such as a viral infection may occur without any symptoms, or had caused symptoms but they faded out before the patient is presented to the medical staff. In such cases, either the patient does not seek any medical assistance or the diagnostics is complicated due to the absence of symptoms on the day of the presentation.
The present invention may also be used in concert with other methods of diagnosing disease, identifying pathogens and optimizing treatment based upon detection of nucleic acids, such as mRNA in crude, non-purified samples.
The method of the invention also provides a powerful tool to address this situation. Indeed, since a plurality of groups of selected guide RNAs, each group being specific to one of the most common diseases that occur within the population of the given area, are comprised within a single diagnostic, the medical staff only need to contact a biological sample taken from the patient with the chip. Reading the chip reveals the diseases the patient has contracted.
In some cases, the patient is presented to the medical staff for diagnostics of particular symptoms. The method of the invention makes it possible not only to identify which disease causes these symptoms but at the same time determine whether the patient suffers from another disease he was not aware of.
This information might be of utmost importance when searching for the mechanisms of an outbreak. Indeed, groups of patients with identical viruses also show temporal patterns suggesting a subject-to-subject transmission links.
The embodiment disclosed herein may be used to detect a number of different microbes. The term microbe as used herein includes bacteria, fungus, protozoa, parasites and viruses.
Bacteria
The following provides an example list of the types of microbes that might be detected using the embodiments disclosed herein. In certain example embodiments, the microbe is a bacterium. Examples of bacteria that can be detected in accordance with the disclosed methods include without limitation any one or more of (or any combination of) Acinetobacter baumanii, Actinobacillus sp., Actinomycetes, Actinomyces sp. (such as Actinomyces israelii and Actinomyces naeslundii), Aeromonas sp. (such as Aeromonas hydrophila, Aeromonas veronii biovar sobria (Aeromonas sobria), and Aeromonas caviae), Anaplasma phagocytophilum, Anaplasma marginate Alcaligenes xylosoxidans, Acinetobacter baumanii, Actinobacillus actinomycetemcomitans, Bacillus sp. (such as Bacillus anthracis, Bacillus cereus, Bacillus subtilis, Bacillus thuringiensis, and Bacillus stearothermophilus), Bacteroides sp. (such as Bacteroides Bartonella sp. (such as Bartonella bacilliformis and Bartonella henselae, Bifidobacterium sp., Bordetella sp. (such as Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica), Borrelia sp. (such as Borrelia recurrentis, and Borrelia burgdorferi), Brucella sp. (such as Brucella abortus, Brucella canis, Brucella melintensis and Brucella suis), Burkholderia sp. (such as Burkholderia pseudomallei and Burkholderia cepacia), Campylobacter sp. (such as Campylobacter jejuni, Campylobacter coli, Campylobacter lari and Campylobacter fetus), Capnocytophaga sp., Cardiobacterium hominis, Chlamydia trachomatis, Chlamydophila pneumoniae, Chlamydophila psittaci, Citrobacter sp. Coxiella burnetii, Corynebacterium sp. (such as, Corynebacterium diphtheriae, Corynebacterium jeikeum and Corynebacterium), Clostridium sp. (such as Clostridium perfringens, Clostridium difficile, Clostridium botulinum and Clostridium tetani), Eikenella corrodens, Enterobacter sp. (such as Enterobacter aerogenes, Enterobacter agglomerans, Enterobacter cloacae and Escherichia coli, including opportunistic Escherichia coli, such as enterotoxigenic E. coli, enteroinvasive E. coli, enteropathogenic E. coli, enterohemorrhagic E. coli, enteroaggregative E. coli and uropathogenic E. coli) Enterococcus sp. (such as Enterococcus faecalis and Enterococcus faecium) Ehrlichia sp. (such as Ehrlichia chafeensia and Ehrlichia canis), Epidermophyton floccosum, Erysipelothrix rhusiopathiae, Eubacterium sp., Francisella tularensis, Fusobacterium nucleatum, Gardnerella vaginalis, Gemella morbillorum, Haemophilus sp. (such as Haemophilus influenzae, Haemophilus ducreyi, Haemophilus aegyptius, Haemophilus parainfluenzae, Haemophilus haemolyticus and Haemophilus parahaemolyticus, Helicobacter sp. (such as Helicobacter pylori, Helicobacter cinaedi and Helicobacter fennelliae), Kingella kingii, Klebsiella sp. (such as Klebsiella pneumoniae, Klebsiella granulomatis and Klebsiella oxytoca), Lactobacillus sp., Listeria monocytogenes, Leptospira interrogans, Legionella pneumophila, Leptospira interrogans, Peptostreptococcus sp., Mannheimia hemolytica, Microsporum canis, Moraxella catarrhalis, Morganella sp., Mobiluncus sp., Micrococcus sp., Mycobacterium sp. (such as Mycobacterium leprae, Mycobacterium tuberculosis, Mycobacterium paratuberculosis, Mycobacterium intracellulare, Mycobacterium avium, Mycobacterium bovis, and Mycobacterium marinum), Mycoplasm sp. (such as Mycoplasma pneumoniae, Mycoplasma hominis, and Mycoplasma genitalium), Nocardia sp. (such as Nocardia asteroides, Nocardia cyriacigeorgica and Nocardia brasiliensis), Neisseria sp. (such as Neisseria gonorrhoeae and Neisseria meningitidis), Pasteurella multocida, Pityrosporum orbiculare (Malassezia furfur), Plesiomonas shigelloides. Prevotella sp., Porphyromonas sp., Prevotella melaninogenica, Proteus sp. (such as Proteus vulgaris and Proteus mirabilis), Providencia sp. (such as Providencia alcalifaciens, Providencia rettgeri and Providencia stuartii), Pseudomonas aeruginosa, Propionibacterium acnes, Rhodococcus equi, Rickettsia sp. (such as Rickettsia rickettsii, Rickettsia akari and Rickettsia prowazekii, Orientia tsutsugamushi (formerly: Rickettsia tsutsugamushi) and Rickettsia typhi), Rhodococcus sp., Serratia marcescens, Stenotrophomonas maltophilia, Salmonella sp. (such as Salmonella enterica, Salmonella typhi, Salmonella paratyphi, Salmonella enteritidis, Salmonella cholerasuis and Salmonella typhimurium), Serratia sp. (such as Serratia marcesans and Serratia liquifaciens), Shigella sp. (such as Shigella dysenteriae, Shigella flexneri, Shigella boydii and Shigella sonnei), Staphylococcus sp. (such as Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus hemolyticus, Staphylococcus saprophyticus), Streptococcus sp. (such as Streptococcus pneumoniae (for example chloramphenicol-resistant serotype 4 Streptococcus pneumoniae, spectinomycin-resistant serotype 6B Streptococcus pneumoniae, streptomycin-resistant serotype 9V Streptococcus pneumoniae, erythromycin-resistant serotype 14 Streptococcus pneumoniae, optochin-resistant serotype 14 Streptococcus pneumoniae, rifampicin-resistant serotype 18C Streptococcus pneumoniae, tetracycline-resistant serotype 19F Streptococcus pneumoniae, penicillin-resistant serotype 19F Streptococcus pneumoniae, and trimethoprim-resistant serotype 23F Streptococcus pneumoniae, chloramphenicol-resistant serotype 4 Streptococcus pneumoniae, spectinomycin-resistant serotype 6B Streptococcus pneumoniae, streptomycin-resistant serotype 9V Streptococcus pneumoniae, optochin-resistant serotype 14 Streptococcus pneumoniae, rifampicin-resistant serotype 18C Streptococcus pneumoniae, penicillin-resistant serotype 19F Streptococcus pneumoniae, or trimethoprim-resistant serotype 23F Streptococcus pneumoniae), Streptococcus agalactiae, Streptococcus mutans, Streptococcus pyogenes, Group A streptococci, Streptococcus pyogenes, Group B streptococci, Streptococcus agalactiae, Group C streptococci, Streptococcus anginosus, Streptococcus equismilis, Group D streptococci, Streptococcus bovis, Group F streptococci, and Streptococcus anginosus Group G streptococci), Spirillum minus, Streptobacillus moniliformi, Treponema sp. (such as Treponema carateum, Treponema petenue, Treponema pallidum and Treponema endemicum, Trichophyton rubrum, T mentagrophytes, Tropheryma whippelii, Ureaplasma urealyticum, Veillonella sp., Vibrio sp. (such as Vibrio cholerae, Vibrio parahemolyticus, Vibrio vulnificus, Vibrio parahaemolyticus, Vibrio vulnificus, Vibrio alginolyticus, Vibrio mimicus, Vibrio hollisae, Vibrio fluvialis, Vibrio metchnikovii, Vibrio damsela and Vibrio furnisii), Yersinia sp. (such as Yersinia enterocolitica, Yersinia pestis, and Yersinia pseudotuberculosis) and Xanthomonas maltophilia among others.
Fungi
In certain example embodiments, the microbe is a fungus or a fungal species. Examples of fungi that can be detected in accordance with the disclosed methods include without limitation any one or more of (or any combination of), Aspergillus, Blastomyces, Candidiasis, Coccidiodomycosis, Cryptococcus neoformans, Cryptococcus gatti, sp. Histoplasma sp. (such as Histoplasma capsulatum), Pneumocystis sp. (such as Pneumocystis jirovecii), Stachybotrys (such as Stachybotrys chartarum), Mucroymcosis, Sporothrix, fungal eye infections ringworm, Exserohilum, Cladosporium.
In certain example embodiments, the fungus is a yeast. Examples of yeast that can be detected in accordance with disclosed methods include without limitation one or more of (or any combination of), Aspergillus species (such as Aspergillus fumigatus, Aspergillus flavus and Aspergillus clavatus), Cryptococcus sp. (such as Cryptococcus neoformans, Cryptococcus gattii, Cryptococcus laurentii and Cryptococcus albidus), a Geotrichum species, a Saccharomyces species, a Hansenula species, a Candida species (such as Candida albicans), a Kluyveromyces species, a Debaryomyces species, a Pichia species, or combination thereof. In certain example embodiments, the fungi is a mold. Example molds include, but are not limited to, a Penicillium species, a Cladosporium species, a Byssochlamys species, or a combination thereof.
Protozoa
In certain example embodiments, the microbe is a protozoa. Examples of protozoa that can be detected in accordance with the disclosed methods and devices include without limitation any one or more of (or any combination of), Euglenozoa, Heterolobosea, Diplomonadida, Amoebozoa, Blastocystic, and Apicomplexa. Example Euglenoza include, but are not limited to, Trypanosoma cruzi (Chagas disease), T. brucei gambiense, T. brucei rhodesiense, Leishmania braziliensis, L. infantum, L. mexicana, L. major, L. tropica, and L. donovani. Example Heterolobosea include, but are not limited to, Naegleria fowleri. Example Diplomonadids include, but are not limited to, Giardia intestinalis (G. lamblia, G. duodenalis). Example Amoebozoa include, but are not limited to, Acanthamoeba castellanii, Balamuthia madrillaris, Entamoeba histolytica. Example Blastocysts include, but are not limited to, Blastocystic hominis. Example Apicomplexa include, but are not limited to, Babesia microti, Cryptosporidium parvum, Cyclospora cayetanensis, Plasmodium falciparum, P. vivax, P. ovale, P. malariae, and Toxoplasma gondii.
