This application claims all benefits accruing under 35 U.S.C. §119 from China Patent Application No. 201010589777.8, filed on Dec. 15, 2010 in the China Intellectual Property Office, the contents of which are hereby incorporated by reference.
1. Technical Field
The present disclosure relates to a back-gate field emission cathode device and a field emission display using the same.
2. Description of Related Art
Field emission displays (FEDs) are a new, rapidly developing flat panel display technology. A back-gate field emission display is easy to fabricate and attracting more and more attention.
A Back-gate field emission display is disclosed by Chinese patent publication (Title: “A PRINTING TYPE FIELD EMISSION DISPLAY AND A MAKING METHOD THEREOF”; Publication Number: CN101777479; Publication Date: Jul. 14, 2001). The back-gate field emission display includes a glass substrate, a gate electrode, a number of dielectric layers, a number of cathode electrodes, a number of electron emitters, an indium tin oxide (ITO) substrate, a black matrix, and a number of fluorescent layers. However, in use, the electric field of the gate electrode can reach the surface of the electron emitter only from the periphery of the cathode electrode. Therefore, electrons can be emitted mainly from the edge of the electron emitter that causes a nonuniform pixel dot image.
What is needed, therefore, is a back-gate field emission display that can overcome the above-described shortcomings.
Many aspects of the embodiments can be better understood with references to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the embodiments. Moreover, in the drawings, like reference numerals designate corresponding parts throughout several views.
The disclosure is illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that references to “an” or “one” embodiment in this disclosure are not necessarily to the same embodiment, and such references mean at least one.
References will now be made to the drawings to describe, in detail, various embodiments of the present back-gate field emission cathode device and the field emission display using the same. The field emission display can include a single pixel unit or a number of pixel units to form an array. In following embodiments, a field emission display including a single pixel unit and a field emission display including a number of pixel units are respectively provided and described as example.
Referring to
The anode substrate 102 and the cathode substrate 104 are spaced from each other to define a vacuum space 106. The gate electrode 108, the first dielectric layer 110, the cathode electrode 112, the electron emission layer 116, the focus electrode 118, the anode electrode 120, and the fluorescent layer 122 are accommodated in the vacuum space 106. The gate electrode 108 is located on a surface of the cathode substrate 104. The first dielectric layer 110 is located on a surface of the gate electrode 108. The first dielectric layer 110 defines a first opening 1102 such that part of the gate electrode 108 is exposed. The cathode electrode 112 is located on a surface of the first dielectric layer 110 and spaced from the gate electrode 108 by the first dielectric layer 110. The cathode electrode 112 defines a second opening 1122 in alignment with the first opening 1102. The electron emission layer 116 is located on a surface of the cathode electrode 112, electrically connected to the cathode electrode 112. In one embodiment, the electron emission layer 116 is located adjacent to the second opening 1122 and spaced from the second dielectric layer 114. The electron emission layer 116 defines a third opening 1162 linked with the second opening 1122. The anode electrode 120 is located on a surface of the anode substrate 102. The fluorescent layer 122 is located on a surface of the anode electrode 120. The focus electrode 118 is located between the cathode electrode 112 and the anode electrode 120. The focus electrode 118 defines a fourth opening 1182 having a diameter larger than that of the third opening 1162 to expose part of the cathode electrode 112 and the electron emission layer 116.
The cathode substrate 104 can be made of insulative material. The insulative material can be ceramics, glass, resins, quartz, or polymer. The size, shape, and thickness of the cathode substrate 104 can be chosen according to need. The cathode substrate 104 can be a square plate, a round plate or a rectangular plate. In one embodiment, the cathode substrate 104 is a square glass plate.
The gate electrode 108 is a conductive layer. The size, shape and thickness of the gate electrode 108 can be chosen according to need. The gate electrode 108 can be located on a surface of the cathode substrate 104. At least part of the gate electrode 108 is exposed through the first opening 1102. The gate electrode 108 can be made of metal, alloy, conductive slurry, or ITO. The metal can be copper, aluminum, gold, silver, or iron. The conductive slurry can include metal powder of about 50% to about 90% by weight, glass powder of about 2% to about 10% by weight, and binder of about 8% to about 40% by weight. If the cathode substrate 104 is a silicon wafer, the gate electrode 108 can be a doped layer. In one embodiment, the gate electrode 108 is an aluminum film with a thickness of about 20 micrometers. The gate electrode 108 can be deposited on the surface of the cathode substrate 104 by sputtering.