Parasites
In certain example embodiments, the microbe is a parasite. Examples of parasites that can be detected in accordance with disclosed methods include without limitation one or more of (or any combination of), an Onchocerca species and a Plasmodium species.
Viruses
In certain example embodiments, the systems, devices, and methods, disclosed herein are directed to detecting viruses in a sample. The embodiments disclosed herein may be used to detect viral infection (e.g. of a subject or plant), or determination of a viral strain, including viral strains that differ by a single nucleotide polymorphism. The virus may be a DNA virus, a RNA virus, or a retrovirus. Non-limiting example of viruses useful with the present invention include, but are not limited to Ebola, measles, SARS, Chikungunya, hepatitis, Marburg, yellow fever, MERS, Dengue, Lassa, influenza, rhabdovirus or HIV. A hepatitis virus may include hepatitis A, hepatitis B, or hepatitis C. An influenza virus may include, for example, influenza A or influenza B. An HIV may include HIV 1 or HIV 2. In certain example embodiments, the viral sequence may be a human respiratory syncytial virus, Sudan ebola virus, Bundibugyo virus, Tai Forest ebola virus, Reston ebola virus, Achimota, Aedes flavivirus, Aguacate virus, Akabane virus, Alethinophid reptarenavirus, Allpahuayo mammarenavirus, Amapari mmarenavirus, Andes virus, Apoi virus, Aravan virus, Aroa virus, Arumwot virus, Atlantic salmon paramyxovirus, Australian bat lyssavirus, Avian bornavirus, Avian metapneumovirus, Avian paramyxoviruses, penguin or Falkland Islandsvirus, BK polyomavirus, Bagaza virus, Banna virus, Bat herpesvirus, Bat sapovirus, Bear Canon mammarenavirus, Beilong virus, Betacoronavirus, Betapapillomavirus 1-6, Bhanja virus, Bokeloh bat lyssavirus, Borna disease virus, Bourbon virus, Bovine hepacivirus, Bovine parainfluenza virus 3, Bovine respiratory syncytial virus, Brazoran virus, Bunyamwera virus, Caliciviridae virus. California encephalitis virus, Candiru virus, Canine distemper virus, Canine pneumovirus, Cedar virus, Cell fusing agent virus, Cetacean morbillivirus, Chandipura virus, Chaoyang virus, Chapare mammarenavirus, Chikungunya virus, Colobus monkey papillomavirus, Colorado tick fever virus, Cowpox virus, Crimean-Congo hemorrhagic fever virus, Culex flavivirus, Cupixi mammarenavirus, Dengue virus, Dobrava-Belgrade virus, Donggang virus, Dugbe virus, Duvenhage virus, Eastern equine encephalitis virus, Entebbe bat virus, Enterovirus A-D, European bat lyssavirus 1-2, Eyach virus, Feline morbillivirus, Fer-de-Lance paramyxovirus, Fitzroy River virus, Flaviviridae virus, Flexal mammarenavirus, GB virus C, Gairo virus, Gemycircularvirus, Goose paramyxovirus SF02, Great Island virus, Guanarito mammarenavirus, Hantaan virus, Hantavirus Z10, Heartland virus, Hendra virus, Hepatitis A/B/C/E, Hepatitis delta virus, Human bocavirus, Human coronavirus, Human endogenous retrovirus K, Human enteric coronavirus, Human genital-associated circular DNA virus-1, Human herpesvirus 1-8, Human immunodeficiency virus 1/2, Human mastadenovirus A-G, Human papillomavirus, Human parainfluenza virus 1-4, Human paraechovirus, Human picornavirus, Human smacovirus, Ikoma lyssavirus, Ilheus virus, Influenza A-C, Ippy mammarenavirus, Irkut virus, J-virus, JC polyomavirus, Japanese encephalitis virus, Junin mammarenavirus, KI polyomavirus, Kadipiro virus, Kamiti River virus, Kedougou virus, Khuj and virus, Kokobera virus, Kyasanur forest disease virus, Lagos bat virus, Langat virus, Lassa mammarenavirus, Latino mammarenavirus, Leopards Hill virus, Liao ning virus, Ljungan virus, Lloviu virus, Louping ill virus, Lujo mammarenavirus, Luna mammarenavirus, Lunk virus, Lymphocytic choriomeningitis mammarenavirus, Lyssavirus Ozernoe, MS512\.225 virus, Machupo mammarenavirus, Mamastrovirus 1, Manzanilla virus, Mapuera virus, Marburg virus, Mayaro virus, Measles virus, Menangle virus, Mercadeo virus, Merkel cell polyomavirus, Middle East respiratory syndrome coronavirus, Mobala mammarenavirus, Modoc virus, Moijang virus, Mokolo virus, Monkeypox virus, Montana myotis leukoenchalitis virus, Mopeia lassa virus reassortant 29, Mopeia mammarenavirus, Morogoro virus, Mossman virus, Mumps virus, Murine pneumonia virus, Murray Valley encephalitis virus, Nariva virus, Newcastle disease virus, Nipah virus, Norwalk virus, Norway rat hepacivirus, Ntaya virus, O'nyong-nyong virus, Oliveros mammarenavirus, Omsk hemorrhagic fever virus, Oropouche virus, Parainfluenza virus 5, Parana mammarenavirus, Parramatta River virus, Peste-des-petits-ruminants virus, Pichande mammarenavirus, Picornaviridae virus, Pirital mammarenavirus, Piscihepevirus A, Porcine parainfluenza virus 1, porcine rubulavirus, Powassan virus, Primate T-lymphotropic virus 1-2, Primate erythroparvovirus 1, Punta Toro virus, Puumala virus, Quang Binh virus, Rabies virus, Razdan virus, Reptile bornavirus 1, Rhinovirus A-B, Rift Valley fever virus, Rinderpest virus, Rio Bravo virus, Rodent Torque Teno virus, Rodent hepacivirus, Ross River virus, Rotavirus A-I, Royal Farm virus, Rubella virus, Sabia mammarenavirus, Salem virus, Sandfly fever Naples virus, Sandfly fever Sicilian virus, Sapporo virus, Sathuperi virus, Seal anellovirus, Semliki Forest virus, Sendai virus, Seoul virus, Sepik virus, Severe acute respiratory syndrome-related coronavirus, Severe fever with thrombocytopenia syndrome virus, Shamonda virus, Shimoni bat virus, Shuni virus, Simbu virus, Simian torque teno virus, Simian virus 40-41, Sin Nombre virus, Sindbis virus, Small anellovirus, Sosuga virus, Spanish goat encephalitis virus, Spondweni virus, St. Louis encephalitis virus, Sunshine virus, TTV-like mini virus, Tacaribe mammarenavirus, Taila virus, Tamana bat virus, Tamiami mammarenavirus, Tembusu virus, Thogoto virus, Thottapalayam virus, Tick-borne encephalitis virus, Tioman virus, Togaviridae virus, Torque teno canis virus, Torque teno douroucouli virus, Torque teno felis virus, Torque teno midi virus, Torque teno sus virus, Torque teno tamarin virus, Torque teno virus, Torque teno zalophus virus, Tuhoko virus, Tula virus, Tupaia paramyxovirus, Usutu virus, Uukuniemi virus, Vaccinia virus, Variola virus, Venezuelan equine encephalitis virus, Vesicular stomatitis Indiana virus, WU Polyomavirus, Wesselsbron virus, West Caucasian bat virus, West Nile virus, Western equine encephalitis virus, Whitewater Arroyo mammarenavirus, Yellow fever virus, Yokose virus, Yug Bogdanovac virus, Zaire ebolavirus, Zika virus, or Zygosaccharomyces bailii virus Z viral sequence. Examples of RNA viruses that may be detected include one or more of (or any combination of) Coronaviridae virus, a Picornaviridae virus, a Caliciviridae virus, a Flaviviridae virus, a Togaviridae virus, a Bornaviridae, a Filoviridae, a Paramyxoviridae, a Pneumoviridae, a Rhabdoviridae, an Arenaviridae, a Bunyaviridae, an Orthomyxoviridae, or a Deltavirus. In certain example embodiments, the virus is Coronavirus, SARS, Poliovirus, Rhinovirus, Hepatitis A, Norwalk virus, Yellow fever virus, West Nile virus, Hepatitis C virus, Dengue fever virus, Zika virus, Rubella virus, Ross River virus, Sindbis virus, Chikungunya virus, Borna disease virus, Ebola virus, Marburg virus, Measles virus, Mumps virus, Nipah virus, Hendra virus, Newcastle disease virus, Human respiratory syncytial virus, Rabies virus, Lassa virus, Hantavirus, Crimean-Congo hemorrhagic fever virus, Influenza, or Hepatitis D virus.
In certain example embodiments, the virus may be a plant virus selected from the group comprising Tobacco mosaic virus (TMV), Tomato spotted wilt virus (TSWV), Cucumber mosaic virus (CMV), Potato virus Y (PVY), the RT virus Cauliflower mosaic virus (CaMV), Plum pox virus (PPV), Brome mosaic virus (BMV), Potato virus X (PVX), Citrus tristeza virus (CTV), Barley yellow dwarf virus (BYDV), Potato leafroll virus (PLRV), Tomato bushy stunt virus (TBSV), rice tungro spherical virus (RTSV), rice yellow mottle virus (RYMV), rice hoj a blanca virus (RHBV), maize rayado fino virus (MRFV), maize dwarf mosaic virus (MDMV), sugarcane mosaic virus (SCMV), Sweet potato feathery mottle virus (SPFMV), sweet potato sunken vein closterovirus (SPSVV), Grapevine fanleaf virus (GFLV), Grapevine virus A (GVA), Grapevine virus B (GVB), Grapevine fleck virus (GFkV), Grapevine leafroll-associated virus-1, -2, and -3, (GLRaV-1, -2, and -3), Arabis mosaic virus (ArMV), or Rupestris stem pitting-associated virus (RSPaV). In a preferred embodiment, the target RNA molecule is part of said pathogen or transcribed from a DNA molecule of said pathogen. For example, the target sequence may be comprised in the genome of an RNA virus. It is further preferred that CRISPR effector protein hydrolyzes said target RNA molecule of said pathogen in said plant if said pathogen infects or has infected said plant. It is thus preferred that the CRISPR system is capable of cleaving the target RNA molecule from the plant pathogen both when the CRISPR system (or parts needed for its completion) is applied therapeutically, i.e. after infection has occurred or prophylactically, i.e. before infection has occurred.
In certain example embodiments, the virus may be a retrovirus. Example retroviruses that may be detected using the embodiments disclosed herein include one or more of or any combination of viruses of the Genus Alpharetrovirus, Betaretrovirus, Gammaretrovirus, Deltaretrovirus, Epsilonretrovirus, Lentivirus, Spumavirus, or the Family Metaviridae, Pseudoviridae, and Retroviridae (including HIV), Hepadnaviridae (including Hepatitis B virus), and Caulimoviridae (including Cauliflower mosaic virus).
In certain example embodiments, the virus is a DNA virus. Example DNA viruses that may be detected using the embodiments disclosed herein include one or more of (or any combination of) viruses from the Family Myoviridae, Podoviridae, Siphoviridae, Alloherpesviridae, Herpesviridae (including human herpes virus, and Varicella Zorter virus), Malocoherpesviridae, Lipothrixviridae, Rudiviridae, Adenoviridae, Ampullaviridae, Ascoviridae, Asfarviridae (including African swine fever virus), Baculoviridae, Cicaudaviridae, Clavaviridae, Corticoviridae, Fuselloviridae, Globuloviridae, Guttaviridae, Hytrosaviridae, Iridoviridae, Maseilleviridae, Mimiviridae, Nudiviridae, Nimaviridae, Pandoraviridae, Papillomaviridae, Phycodnaviridae, Plasmaviridae, Polydnaviruses, Polyomaviridae (including Simian virus 40, JC virus, BK virus), Poxviridae (including Cowpox and smallpox), Sphaerolipoviridae, Tectiviridae, Turriviridae, Dinodnavirus, Salterprovirus, Rhizidovirus, among others. In some embodiments, a method of diagnosing a species-specific bacterial infection in a subject suspected of having a bacterial infection is described as obtaining a sample comprising bacterial ribosomal ribonucleic acid from the subject; contacting the sample with one or more of the probes described, and detecting hybridization between the bacterial ribosomal ribonucleic acid sequence present in the sample and the probe, wherein the detection of hybridization indicates that the subject is infected with Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Acinetobacter baumannii, Candida albicans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Proteus mirabilis, Staphylococcus agalactiae, or Staphylococcus maltophilia or a combination thereof.
Systems and methods of the presently disclosed invention are designed to detect coronavirus, in an aspect, the target sequence is the 2019-nCoV, also referred to herein as SARS-CoV-2, which causes COVID-19. The coronavirus is a positive-sense single stranded RNA family of viruses, infecting a variety of animals and humans. SARS-CoV is one type of coronavirus infection, as well as MERS-CoV. Detection of one or more coronaviruses are envisioned, including the SARS-CoV-2 detected in Wuhan City. Sequences of the sARS-CoV-2 are available at GISAID accession no. EPI_ISL_402124 and EPI_ISL_402127-402130, and described in DOI: 10.1101/2020.01.22.914952. Further deposits of the SARS-CoV2 are deposited in the GISAID platform include EP_ISL_402119-402121 and EP_ISL_402123-402124; see also GenBank Accession No. MN908947.3. In an aspect, one may use known SARS and SARS-related coronaviruses or other viruses from one or more hosts to generate a non-redundant alignment. Related viruses can be found, for example in bats.
In certain embodiments, the systems are designed to comprise at least one highly active guide polynucleotide which is designed according to the methods disclosed herein. In a preferred embodiment, the guide polynucleotide binds to at least one target sequence that is a unique coronavirus genomic sequence, thereby identifying the presence of coronavirus to the exclusion of other viruses. The systems and methods can be designed to detect a plurality of respiratory infections or viral infections, including coronavirus.
In an aspect the at least one guide polynucleotide binds to a coronavirus sequence encoding a polypeptide that is immunostimulatory to a host immune system. Immunostiumulatory polypeptides have the ability to enhance, stimulate, or increase response of the immune system, typically by inducing the activation or activity of a components of the immune system (e.g. an immune cell). In embodiments, the immunostimulatory polypeptide contributes to immune-mediated disease in the host. In an aspect, the host is a mammal, for example, a human, a bat, or a pangolin, that may be infected by a coronavirus. Cyranoski, D. Did pangolins spread the China coronavirus to people? Nature, 7 Feb. 2020. In certain embodiments, the guide polynucleotide can be designed to detect SARS-CoV-2 or a variant thereof in meat, live anmials and humans so that testing can be performed, for example at markets and other public places where sources of contamination can arise.
Gene targets may comprise ORF lab, N protein, RNA-dependent RNA polymerase (RdRP), E protein, ORF1b-nsp14, Spike glycoprotein (S), or pancorona targets. Molecular assays have been under development and can be used as a starting point to develop guide molecules for the methods and systems described herein. See, “Diagnostic detection of 2019-nCoV by real-time RT-PCR” Charitê, Berlin Germany (17 Jan. 2020)’ Detection of 2019 novel coronavirus (2019-nCoV) in suspected human cases by RT-PCR— Hong Kong University (23 Jan. 2020); PCR and sequencing protocol for 2019-nCoV—Department of Medical Sciences, Ministry of Public Health, Thailand (updated 28 Jan. 2020); PCR and sequencing protocols for 2019-nCoV-National Institute of Infectious Diseases Japan (24 Jan. 2020); US CDC panel primer and probes— U.S. CDC, USAV— U.S. CDC, USA (28 Jan. 2020); China CDC Primers and probes for detection 2019-nCoV (24 Jan. 2020), incorporated in their entirety by reference. Further, the guide molecule design may exploit differences or similarities with SARS-CoV. Researchers have recently identified simialrities and fifrferences between 2019-nCoV and SARS-CoV. “Coronavirus Genome Annotation Reveals Amino Acid Differences with Other SARS Viruses,” genomeweb, Feb. 10, 2020. For example, guide molecules based on the 8a protein, which was present in SARS-CoV but absent in SARS-CoV-2, can be utilized to differentiate between the viruses. Similarly, the 8b and 3b proteins have different lengths in SARS-CoV and sARS-CoV-2 and can be utilized to design guide molecules to detect non-overlapping proteins of nucleotides encoding in the two viruses. Wu et al., Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China, Cell Host & Microbe (2020), DOI: 10.1016/j.chom.2020.02.001, incorporated herein by reference, including all supplemental information, in particular Table 51. Mutations may also be detected, with guide and/or primers designed specifically to detect, for example, changes in the SARS-CoV-2 virus. In an embodiment, the guide or primer can be designed to detect the D614G mutation in the SARS-CoV-2 spike protein. See, Korber et al., Cell 182, 812-827 (2020); doi: 10.1016/j.cell.2020.06.043. Other mutations in the spike protein can be designed utilizing the COVID-19 viral genome analysis pipeline available at cov.lanl.gov. Further resources to design primers and guides to detect coronavirus or coronavirus mutations can be found at Starr, et al., “Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints in Folding and ACE2 Binding,” Cell, 182, 1-16 (2020); doi: 10.1016/j.cell.2020.08.012.
In an aspect, the systems and methods of detection can be used to identify and/or distinguish SARS-CoV-2 variants. Exemplary variants include a variant identified in the United Kingdom, referred to as 201/501Y.V1, VOC 202012/01, or B.1.1.7. Similarly, a variant identified in South Africa known as 20H/501Y.V2 or B.1.351. Another exemplary variant identified in Brazil, known as P.1, may be detected by the systems and methods described herein. In an aspect, the variants can be identified based on unique mutations associated therewith. In an exemplary embodiment, sequences with at least one, two, three, four or more SNPs of the sequences can be identified. In an aspect, mutations or deletions associated with a particular SARS-CoV-2 lineage can be identified. See, e.g. virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563, identifying non-synonymous mutations and deletions inferred to occur in B1.1.7 lineage. In an aspect, the mutation is in the ORF lab, spike, Orf8, or N gene.
The systems and methods of detection can be used to identify single nucleotide variants, detection based on rRNA sequences, screening for drug resistance, monitoring microbe outbreaks, genetic perturbations, and screening of environmental samples, as described in PCT/US2018/054472 filed Oct. 22, 2018, at [0183]-[0327], incorporated herein by reference.
In certain example embodiments, the systems, devices, and methods disclosed herein may be used for biomarker detection. For example, the systems, devices and method disclosed herein may be used for SNP detection and/or genotyping. The systems, devices and methods disclosed herein may be also used for the detection of any disease state or disorder characterized by aberrant gene expression. Aberrant gene expression includes aberration in the gene expressed, location of expression and level of expression. Multiple transcripts or protein markers related to cardiovascular, immune disorders, and cancer among other diseases may be detected. In certain example embodiments, the embodiments disclosed herein may be used for cell free DNA detection of diseases that involve lysis. In certain example embodiments, the embodiments could be utilized for faster and more portable detection for pre-natal testing of cell-free DNA. The embodiments disclosed herein may be used for screening panels of different SNPs associated with, among others, different coronaviruses, evolving SARS-CoV2, and other related respiratory viral infections. As described herein elsewhere, closely related genotypes/alleles or biomarkers (e.g. having only a single nucleotide difference in a given target sequence) may be distinguished by introduction of a synthetic mismatch in the gRNA.
In an aspect, the invention relates to a method for detecting target nucleic acids in samples, comprising:
distributing a sample or set of samples into one or more individual discrete volumes, the individual discrete volumes comprising a CRISPR system according to the invention as described herein;
incubating the sample or set of samples under conditions sufficient to allow binding of the one or more guide RNAs to one or more target molecules;
activating the CRISPR effector protein via binding of the one or more guide RNAs to the one or more target molecules, wherein activating the CRISPR effector protein results in modification of the RNA-based masking construct such that a detectable positive signal is generated; and
detecting the detectable positive signal, wherein detection of the detectable positive signal indicates a presence of one or more target molecules in the sample.
The sensitivity of the assays described herein are well suited for detection of target nucleic acids in a wide variety of biological sample types, including sample types in which the target nucleic acid is dilute or for which sample material is limited. Methods for field deployable and rapid diagnostic assays can be optimized for the type of sample material utilized. See, e.g. Myhrvold et al., 2018. Biomarker screening may be carried out on a number of sample types including, but not limited to, saliva, urine, blood, feces, sputum, and cerebrospinal fluid. The embodiments disclosed herein may also be used to detect up- and/or down-regulation of genes. For example, a sample may be serially diluted such that only over-expressed genes remain above the detection limit threshold of the assay.
In certain embodiments, the present invention provides steps of obtaining a sample of biological fluid (e.g., urine, blood plasma or serum, sputum, cerebral spinal fluid), and extracting the DNA or RNA. The mutant nucleotide sequence to be detected, may be a fraction of a larger molecule or can be present initially as a discrete molecule.
In certain embodiments, DNA is isolated from plasma/serum of a cancer patient. For comparison, DNA samples isolated from neoplastic tissue and a second sample may be isolated from non-neoplastic tissue from the same patient (control), for example, lymphocytes. The non-neoplastic tissue can be of the same type as the neoplastic tissue or from a different organ source. In certain embodiments, blood samples are collected and plasma immediately separated from the blood cells by centrifugation. Serum may be filtered and stored frozen until DNA/RNA extraction.
In an aspect, sample preparation can comprise methods as disclosed herein to circumvent other RNA extraction methods and can be used with standard amplification techniques such as RT-PCR as well as the CRISPR-Cas detection methods disclosed herein. In an aspect, the method may comprise a one-step extraction-free RNA preparation method that can be used with samples tested for coronavirus, which may be, in an aspect, a RT-qPCR testing method, a lateral flow detection method or other CRISPR-Cas detection method disclosed herein. Advantageously, the RNA extraction method can be utilized directly with other testing protocols. In an aspect, the method comprises use of a nasopharyngeal swab, nasal saline lavage, or other nasal sample (e.g., anterior nasal swab) with Quick Extract™ DNA Extraction Solution (QE09050), Lucigen, or QuickExtract Plant DNA Extraction Solution, Lucigen. In an embodiment, the solution allows for isolation of polynucleotides without the requirement of further extraction prior to further processing. In an aspect, the sample is diluted 2:1, 1:1 or 1:2 sample:DNA extraction solution. The sample:extraction mix is incubated at about 90° C. to about 98° C., preferably about 95° C. In another aspect, incubation is performed at between about 20° C. to about 90° C., about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89 or 90° C. The incubation period can be about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 minutes, preferably about 4 to 6 minutes, or about 5 minutes. Incubation time and temperature may vary depending on sample size and quality, and incubation time may increase if using lower temperature. Current CDC Real-Time RT-PCR Diagnostic Panel are as described at fda.gov/media/134922/download, “CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel.” In certain embodiments, the DNA extraction solution can remain with the sample subsequent to incubation and be utilized in the next steps fo detection methods. In an aspect, the detection method is an RT-qPCR reaction and the extraction solution is kept at a concentration of less than 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3% of the reaction mixture, where the reaction mixture comprises the detection reaction reagents, sample and extraction solution.