The first dielectric layer 110 is located between the cathode electrode 112 and the gate electrode 108. The first dielectric layer 110 can be made of resin, glass, ceramic, oxide, photosensitive emulsion, or combination thereof. The oxide can be silicon dioxide, aluminum oxide, or bismuth oxide. The size, shape and thickness of the first dielectric layer 110 can be chosen according to need. The first dielectric layer 110 can be located on the cathode substrate 104 or on the gate electrode 108. The first opening 1102 allows the electrons 124, moving toward the gate electrode 108, to be captured by the gate electrode 108 and to be conducted by the gate electrode 108. In one embodiment, the first dielectric layer 110 is a ring-shaped SU-8 photosensitive emulsion with a thickness of about 100 micrometers.
The cathode electrode 112 can be a conductive layer or a conductive plate. The size, shape, and thickness of the cathode electrode 112 can be chosen according to need. The cathode electrode 112 can be made of metal, alloy, conductive slurry, or ITO. The electric field of the gate electrode 108 can get through the second opening 1122 and reach the surface of the electron emission layer 116. In one embodiment, the cathode electrode 112 is an aluminum layer. The second opening 1122 and the first opening 1102 are coaxial and have the same diameter.
Further referring to
The electron emission layer 116 can include a number of electron emitters such as carbon nanotubes, carbon nanofibres, or silicon nanowires. Each of the electron emitters has an electron emission tip. The electron emission tip points towards the fluorescent layer 122. The size, shape, and thickness of the electron emission layer 116 can be chosen according to need. Furthermore, the electron emission layer 116 can be coated with a protective layer (not shown). The protective layer can be made of anti-ion bombardment materials such as zirconium carbide, hafnium carbide, and lanthanum hexaborid. The protective layer can be coated on a surface of each of the electron emitters. The electron emission layer 116 can be comprised of a number of carbon nanotubes and a glass layer. The carbon nanotubes are electrically connected to the cathode electrode 112. The glass layer fixes the carbon nanotubes on the cathode electrode 112. The electron emission layer 116 is formed by heating a carbon nanotube slurry layer. The carbon nanotube slurry layer includes a number of carbon nanotubes, a glass powder, and an organic carrier. The organic carrier is volatilized during the heating process. The glass powder is melted and solidified to form a glass layer to fix the carbon nanotubes on the cathode electrode 112 during the heating and cooling process.
The focus electrode 118 can be a metal mesh, metal sheet, ITO film, or conductive slurry layer. The focus electrode 118 is located between the cathode electrode 112 and the anode electrode 120. The focus electrode 118 can be spaced from the cathode electrode 112 by the second dielectric layer 114 or suspended above the cathode electrode 112. The material of the second dielectric layer 114 can be same as the first dielectric layer 110. The second dielectric layer 114 can define a fifth opening 1142 in alignment with the fourth opening 1182 to expose part of the cathode electrode 112 and the electron emission layer 116. In one embodiment, the fifth opening 1142 and the fourth opening 1182 are coaxial and have the same diameter.
The anode substrate 102 is a transparent plate. The thickness, size and shape of the anode substrate 102 can be selected according to need. In one embodiment, the anode substrate 102 is a rectangular plate. The anode substrate 102 and the cathode substrate 104 can be sealed by an insulative bar to form the vacuum space 106. In one embodiment, the anode substrate 102 is a square glass plate.
The anode electrode 120 is a transparent conductive layer such as carbon nanotube film, ITO film or aluminum film. The thickness, size and shape of the anode electrode 120 can be selected according to need. In one embodiment, the anode electrode 120 is an ITO film with a thickness of 100 micrometers.
The fluorescent layer 122 can be located on the anode electrode 120 or between the anode electrode 120 and the anode substrate 102. The thickness, size and shape of the fluorescent layer 122 can be selected according to need. The fluorescent layer 122 can be round. The diameter of the fluorescent layer 122 can be greater than or equal to the inner diameter of the electron emission layer 116 and less than or equal to the outer diameter of the electron emission layer 116. In one embodiment, the fluorescent layer 122 is round and has a diameter equal to the outer diameter of the electron emission layer 116.