In certain embodiments, a bead is utilized with particular embodiments of the invention and may be included with the extraction solution. The bead may be used to capture, concentrate or otherwise enrich for particular material. The bead may be magnetic, and may be provided to capture nucleic acid material. In another aspect, the bead is a silica bead. Beads may be utilized in an extraction step of the methods disclosed herein. Beads can be optionally used with the methods described herein, including with the one-pot methods that allow for concentration of viral nucleic acids from large volume samples, such as saliva or swab samples to allow for a single one-pot reaction method. Concentration of desired target molecules can be increased by about 10-fold, 50-fold, 100-fold, 200-fold, 500-fold, 800-fold, 1000-fold, 1500-fold, 2000-fold, 2500-fold, 3000-fold, or more.
Magnetic beads in a PEG and salt solution are preferred in an aspect, and in embodiments bind to viral RNA and/or DNA which allows for concentration and lysis concurrently. Silica beads can be used in another aspect. Capture moieties such as oligonucleotide functionalized beads are envisioned for use. The beads may be using with the extraction reagents, allowed to incubate with a sample and the lysis/extraction buffer, thereby concentrating target molecules on the beads. Extraction can be performed as described elsewhere herein, at 22° C.-60° C., with subsequent isothermal amplification and/or CRISPR detection performed under conditions as described elsewhere herein. When used with a cartridge device detailed elsewhere herein, a magnet can be activated and the beads collected, with optional flushing of the extraction buffer and one or more washes performed. Advantageously, the beads can be used in the one-pot methods and systems without additional washings of the beads, allowing for a more efficient process without increased risks of contamination in multi-step processes. Beads can be utilized with the isothermal amplifications detailed herein, and the beads can flow into an amplification chamber of the cartridge or be maintained in the pot for the amplification step. Upon heating, nucleic acid can be released off the beads.
In certain example embodiments, target nucleic acids are detected directly from a crude or unprocessed sample, such as blood, serum, saliva, cebrospinal fluid, sputum, or urine. In certain example embodiments, the target nucleic acid is cell free DNA.
Systems and methods can be designed for the detection and diagnosis of viruses and viral infections, including Covid-2019, optionally with acute respiratory infections using the disclosure detailed herein. The systems can comprise two or more CRISPR Cas systems to multiplex, for example, detection of Covid-2019, and other coronaviruses such as SARS-CoV and MERS-CoV. Sequences of the 2019-nCoV are available at GISAID accession no. EPI_ISL_402124 and EPI_ISL_402127-402130, and described in DOI: 10.1101/2020.01.22.914952. Further deposits of the Wuhan coronavirus deposited in the GISAID platform include EP_ISL_402119-402121 and EP_ISL_402123-402124; see also GenBank Accession No. MN908947, and guide design can be predicated on genome sequences disclosed therein and in Tian et al, “Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody”; doi: 10.1101/2020.01.28.923011, incorporated by reference, which details human monoclonal antibody, CR3022 binding of the 2019-nCoV RBD (KD of 6.3 nM). Guide design can target unique viral genomic regions of the 2019-nCoV or conserved genomic regions across one or more viruses of the coronavirus family. Gene targets may comprise ORF lab, N protein, RNA-dependent RNA polymerase (RdRP), E protein, ORF1b-nsp14, Spike glycoprotein (S), or pancorona targets, including guide molecules based on the 8a protein, which was present in SARS-CoV but absent in 2019-nCoV, utilized to differentiate between the viruses. Similarly, the 8b and 3b proteins have different lengths in SARS-CoV and 2019-nCoV and can be utilized to design guide molecules to detect non-overlapping proteins of nucleotides encoding in the two viruses. Wu et al., Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China, Cell Host & Microbe (2020), DOI: 10.1016/j.chom.2020.02.001, incorporated herein by reference, including all supplemental information, in particular Table 51. Molecular assays have been under development and can be used as a starting point to develop guide molecules for the methods and systems described herein.
Detection of respiratory viruses such as coronavirus may include a thermostable CRISPR-Cas protein as described herein, which may be a Cas13a ortholog. As described elsewhere herein, one or more Cas13a orthologs may be utilized in a multiplex design, including the thermostable Cas13a orthologs described herein, where such thermostability confers further rapidity to the diagnostic and detections platforms and methods disclosed herein.
Coronavirus detection can comprise two or more detection systems utilizing RNA targeting Cas effector proteins; DNA targeting Cas effector proteins, or a combination thereof. The RNA-targeting effector proteins may be a Cas13 protein, such as Cas13a, Cas13b, or Cas13c, including one of the thermostable Cas13a proteins described herein. The DNA-targeting effector protein may be a Type V protein, e.g. Cas12 protein such as Cpf1 and C2c1. Multiplexing systems can be designed such that different Cas proteins with different sequence specificities or other motif cutting preferences can be used, including, in certain embodiments, at least one Cas13a thermostable protein described herein. See International Publication WO 2019/126577. Type VI and Type V Cas proteins are known to possess different cutting motif preferences. See Gootenberg et al. “Multiplexed and portable nucleic acid detection platform with Cas13b, Cas12a, and Csm6.” Science. Apr. 27, 2018, 360:439-444; International Publication WO 2019/051318. Thus, embodiments disclosed herein may further comprise multiplex embodiments comprising two or more Type VI Cas proteins with different cutting preferences, or one or more Type VI Cas proteins and one or more Type V case proteins.
In certain example embodiments, the coronavirus assay comprises a Type VI Cas protein disclosed herein and guide molecule comprising a guide sequence configured to direct binding of the CRISPR-Cas complex to a target molecule and a labeled detection molecule (“RNA-based masking construct”). A multiplex embodiment can be designed to track one or more variants of coronavirus or one or more variants of coronavirus, including the 2019-nCoV, in combination with other viruses, for example, Human respiratory syncytial virus, Middle East respiratory syndrome (MERS) coronavirus, Severe acute respiratory syndrome-related (SARS) coronavirus, and influenza.
In certain embodiments, the detection assay can be provided on a lateral flow device, as described herein. The lateral flow device may comprise a flexible substrate, such as a paper substrate or a flexible polymer-based substrate, which can include freeze-dried reagents for detection assays with a visual readout of the assay results. See, WO 2019/071051 at [0145]-[0151] and Example 2, specifically incorporated herein by reference. Accordingly, the assay can be adapted for field diagnostics, including use of visual readout on a lateral flow device, rapid, sensitive detection and can be deployed for early and direct detection.
Detection of coronavirus targets was performed using RPA amplification for 25 minutes followed by a 30 minute Cas 13 reaction using the following primers and guides:
Results are provided in
One of the major bottlenecks for COVID-19 diagnosis is the limited availability of RNA extraction kits for preparing virus RNA from patient samples and the low-throughput nature of the extraction procedure. Here, Applicants describe a one-step extraction-free RNA preparation method that can be carried out in 5 minutes and the reaction can be used directly with the CDC COVID-19 RT-qPCR testing protocol, thus increasing throughput, and alleviating supply chain issues.
Quick Extract™ DNA Extraction Solution (QE09050), Lucigen
Step 1. Dilute nasopharyngeal swab stored in Viral Transport Medium or Human Specimen Control (HSC) 1:1 with Quick Extract™ DNA Extraction Solution. For example, in a fresh PCR tube, mix 20 ul of swab sample with 20 ul of Quick Extract.
Step 2. Incubate swab-Quick Extract mix at 95° C. for 5 minutes. Allow reaction to cool on ice before proceeding.
Step 3. Use reaction from step (2) for qRT-PCR. Make sure the amount from step (2) does not exceed 10% of the total qRT-PCR reaction volume. For example, if a RT-qPCR reaction has a total volume of 50 ul, do not use more than 5 ul of the reaction mix from step (2).
Applicants evaluated a number of buffer compositions to identify one that achieved efficient lysis of enveloped virus while preserving the activity of the CDC recommended RT-qPCR reaction (TaqPath™ 1-Step RT-qPCR Master Mix). Of all of the buffers tested, Quick Extract™ DNA Extraction Solution provided satisfactory results.
To confirm that the presence of QE does not interfere with RT-qPCR activity, comparison of RT-qPCR reactions using synthetic SARS-CoV-2 gene fragment (Twist Synthetic SARS-CoV-2 RNA Control 1, SKU:102019) dissolved in either ddH2O or in a 50:50 ddH2O:Quick Extract mixture was performed. Each RT-qPCR reaction was set up with a total volume of 10 ul (1 ul of RNA sample, 0.5 ul of CDC probe N1, 2.5 ul of TaqPath RT-qPCR master mix, and 6 ul of ddH2O). From these reactions, Applicants found that Quick Extract at a final concentration of 5% did not negatively affect the RT-qPCR reaction (
Preliminary validation of the Quick Extract RNA preparation procedure was conducted on coronavirus positive nasopharyngeal swabs where it was found that RNA samples prepared using Quick Extract supported similarly sensitive detection of coronavirus as QIAmp Viral RNA Miniprep for all 4 swab samples (
Applicants developed a research protocol for a SHERLOCK-based COVID-19 coronavirus detection. The basic protocol is outlined in
The lateral flow strip is inserted directly into this reaction as shown in
The different reaction additives that were used to optimize the assay is shown in
Results obtained by SHERLOCK assay were compared to results obtained by qRT-PCR, as shown in
One exemplary device that can be utilized at point of care, in home environments, and/or for distribution as a take home device is shown in
Rapid point-of-care (POC) tests capable of being run in any low-resource setting, including at home, are needed to adequately combat the COVID-19 pandemic and re-open society. Applicants previously described a protocol for using the CRISPR-based SHERLOCK (Specific High Sensitivity Enzymatic Reporter UnLOCKing) technique (Gootenberg et al., 2017, 2018) for the detection of SARS-CoV-2. SHERLOCK achieves sensitive detection of SARS-CoV-2 through two consecutive reactions: (1) amplification of the virus RNA using an isothermal amplification reaction, and (2) detection of the resulting amplicon using CRISPR-mediated collateral reporter unlocking. Additional CRISPR-based tests have also been recently developed (Broughton et al., 2020; Ding et al., 2020; Guo et al., 2020; Lucia et al., 2020), but these all rely on two separate reaction steps, which requires liquid handling and opening of tubes. These steps add complexity and can lead to contamination, prohibiting their use outside laboratory environments and precluding use by lay individuals. Other POC tests for COVID-19 have been authorized by the U.S. Food and Drug Administration (FDA), including the Abbott ID NOW and Cepheid Genexpert, but these require complex and expensive instrumentation, limiting use to complex labs and hospitals by trained professionals. Some isothermal pre-amplification methods, such as Loop-mediated Isothermal Amplification (LAMP), have been developed as POC tests (Zhang et al., 2020), but these rely on amplification that can be nonspecific.
Currently, the only tests readily available for at-home or low-resource settings are serology paper-based tests (Whitman et al., 2020). However, these are not adequate for diagnosing live infection as antibodies take 1-2 weeks to become detectable in blood and only signify previous exposure. Therefore, Applicants sought to create a POC COVID-19 nucleic acid test that can be run in any setting. Through a series of optimizations, Applicants developed a streamlined, 1-hour SHERLOCK based test that requires no sample extraction and can be performed at one temperature in a single reaction with minimal fluid handling and visual colorimetric readout (
The one-pot SHERLOCK SARS-CoV-2 detection protocol works in the following three steps, without requiring separate virus RNA extraction:
In order to integrate the isothermal amplification step with the CRISPR-mediated detection step, Applicants sought to establish a common reaction condition capable of supporting both steps. Due to the supply chain constraints for the commercially-available recombinase polymerase amplification (RPA) reagents and difficulties in producing a rapid one-pot RPA test for sensitive RNA detection, Applicants chose loop-mediated isothermal amplification (LAMP) reaction for amplifying the virus RNA. The requisite enzymes for LAMP are more readily available from a number of commercial suppliers and the LAMP buffers are simpler and more amenable to systematic optimization with Cas enzymes.
To determine the optimal combination of LAMP primers and guides, Applicants designed 29 sets of LAMP primers targeting different regions of the SARS-CoV-2 genome and identified the best primer set for amplifying gene N (
For the best LAMP amplicon, Applicants tested 18 sgRNAs to identify the optimal combination of primers and guide sequence (
Applicants profiled the optimized reaction with a lateral flow readout and an RNA extraction-free input using SARS-CoV-2 genome standards spiked into nasopharyngeal (NP) swab to determine limit of detection (LOD), ideal incubation temperature, readout time, and robustness. Applicants found that the LOD of the reaction was 100 copies of SARS-CoV-2 (
Finally, Applicants evaluated the one-pot SHERLOCK detection on 12 positive and 5 negative patient NP swabs. Applicants' assay correctly identified 35/36 positive patient replicates and 15/15 negative patient replicates, resulting in a sensitivity of 97% and specificity of 100% (
Design of LAMP and SHERLOCK reactions. Applicants designed LAMP amplification primers and SHERLOCK AapCas12b guide RNAs to target the N gene of SARS-CoV-2. The N gene is known to be present at higher copy numbers than other segments of the SARS-CoV-2 genome, which helps to increase the detection sensitivity. Below are the LAMP primer sequences and SHERLOCK AapCas12b guide RNAs:
AAGCGCUG
-3' (SEQ ID NO: 62028)
AapCas12b Protein Sequence:
Specimen and nucleic acid extraction. Two types of patient samples have been tested for compatibility with one-pot SHERLOCK. All samples should be collected and processed according to the appropriate biosafety procedure.
a. RNA extracted from patient samples: The patient sample should be collected according to the appropriate biosafety procedures. Please reference the 2020 CDC COVID-19 test protocol for details on specimen collection and subsequent nucleic acid extraction. The input for this protocol, beginning with Step (1), can be the same extracted nucleic acid as used in qRT-PCR assays.
b. Nasopharyngeal (NP) swabs: NP swabs dissolved in viral transport media (VTM) or TE can be directly used.
Reagents.
For Step (1)—lysis of viral sample:
For Step (2)—one-pot SHERLOCK detection reaction:
A Sherlock mastermix can be prepared as follows:
If lysing samples at 22° C. or 60° C. instead of 95° C., replace 2 uL of ddH2O with 2 uL of Proteinase K Inhibitor working solution.
For Step (3) reading out using lateral flow dipstick:
Equipment.
One-Step SHERLOCK Protocol for SARS-CoV-2 Detection
***IMPORTANT NOTE: To prevent sample contamination from confounding detection result, two different work areas should be used for performing Steps (1)/(2) and (3). Steps (1)/(2) should be performed in a pre-amplification area and is especially sensitive to contamination. Amplified samples should not be opened in the work area for Steps (1)/(2). A separate area for post-amplification reactions should be used for performing Step (3) of the protocol. After incubation, reactions from Step (2) should be thoroughly spun down after incubation before opening in the post-amplification area to carry out Step (3).
Step (1)— Lysis of patients sample. *PERFORMED IN THE PRE-AMPLIFICATION AREA*
NP swab sample should be lysed using the QuickExtract lysis buffer.
Mix 10 μL of NP swab sample with 10 μL of Quick Extract in an eppendorf tube.
Incubate the sample-QuickExtract mixture at 95° C. for 5 minutes (or at room temperature or 60° C. for 10 mins) and proceed to Step (2).
Step (2)— One pot SHERLOCK detection. *PERFORMED IN THE PRE-AMPLIFICATION AREA*
For each sample, set up one reaction as follows. In addition, a positive control can be set up using the SARS-CoV-2 control RNA. A negative control with Isothermal Amplification Buffer, MgSO4, dNTPs, Lateral Flow Reporter, and sample should also be set up to control for DNAse contamination that may produce false positive results.
Mix thoroughly and incubate each reaction at 60° C. for 1 hour. Spin down the reaction in a centrifuge at maximum speed. Transfer the reaction tubes to the post-amplification area before proceeding to Step (3).
Step (3)— Visual readout of detection result via lateral flow strip. *PERFORMED IN THE POST-AMPLIFICATION AREA*
Before opening each tube, spin down each reaction tube in a centrifuge at maximum speed to prevent aerosol contamination. Place a HybriDetect Dipstick into each reaction tube and wait for the reaction to flow through the dipstick.
Positive control samples should show the top line and a faint bottom line. Negative control samples should show the bottom line.
For each test sample, check to see the top line appears, indicating positive SARS-CoV-2 detection.
A detailed general protocol for setting up SHERLOCK-based detection can be found in the following reference: SHERLOCK: nucleic acid detection with CRISPR nucleases. Kellner M J, Koob J G, Gootenberg J S, Abudayyeh 00, and Zhang F. Nature Protocols. 2019 October; 14(10):2986-3012. doi: 10.1038/s41596-019-0210-2.
Applicants' one-pot SHERLOCK detection method is capable of rapid, point-of-care diagnosis of COVID-19. With 97% sensitivity and 100% specificity on patient samples, Applicants were able to detect presence of SARS-CoV-2 down to 100 molecules of viral genome per reaction in a simplified format that any user could perform in a non-laboratory setting. Because of the rapid speed and lack of instrumentation, it is envisioned that this protocol could be used in low resource clinics, workplaces, and even at home. While Applicants tested on nasopharyngeal swabs, saliva samples have similar viral loads and would be a simpler alternative sample source. Future versions of the protocol could benefit from an all-in-one integrated device that could heat the reaction and transfer the reaction to a paper strip to reduce amplicon spread and streamline the workflow.
Broughton, J. P., Deng, X., Yu, G., Fasching, C. L., Servellita, V., Singh, J., Miao, X., Streithorst, J. A., Granados, A., Sotomayor-Gonzalez, A., et al. (2020). CRISPR-Cas12-based detection of SARS-CoV-2. Nat. Biotechnol.
Ding, X., Yin, K., Li, Z., and Liu, C. (2020). All-in-One Dual CRISPR-Cas12a (AIOD-CRISPR) Assay: A Case for Rapid, Ultrasensitive and Visual Detection of Novel Coronavirus SARS-CoV-2 and HIV virus.
Gootenberg, J. S., Abudayyeh, O. O., Lee, J. W., Essletzbichler, P., Dy, A. J., Joung, J., Verdine, V., Donghia, N., Daringer, N. M., Freije, C. A., et al. (2017). Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356, 438-442.
Gootenberg, J. S., Abudayyeh, O. O., Kellner, M. J., Joung, J., Collins, J. J., and Zhang, F. (2018). Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360, 439-444.
Guo, L., Sun, X., Wang, X., Liang, C., Jiang, H., Gao, Q., Dai, M., Qu, B., Fang, S., Mao, Y., et al. (2020). SARS-CoV-2 detection with CRISPR diagnostics.
Lucia, C., Federico, P.-B., and Alejandra, G. C. (2020). An ultrasensitive, rapid, and portable coronavirus SARS-CoV-2 sequence detection method based on CRISPR-Cas12.
Shmakov, S., Abudayyeh, O. O., Makarova, K. S., Wolf, Y. I., Gootenberg, J. S., Semenova, E., Minakhin, L., Joung, J., Konermann, S., Severinov, K., et al. (2015). Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Mol. Cell 60, 385-397.
Teng, F., Cui, T., Feng, G., Guo, L., Xu, K., Gao, Q., Li, T., Li, J., Zhou, Q., and Li, W. (2018). Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discov 4, 63.
Whitman, J. D., Hiatt, J., Mowery, C. T., Shy, B. R., Yu, R., Yamamoto, T. N., Rathore, U., Goldgof, G. M., Whitty, C., Woo, J. M., et al. (2020). Test performance evaluation of SARS-CoV-2 serological assays. medRxiv 2020.04.25.20074856.
Zhang, Y., Odiwuor, N., Xiong, J., Sun, L., Nyaruaba, R. O., Wei, H., and Tanner, N. A. (2020). Rapid Molecular Detection of SARS-CoV-2 (COVID-19) Virus RNA Using Colorimetric LAMP. medRxiv 2020.02.26.20028373.
Rather than a multi-step process for the extraction and washing when using beads as is explained in previous prior art methods, the present disclosure improves upon the methods:
A bead and lysis buffer mix is added to the sample, for about 5 to 10 minutes. At this time, the virus is lysed and bound to the beads.
Sample with beads is placed upon magxit, after separation, supernatant is aspirated and reaction buffer mix is added and sample can be subjected in pPCR. Thus, lysis and bead preparation steps are merged rather than multi-steps, and elimination of washes and elution steps are eliminated, with elution merged with the addition of reaction buffer mix.
The bead mix can include potassium chloride, with the typical amount of potassium chloride being reduced or eliminated from the reaction buffer mix. Additionally, the lysis buffer according to methods as provided herein can comprise proteinase K. Without the typical wash steps utilized after lysis, proteinase K carries over from the lysis step in the current methods, and proteinase K inhibitor is added to the reaction buffer mix.
Beads can be optionally used with the methods described herein, including with the one-pot methods that allow for concentration of viral nucleic acids from large volume samples, such as saliva or swab samples to allow for a single one-pot reaction method.
An exemplary method of making the beads are as follows:
500 mL 5M NaCl
1M Tris-HCl, pH 8.0
500 mM EDTA, pH 8.0
Dry Poly-Ethylene Glycol 8000, PEG-8000 (Fisher, P/N BP233-1)
Carboxy-Modified Sera-Mag Speed Beads (Fisher, P/N 09-981-124)
Protocol
Vortex the Sera-Mag speedbeads bottle for 1 minutes.
Add 0.1% (w/v) of your intended production amount, which is 10 mL of the Sera-Mag Speedbeads solution to a 50 mL conical tube.
Using a 50 mL magnetic separator, pellet the magnetic beads.