Furthermore, the field emission display 10 can include a secondary electron emission layer 126 located on a surface of the gate electrode 108. The secondary electron emission layer 126 can be made of magnesium oxide (MgO), beryllium oxide (BeO), magnesium fluoride (MgF2), beryllium fluoride (BeF2), cesium oxide (CsO), barium oxide (BaO), silver oxygen cesium (Ag—O—Cs), antimony-cesium alloy, silver-magnesium alloy, nickel-beryllium alloy, copper-beryllium alloy, aluminum-magnesium alloy, or GaP(Cs). The size, shape, and thickness of the secondary electron emission layer 126 can be chosen according to need. The secondary electron emission layer 126 can be formed by coating, electron beam evaporation, thermal evaporation or magnetron sputtering. The secondary electron emission layer 126 can have a curved surface or a concave-convex structure. In one embodiment, the secondary electron emission layer 126 is a round BaO film with a thickness of about 5 micrometers.
In use, the cathode electrode 112 is grounded, a positive voltage V1 is supplied to the gate electrode 108, a positive voltage V2 is supplied to the anode electrode 120, a negative voltage V3 is supplied to the focus electrode 118. The V1 of the gate electrode 108 can be in a range from about 10 volts to about 100 volts. The V2 of the anode electrode 120 can be in a range from about 500 volts to about 5000 volts. The V3 of the focus electrode 118 can be in a range from about −5 volts to about −50 volts. The electric field of the gate electrode 108 can reach the surface of the electron emission layer 116 from the second opening 1122 such that the electron emission layer 116 emits the electrons 124. The focus electrode 118 with negative voltage can focus the electron 124 to form an electron beam.
Referring to
The strip-shaped gate electrodes 108 are located on the cathode substrate 104 parallel and uniformly spaced with each other. The first dielectric layer 110 is located on the strip-shaped gate electrodes 108. The strip-shaped cathode electrodes 112 are located on the first dielectric layer 110 parallel and uniformly spaced with each other. The strip-shaped cathode electrodes 112 are vertical to the strip-shaped gate electrodes 108. The intersection where each strip-shaped cathode electrodes 112 cross with each strip-shaped gate electrodes 108 defines a pixel unit. A first through hole 109 is formed to get through the first dielectric layer 110 and the strip-shaped cathode electrode 112 corresponding to each pixel unit. The second dielectric layer 114 is located on the strip-shaped cathode electrodes 112. The focus electrode 118 is a continuous layer and located on the second dielectric layer 114. An second through hole 107 is formed to get through the focus electrode 118 and the second dielectric layer 114 corresponding to each pixel unit to expose part of the strip-shaped cathode electrodes 112. Each ring-shaped electron emission layer 116 is located on the exposed part of the strip-shaped cathode electrodes 112 and corresponding to one pixel unit. The anode electrode 120 is a transparent conductive layer covered on entire anode substrate 102. Each round fluorescent layer 122 is located on the anode electrode 120 and corresponds to one pixel unit. Furthermore, a black matrix can be located among the round fluorescent layers 122 to enhance the contrast of the field emission display 10.
Referring to
Referring to
The field emission display 20 is similar to the field emission display 10 except that the cathode electrode 212 further defines at least one sixth opening 2124 about the second opening 2122.
Further referring to
Furthermore, the first dielectric layer 210 can define at least one seventh opening 2104 corresponding to the sixth opening 2124. The seventh opening 2104 substantially surrounds the first opening 2102. Thus, the electrons, moving toward the gate electrode 208 and through the sixth opening 2124, will be captured by the gate electrode 208 and be conducted by the gate electrode 208.
The field emission display 10 has following advantages. First, the cathode electrode defines a second opening, the electron emission layer is located adjacent to the second opening, so the electric field of the gate electrode can reach the surface of the electron emission layer from the second opening to allow ring-shaped electron emission layer emit electron to form a uniform pixel unit images. Second, the first opening allows the electrons, moving toward the gate electrode, to be captured by the gate electrode and be conducted by the gate electrode that prevents the first dielectric layer from capturing electrons. Third, the secondary electron emission layer located on a surface of the gate electrode can enhance the emission efficiency of the field emission cathode device. Fourth, the cathode electrode defines at least one sixth opening about the second opening that allows the electric field of the gate electrode can reach the surface of the electron emission layer from the sixth opening to enhance the emission efficiency of the electron emission layer.
It is to be understood that the above-described embodiments are intended to illustrate rather than limit the disclosure. Any elements described in accordance with any embodiments is understood that they can be used in addition or substituted in other embodiments. Embodiments can also be used together. Variations may be made to the embodiments without departing from the spirit of the disclosure. The above-described embodiments illustrate the scope of the disclosure but do not restrict the scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201010589777.8 | Dec 2010 | CN | national |