Aspirate the supernatant and discard.
The beads contain residual azide. Wash them twice with 10 mL of DI water, resuspending the pellet each time by vortexing for 30 seconds.
Pellet the beads for the last time.
Prepare the bead buffer by mixing orderly the following in a 500 mL reagent bottle.
Invert mix 10 times and fill with DI water until it reaches the 500 mL mark.
Filter using a vacuum filtration unit according to the manufacturer's instructions and store filtered buffer in container of filtration unit until needed.
Remove the final wash fluid on the beads and add 10 mL of the sterile bead buffer to the beads.
Vortex for 30 seconds to resuspend the beads.
Add the bead slurry to the 500 mL bottle containing the remainder of the sterile buffer.
Twirl the bottle to homogenize the beads with the buffer.
The beads can now be aliquoted and stored at −20° C.
Optimization of reagents For ease of reference, optimization is described using LAMP amplification, but the design paradigm is applicable to any other isothermal amplification approach detailed herein. Further optimization of the methods as disclosed herein can include first screening primers to identify one or more sets of primers that work well for a particular target, Cas protein and/or reaction. Once the primers have been screened, titration of Magnesium concentration can be performed to identify an optimal magnesium concentration for higher signal to noise. Once an optimum magnesium concentration is identified, additional additives are screened at around 20-25% of the reaction, and once additives are identified, these additives, such as those components identified in
Further investigations utilizing BrCas12b were performed. While BrCas12b had been previously identified (see, Tian et al., In. J. Biol Marcomol. 2020 Mar. 15, 147:376-384; doi:10.1016/jbiomac.2020.01.079), it was unclear whether the protein would demonstrate sufficient collateral activity and, moreover, whether it would perform in the instant diagnostic application. In particular, it was unclear whether BrCas12b could be utilized at higher temperatures using the LAMP protocls disclosed herein and achieve collateral detection.
As shown in
The present example explores the use of OSD with LAMP amplification. The OSD probe comprises two complementary probes, which utilizes a fluor and quencher strand. The fluor strand comprises a sequence specific target-binding probe such that separation of the fluorophore and quencher induces a change in fluorescence intensity. Advantageously, the OSD probes can distinguish SNPs in LAMP amplicons.
Use of OSD probe design was explored with COVID-19 LAMP specific probes. Several probe sets were explored in the LAMP-OSD detection assay at 21 minutes. As showing in
Integrating isothermal amplification with CRISPR-mediated detection required developing an optimal common reaction chemistry supporting both steps, as has been described in the previous examples. In summary, to amplify viral RNA, reverse transcription was chosen followed by Loop-mediated isothermal amplification (RT-LAMP)4 because LAMP reagents are widely available and use defined buffers amenable to Cas enzymes. LAMP operates at 55-65° C., requiring a thermostable Cas enzyme, such as Cas12b from Alicyclobacillus acidiphilus (AapCas12b)5. Different LAMP primer sets and AapCas12b guide RNAs (a guide RNA helps AapCas12b recognize and cut target DNA) were systematically evaluated to identify the best combination to target gene N, encoding the SARS-CoV-2 nucleocapsid protein, in a one-pot reaction (
To simplify RNA extraction and boost sensitivity, Applicants adapted a magnetic bead purification method (
Applicants compared STOPCovid.v2 to the standard CDC workflow (RNA extraction followed by RT—qPCR) using SARS-CoV-2 virus-like particles (
Blinded testing by an external laboratory at the University of Washington using 202 SARS-CoV-2 positive and 200 negative manufactured patient nasopharyngeal swab samples showed that the sensitivity and specificity of STOPCovid.v2 were 93.1% and 98.5%, respectively (
Swabs were prepared according to the FDA's recommendation for simulating fresh swabs for regulatory applications.) STOPCovid.v2 false-negative samples had RT-qPCR Ct values greater than 37. Positive samples were detected in 15 to 45 mins. Finally, STOPCovid.v2 was validated using fresh, dry anterior nasal swabs (
The simplified format of STOPCovid. V2 is suited to deployment in low-complexity clinical laboratories or low-cost diagnostic development, and its high sensitivity may afford some leeway in sample collection.
Here Applicants describe in more detail the rationale and results that contributed to the development of STOPCovid. Applicants first simplified the viral RNA extraction method. Most clinical labs currently perform an RNA extraction step using commercial RNA extraction kits, which requires multiple fluid handling steps and relies on reagents that have been difficult to obtain steady supplies of. To eliminate this step, Applicants tested various viral lysis buffers for extraction of lentiviral RNA and added the lysate directly into RT-qPCR reactions (
Integrating the isothermal amplification step with the CRISPR-mediated detection step required developing an optimal common reaction chemistry capable of supporting both steps (
LAMP operates at 55-65° C., requiring a thermostable Cas enzyme for a one-pot chemistry, such as Cas12b from Alicyclobacillus acidiphilus (AapCas12b)17. The AapCas12b locus does not contain an identifiable CRISPR array, but it can function up to 65° C. with a single guide RNA (sgRNA) based on the direct repeat from Alicyclobacillus macrosporangiidus Cas12b (AmCas12b)17 (
Applicants next systematically evaluated all possible spacers targeting the top LAMP amplicons to identify the ideal combination of primers and guide sequence (
Using these conditions, both AapCas12b and AacCas12b were tested in a one-pot reaction. Applicants found that AapCas12b generated faster (34 min to half maximum signal compared to 39 min) and stronger collateral activity (1.6 times maximum signal) than AacCas12b in the one-pot reaction (
Applicants used STOPCovid.v1 with a lateral flow readout and SARS-CoV-2 genome standards spiked into pooled healthy saliva or NP swab VTM to determine the sensitivity, robustness, ideal incubation temperature, and readout time of the assay. Applicants found that the STOPCovid.v1 chemistry can detect 100 copies of SARS-CoV-2 per reaction and reproducibly detect 200 copies over 30 replicates (
In addition to lateral flow readout, STOPCovid.v1 is also compatible with fluorescence readout, which allows for simultaneous detection of an internal control using orthogonal fluorescent dyes. By introducing LAMP primer sets targeting an abundant control gene into the STOPCovid reaction, LAMP amplification signal detected by SYTO 9 nucleic acid stain before 28 minutes indicates specific amplification of human sample, while Cas12b collateral cleavage of a HEX reporter probe indicates presence of SARS-CoV-2. Applicants screened 114 LAMP primers sets targeting ACTB and GAPDH to identify 19 LAMP primer sets that could be multiplexed with the N LAMP primer set at 50% or 20% of the total primer set concentration (
Applicants then evaluated STOPCovid.v1 with lateral flow readout on 43 SARS-CoV-2 RNA positive (Ct values ranging from 17 to 38) and 15 negative patient NP swab VTM samples. STOPCovid.v1 had a sensitivity of 84% and specificity of 100% for detecting 2 out of 3 replicates for the 43 positive samples (
Applicants therefore sought to boost sensitivity by increasing sample input via sample concentration. In the initial attempt to simplify viral RNA extraction, Applicants only used 2.5 μL of the 3 mL NP swab VTM (0.083% of the total NP swab sample). Applicants reasoned that capturing all of the viral RNA from an NP or anterior nasal (AN) swab would increase sample input by 1,200-fold and dramatically increase sensitivity. Applicants tested sample concentration using two magnetic bead formulations, laboratory-developed26 and commercial (Beckman SPRIselect), prior to STOPCovid detection. Applicants found that both formulations could efficiently capture viral RNA (SARS-CoV-2 genomic standards spiked into DNA QuickExtract lysis buffer with human background RNA) into one 50 μL STOPCovid reaction using the standard magnetic bead purification method (
To streamline the magnetic bead concentration workflow, Applicants eliminated the ethanol wash step and combined the lysis and magnetic bead binding steps by optimizing the salt concentration of the one-pot reaction and testing alternative QuickExtract formulations (
Applicants further optimized the STOPCovid.v2 chemistry by titrating Cas12b and sgRNA concentrations. While characterizing STOPCovid.v2, Applicants noticed that STOPCovid.v2 occasionally produced false positive results. Applicants hypothesized that this was due to partial overlap between the sgRNA and LAMP BIP primer that contributed to sporadic Cas12b collateral activity. Applicants therefore titrated Cas12b and sgRNA concentrations and found that the optimal concentration of Cas12b and sgRNA for reducing the proportion of false positive results while retaining true positive signal was 31.3 nM (
Applicants compared STOPCovid.v2 to the standard CDC workflow that uses QIAmp Viral RNA Miniprep extraction followed by RT-qPCR (
Applicants evaluated the performance of the optimized STOPCovid.v2 chemistry on SARS-CoV-2 positive patient samples. Patient NP swab sample dilution series revealed that STOPCovid.v2 had a limit of detection comparable to an RT-qPCR Ct value of 40.3, which could in theory capture 99.7% of SARS-CoV-2 positive patients (
To aid users of STOPCovid, Applicants have developed a mobile phone application to help the user interpret lateral flow results (
RT-qPCR reactions were performed using the TaqPath 1-Step RT-qPCR Master Mix (ThermoFisher A15300) using TaqMan probes and primer sets (Table 14) and measured on a Roche LightCycler 480. RT-qPCR quantification was performed using the second derivative maximum method from the LightCycler software.
To compare crude lysis methods with standard RNA extraction methods, viral samples were purified using the QIAamp Viral RNA Mini Kit (Qiagen 52906), using 100 μL sample input and 100 μL elution volume.
To evaluate crude lysis methods, red fluorescent protein sequence packaged into lentivirus as described previously29 was directly used for downstream quantification or diluted 1:1 in candidate lysis buffers and boiled at 95° C. for 5 minutes. Lysis efficiency was determined using 2 μL of crude sample as input into a 20 μL RT-qPCR reaction, performed as described above.
Nasopharyngeal (NP) swabs from healthy donors (Lee Biosolutions 991-31-NC) were dipped in 2 mL E-MEM (VWR 10128-214) to dislodge material from the swab. NP swabs from 5 patients were pooled to simulate SARS-CoV-2-negative NP swab matrix. Saliva from 5 healthy donors (Lee Bisolution 991-05-S) was pooled together to simulate SARS-CoV-2 negative saliva matrix. Clinical matrices were heated at 95° C. for 5 minutes with an equal volume of QuickExtract DNA Extraction Solution (Lucigen QE09050), followed by the addition of SARS-CoV-2 genomic standards (Twist Biosciences 102019) at indicated concentrations to create mock clinical samples for downstream detection.
LAMP primer sets (Table 15) were designed using LAMP Designer 1.16 (Premier Biosoft) or GLAPD30. LAMP reactions were performed using final concentrations of 1.6 uM FIP/BIP primers, 0.2 uM F3/B3 primers, and 0.4 uM LoopF/B primers. LAMP primer sets were screened using the WarmStart Lamp Kit (New England Biolabs E1700) with 1X fluorescent LAMP dye and 25 ng of background human RNA in 20 μL reactions. RNA targets for LAMP primer screening (Table 15) were transcribed using HiScribe T7 Quick High Yield RNA Synthesis Kit (New England Biolabs E2050). Optimizations of LAMP primer sets selected for further evaluation were performed using 1X Isothermal Amplification Buffer (20 mM Tris-HCl, 50 mM KCl, 10 mM (NH4)2504, 2 mM MgSO4, 0.1% Tween 20, pH 8.8) (New England Biolabs B0537), 1.4 mM dNTPs (New England Biolabs N0447), 6.4 units of Bst2.0 WarmStart DNA Polymerase (New England Biolabs M0538), 6 units of WarmStart RTx Reverse Transcriptase (New England Biolabs M0380), variable concentrations of added MgSO4 (New England Biolabs B1003) and 1X fluorescent LAMP dye in 20 μL reactions containing 10% mock NP clinical sample with SARS-CoV-2 genomic standards. LAMP reactions were performed at 60° C. (unless otherwise indicated) for 1-2 hrs on a qPCR machine (Roche LightCycler 480 or BioRad CFX) with fluorescent measurements every 2 minutes. Cas12b Protein Purification
AacCas12b and AapCas12b orthologs were expressed and purified with a modified protocol31. Briefly, AacCas12b (human codon optimized) bacterial expression vector was transformed into BL21-CodonPlus (DE3)-RIPL Competent Cells (Agilent 230280), and AapCas12b bacterial expression vector was transformed into BL21(DE3) Competent E. coli (NEB C2527). Protein sequences for AacCas12b and AapCas12b are provided elsewhere herein. A 12.5 mL starter culture was grown in Terrific Broth media (TB) supplemented with 100 μg/ml ampicillin for 12 h, which was used to inoculate 12 L of TB for growth at 37° C. and 150 rpm until an OD600 of 0.4. After cells were cooled down to 16° C., protein expression was induced by supplementation with IPTG (Goldbio I2481C) to a final concentration of 0.5 mM. The cells were incubated at 16° C. for 16 h for protein expression, and then harvested by centrifugation for 20 min at 4° C. at 4000 rpm (Beckman Coulter Avanti J-E, rotor JLA9.100). Cell pellet was stored at −80° C. for later purification. All subsequent steps were performed at 4° C. Cell pellet was resuspended in 600 mL of lysis buffer (20 mM Tris-HCl, 500 mM NaCl, 1 mM DTT, pH 8.0) supplemented with complete ULTRA Tablets (Millipore sigma 6538282001), 1 mg/mL lysozyme (Sigma L6876), and 250 units/L benzonase (Sigma E1014). Cells were disrupted by the LM20 Microfluidizer system at 18,000 PSI. Lysate was cleared by centrifugation for 30 min at 4° C. at 9500 rpm (Beckman Coulter Avanti J-E, rotor JLA-10.500). The cleared lysate was applied to 5 mL of packed Strep-Tactin Sepharose (IBA 2-1201-010) and incubated with rotation for 1 h, followed by washing of the protein-bound resin in 150 mL of lysis buffer. The resin was resuspended in 15 mL of lysis buffer supplemented with 1.2 mg of Ulp1 SUMO protease, and incubated at 4° C. for 16 h with rotation. The suspension was applied to a column for elution and separation from resin by gravity flow. The resin was washed with 15 mL of lysis buffer, and this additional eluate was combined with the first 15 mL of eluate. The combined 30 mL of eluate was diluted with 30 mL of cation exchange buffer A (20 mM Tris-HCl, 5% glycerol, 1 mM DTT, pH 7.5) to lower the salt concentration for cation exchange chromatography. The resulting 60 mL protein solution was loaded onto a 5 mL HiTrap SP HP cation exchange column (GE Healthcare) via FPLC (AKTA PURE, GE Healthcare) and eluted over a 250 mM to 2 M NaCl salt gradient made by cation exchange buffer A and B (20 mM Tris-HCl, 2 M NaCl, 5% glycerol, 1 mM DTT, pH 7.5). The resulting fractions were tested for presence of the protein by NuPAGE (Invitrogen) and eStain L1 Protein Staining System (GenScript). The fractions containing the protein were pooled and concentrated by an Amicon Ultra-15 Centrifugal Filter Units (50KDa NMWL, Millipore UFC905024) to 1 mL. The concentrated protein was loaded onto a gel filtration column (Superdex 200 Increase 10/300 GL, GE Healthcare) equilibrated with Cas12 protein storage buffer (50 mM Tris-HCl, 600 mM NaCl, 2.5% glycerol, 2 mM DTT, pH 7.5) via FPLC. The resulting fractions from gel filtration were analyzed and the fractions containing the protein were pooled, snap frozen as 2 mg/mL aliquots, and stored at −80° C.
Cas12b detection reactions were performed using 1X Isothermal Amplification Buffer, 8 mM MgSO4, 250 nM Cas12b protein, 250 nM sgRNA, 250 nM fluorescent reporter (/5HEX/TTTTT/3IABkFQ/) and 1 μL of completed LAMP reaction in 10 μL reactions. Cas12b detection reactions were performed at 60° C. (unless otherwise indicated) for 1-2 hrs on a qPCR machine (Roche LightCycler 480 or BioRad) with fluorescent measurements every 2 minutes.
One-pot LAMP-Cas12b reactions were performed using 1X Isothermal Amplification Buffer, 1.4 mM dNTPs, 6.4 units of Bst2.0 WarmStart DNA Polymerase, 6 units of WarmStart RTx Reverse Transcriptase, 250 nM Cas12b protein, 250 nM sgRNA, 200 nM fluorescent reporter, 1.6 uM FIP/BIP primers, 0.2 uM F3/B3 primers, 0.4 uM LoopF/B primers and variable concentrations of MgSO4 in 20 μL reactions. Where indicated, mock clinical sample with SARS-CoV-2 genomic standard was added at 10% of the final reaction volume to simulate crude input from sample lysis. One-pot reactions were performed at 60° C. (unless otherwise indicated) for 1-2 hrs on a qPCR machine (BioRad) with fluorescent measurements every 2 minutes.
Human SARS-CoV-2 nucleotide sequences were downloaded from Gisaid database24 on May 30th 2020. Completed genomes (sequence length >29,000 nt and less than 5% of ambiguous nucleotides) were aligned using mafft32 to obtain a global alignment of 31,614 sequences. For each target, Applicantsextracted a sub alignment embedding the region of the target from the genome alignment and removed sequences with ambiguous nucleotides. Then, Applicantsdetermined the number of sequences that either perfectly matched the target or had substitutions and indels.
Additives from the Hampton Research Solubility and Stability Screen (Hampton Research HR2-072) were added at 20% of the final reaction volume of one-pot LAMP-Cas12b fluorescent detection reactions unless otherwise indicated.
STOPCovid reactions were one-pot LAMP Cas12b reactions described above, using N Set 2 LAMP primers, N set 2 AacCas12b sgRNA 11, and 50 mM taurine. When performing lateral flow reactions, the fluorescent reporter was substituted for a lateral flow collateral reporter (/56-FAM/TTTTTTT/3Bio/). Unless otherwise indicated, STOPCovid lateral flow reactions were incubated at 60° C. for one hour. After incubation, a HybriDetect Dipstick (Milenia Biotec GmbH MGHD 1) was added to the reaction and the liquid was allowed to flow to the top of the strip for subsequent detection. The final concentration of the lateral flow collateral reporter was titrated (125-200 nM) on each lot of HybriDetect Dipsticks to achieve maximal signal-to-noise ratio. Sous-Vide cooker (Amazon B07H9N9PMQ) was used where indicated. To maximize sensitivity and specificity, the final Aap Cas12b and sgRNA concentration was titrated to 31.3 nM. This concentration was used for validating STOPCovid.v2 on patient NP and anterior nasal (AN) samples.
Multiplexed reactions were performed as described for fluorescent STOPCovid reactions, with indicated ratios of N set 2 LAMP primers to control LAMP primers and the addition of 250 nM SYTO-9 Fluorescent Nucleic Acid Stain (ThermoFisher S34854). Total LAMP Primer concentration was consistent between single target and multiplexed STOPCovid reactions.
Nasopharyngeal swabs were collected in PBS, viral transport medium (ThermoFisher Scientific), or universal transport media (Becton Dickinson) and submitted to the Virology Laboratory at the University of Washington. SARS-CoV-2 was detected by a laboratory-developed RT-qPCR test using CDC distributed N1 and N2 gene primer/probe sets or tests from Hologic (Panther Fusion) and Roche (cobas). The Panther Fusion SARS-CoV-2 assay (Hologic) amplifies and detects two regions of ORF lab. The cobas SARS-CoV-2 assay on the 6800 platform (Roche Diagnostics) qualitatively detects two viral targets: ORF lab and E-gene. The averages of the observed Ct values in each test were used to determine the overall Ct value of the SARS-CoV-2 positive samples. Previous studies have shown that the average Ct values between each assay are comparable33. After analysis, samples were stored at −80° C. until further analysis. Samples from the University of Washington were shipped to the Broad Institute for evaluating STOPCovid.v1 performance.
Clinical samples that tested positive for SARS-CoV-2 from the cobas SARS-CoV-2 assay were stored at 4° C. and used within 12 h to determine the LOD. A five-fold serial dilution of SARS-CoV-2 positive patient NP swab samples in UTM (Becton Dickinson) were generated. For STOPCovid.v1, samples were lysed with an equal volume of DNA QuickExtract for 5 mins at 95° C. 5 μL of lysates were used for the STOPCovid.v1 lateral flow reaction and incubated at 60° C. for one hour, following the signal readout using a HybridDetect Dipstick (Milenia). Ct 3.3 was added between the 5-fold dilutions of samples. To estimate the LOD of the STOPCovid.v2 fluorescent reaction of the total NP swab sample, three replicates of five-fold serial dilution of SARS-CoV-2 positive patient NP swab samples in UTM were generated. 50 μL of diluents were transferred to the extraction buffer (260 μL of laboratory-developed KCl magnetic beads, 40 μL of 10X QuickExtract Plant DNA Extraction Solution, and 50 μL water) using foam swabs (Puritan 25-1506). Nucleic acids bound to magnetic beads were subjected to a STOPCovid.v2 reaction at 60° C. on an ABI 7500 qPCR machine (Thermo Fisher) with measurements every 1 min for 45 min. Since 50 μL of the NP swab sample in UTM, out of 3 mL total, were used, Ct 5.9 was added to the observed average Ct value of the original sample, and Ct 3.3 was added between the 5-fold dilutions of samples. To project the proportion of SARS-CoV-2 positive patients that an assay with the estimated LOD could capture, the average Ct values obtained from the dilution series were compared to the larger 2,105 patient Ct values obtained from the cobas RT-qPCR assay.
To evaluate the performance of STOPCovid.v2, a blinded test of 202 SARS-CoV-2 positive samples and 200 negative samples was performed. Similar to the dilution series, as only 50 μL of the NP swab sample in 3 mL of UTM was used instead of the entire swab, Ct 5.9 was added to the observed Ct value of the original sample, and only samples with Ct values lower than 34 were used. 50 μL of randomized and blinded NP swab samples in UTM were transferred to 50 μL of water and 300 μL of extraction buffer. STOPCovid.v2 reaction was performed as described above and fluorescent measurements were taken every 2 min during a 44 min period in an ABI 7500 qPCR machine (Thermo Fisher). Fluorescence threshold for classifying samples as positive or negative was set to approximately 10% of the average steady state fluorescence signal, or 100,000 RFU on the ABI 7500 qPCR machine.
Laboratory-developed magnetic beads for RNA concentration were prepared as previously described26. Briefly, 10 mL of Sera-Mag SpeedBeads Carboxyl Magnetic Beads Hydrophobic (GE Healthcare 65152105050250) were washed with ddH2O and resuspended in 500 mL of bead binding buffer (10 mM Tris-HCl pH 8.0, 1M NaCl, 18% PEG-8000, and 1 mM EDTA). Where indicated, 1M NaCl was replaced with 1M KCl.
400 μL of laboratory-developed or commercial (SPRISelect, Beckman Coulter B23317) magnetic beads were mixed with 200 μL of heat-inactivated (95° C. for 5 minutes). QuickExtract DNA Extraction Solution spiked with indicated quantity of SARS-CoV-2 genomic standard and 1.25 μg of background human RNA. This mixture was allowed to bind for 5 minutes at room temperature, before transfer onto a magnetic plate (Alpaqua A001219). Beads were washed with 1 mL of 70% ethanol, and allowed to dry for 5 minutes. 50 μL of STOPCovid mastermix was directly added to the beads and the reaction mixture was incubated at 60° C. for 1-2 hrs. Where indicated, the washing and drying steps outlined above were skipped and a modified STOPCovid mastermix was used. Specifically, a modified 1X Isothermal Amplification Buffer containing no KCl (20 mM Tris-HCl, 10 mM (NH4)2504, 2 mM MgSO4, 0.1% Tween 20, pH 8.8) was used in place of the buffer described above.
To evaluate the ability to perform efficient viral lysis and nucleic acid binding in parallel, 100 μL of mock SARS-CoV-2 virus (SARS-CoV-2 RNA targets in a noninfectious viral coat) from AccuPlex SARS-CoV-2 Verification Panel (SeraCare 0505-0132) with 125 ng/μL background human RNA were either added to 100 μL of lysis buffer alone or 100 of lysis buffer combined with 400 μL of laboratory-developed KCl magnetic beads. Concentrations of lysis buffers, QuickExtract DNA Extraction Solution and QuickExtract Plant DNA Extraction Solution (Lucigen QEP70750), indicated the final working concentration. Samples containing no magnetic beads were incubated at the indicated temperature for 5 minutes, followed by the addition of 400 μL of laboratory-developed KCl magnetic beads. Samples containing combined bead/lysis mixtures were incubated at room temperature for 10 minutes. All samples were subsequently treated with the bead extraction and concentration steps described above with no wash step.
Comparison of STOPCovid.v2 to CDC RT-qPCR assays
To create mock samples simulating the addition of swabs, different amounts of mock SARS-CoV-2 virus from the AccuPlex SARS-CoV-2 Verification Panel were diluted in PBS containing 25 ng/μL background human RNA. 50 μL of mock sample was either added to extraction buffer (400 μL of laboratory-developed KCl magnetic beads, 60 μL of 10X QuickExtract Plant DNA Extraction Solution, and 90 μL of PBS) for detection with STOPCovid.v2 or to 1 mL E-MEM media for subsequent nucleic acid extraction and RT-qPCR. STOPCovid.v2 fluorescent reactions were incubated at 60° C. on a qPCR machine with measurement every 2 minutes. STOPCovid.v2 lateral flow reactions were allowed to proceed at 60° C. for 80 minutes before addition of a detection strip. RT-qPCR reactions were performed according to CDC recommendations available at fda.gov/media/134922/download, using the N1 primer and probe set.
SARS-CoV-2 negative patient dry AN swabs (Lee Biosolutions 991-31-NC) were dipped into extraction buffer (260 μL of laboratory-developed KCl magnetic beads, 40 μL of 10X QuickExtract Plant DNA Extraction Solution, and 100 μL water) for detection with STOPCovid.v2. For simulating SARS-CoV-2 positive AN swabs, water in the extraction buffer was replaced with mock SARS-CoV-2 virus from the AccuPlex SARS-CoV-2 Verification Panel. SARS-CoV-2 positive patient dry AN swabs were collected from SARS-CoV-2 positive patients at Brigham and Women's Hospital. SARS-CoV-2 positive patients were identified using NP swabs and the Panther Fusion (Hologic) assay. Dry AN swabs were collected within 48 hours of the NP swab RT-qPCR test. To collect the AN swabs, a flocked AN swab (Miraclean Technology 93050) was inserted approximately 1 inch into the left nostril of the patient. Once in place, the swab was rotated 3 times and then kept in place for 15 seconds to absorb nasal secretions. The same procedure was repeated with the right nostril using the same swab. Dry AN swabs were stored at 4° C. and tested using STOPCovid.v2 within 24 hours as described above for negative AN swabs. Fluorescence threshold for classifying samples as positive or negative was set to approximately 10% of the average steady state fluorescence signal, or 500 RFU on the Biorad CFX96 qPCR machine.
Acquired images were converted to 8-bit grayscale using photoshop and then imported into ImageLab software (BioRad Image Lab Software 6.0.1). Images were inverted and lanes were manually adjusted to fit the lateral flow strips. Bands were picked automatically and the background was adjusted manually to allow band comparison. Width of bands and background adjustment was kept constant between all bands in the same image. The band intensity ratio is calculated as the intensity of the top (test) band divided by the bottom (control) band.
For classifying STOPCovid lateral flow strip results, the mobile application used >50 images containing >500 lateral flow strips that have been manually annotated as positive or negative to set the appropriate threshold for the band intensity ratio. As the lateral flow strip typically has a faint background for the top (test) band, this threshold was determined to be 0.14. To use the STOPCovid mobile phone application for interpreting lateral flow trip results, download the Expo application for iOS (apple.co/2c6HMtp) or Android (bit.ly/2bZq5ew). Launch the Expo application, tap “Sign in to your account”, and sign in with the STOPCovid team's Expo credentials. Please contact the STOPCovid team through the STOPCovid website (stopcovid.science/) for credentials. Open STOPCovid from the Expo application.
Patient nasopharyngeal (NP) and anterior nasal (AN) swab samples should be collected and processed according to the appropriate biosafety procedure. The 2020 CDC COVID-19 test protocol was utilized for specimen collection, which is available at cdc.gov/coronavirus/2019-nCoV/lab/guidelines-clinical-specimens. Swabs that do not soak up excessive volumes (>80 μL) of extraction buffer, such as flocked swabs, should be used. Reagents
Extraction Buffer:
Sera-Mag SpeedBeads Carboxyl Magnetic Beads (VWR 65152105050250)
STOPCovid.v2 Reaction:
Equipment
Reagent Setup
Laboratory-developed magnetic beads:
1. Vortex the Sera-Mag SpeedBeads Carboxyl Magnetic Beads for 1 min. Add 10 mL to a 50 mL conical tube.
2. Using a 50 mL magnetic separator, pellet the magnetic beads.
3. Aspirate the supernatant and discard.
4. Wash beads twice with 10 mL of ddH2O, resuspending the pellet each time by vortexing for 30 s.
5. Pellet the beads for the last time.
6. Prepare the bead buffer by mixing the following in a 500 mL reagent bottle.
7. Fill with ddH2O to 500 mL and invert 10 times to mix.
8. Filter through a vacuum filtration unit according to the manufacturer's instructions.
9. Remove the final wash fluid on the beads and add 10 mL of bead buffer.
10. Vortex for 30 s to resuspend the beads and transfer to the 500 mL bottle containing the bead buffer.
11. Invert to homogenize the beads with the buffer.
12. Beads can be aliquoted and stored at 4° C. for 1 month or −20° C. for up to 1 year.
Extraction Buffer:
1. Prepare the extraction buffer by mixing the following in a 50 mL conical tube.
2. Aliquot for storage at −20° C. for up to 1 year. Avoid more than 1 additional freeze-thaw cycle.
10×LAMP Primer Pool:
1. Resuspend LAMP primers with ddH2O to 100 μM.
2. Prepare the 10×LAMP primer pool by mixing the following in a 1.5 mL tube.
3. Aliquot for storage at −20° C. for up to 1 year.
10×STOPCovid.v2 reaction buffer:
1. Prepare the 10×STOPCovid.v2 reaction buffer by mixing the following in a 15 mL conical tube.
2. Adjust the pH of the solution to 8.8. The pH should be very close to 8.8 before adjusting. 3. Aliquot for storage at −20° C. for up to 1 year.
500 mM Taurine:
1. Resuspend 6.258 g of Taurine in 100 mL of ddH2O. Heating at 37° C. may be required for resuspension.
2. Aliquot for storage at room temperature for up to 1 year. 10× Proteinase K Inhibitor:
1. Resuspend 10 mg of Proteinase K Inhibitor with 150 μL of DMSO to make the stock solution.
2. Dilute stock solution 1:100 with ddH2O to make working aliquots. Store both stock and working solutions at −20° C. for up to 1 year.
STOPCovid.v2 Reaction:
1. Prepare the STOPCovid.v2 reaction by mixing the following for one reaction. Scale up volume as needed for additional reactions.
2. Aliquot and store at −20° C. for up to 1 year.
Protocol
1. Thaw extraction buffer and STOPCovid.v2 reaction at room temperature. Keep STOPCovid.v2 reaction on ice after thawing. Allow extraction buffer to equilibrate to room temperature before proceeding.
2. Vortex extraction buffer for 15s.
3. Dip dry NP or AN swab in 400 μL of extraction buffer in a 1.5 mL tube. Swirl swab against the side of the tube to dislodge material.
4. Vortex or pipette to mix. Incubate at room temperature for 10 mins.
5. Place sample and extraction buffer mix on magnet. Wait 5 mins or until solution is clear.
6. Aspirate the supernatant. Make sure to remove all of the supernatant.
7. Add 50 μL of STOPCovid reaction. Remove tube from magnet and spin down beads using a microcentrifuge.
8. Vortex or pipette to mix.
9. Pellet the beads at 5,000×g for 1 min. Lower speeds or a plate spinner may work as well.
10. Depending on the readout method: Fluorescence readout:
Lateral flow readout:
Various modifications and variations of the described methods, pharmaceutical compositions, and kits of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific embodiments, it will be understood that it is capable of further modifications and that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention that are obvious to those skilled in the art are intended to be within the scope of the invention. This application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure come within known customary practice within the art to which the invention pertains and may be applied to the essential features hereinbefore set forth.
This application claims the benefit of U.S. Provisional Application Nos. 62/975,743 filed Feb. 12, 2020, 62/993,494 filed Mar. 23, 2020, 63/018,487 filed Apr. 30, 2020, 63/019,406 filed May 3, 2020, 63/032,470 filed May 29, 2020, 63/044,218 filed Jun. 25, 2020, 63/051,248 filed Jul. 13, 2020, and 63/075,684 filed Sep. 8, 2020. The entire contents of the above-identified applications are hereby fully incorporated herein by reference.
This invention was made with government support under grant nos. HL141201 and MH110049 awarded by National Institutes of Health. The government has certain rights in the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/017985 | 2/12/2021 | WO |
Number | Date | Country | |
---|---|---|---|
62975743 | Feb 2020 | US | |
62993494 | Mar 2020 | US | |
63018487 | Apr 2020 | US | |
63019406 | May 2020 | US | |
63032470 | May 2020 | US | |
63044218 | Jun 2020 | US | |
63051248 | Jul 2020 | US | |
63075684 | Sep 2020 | US |