Field emission device and method for fabricating the same

Information

  • Patent Grant
  • 6809464
  • Patent Number
    6,809,464
  • Date Filed
    Friday, January 5, 2001
    24 years ago
  • Date Issued
    Tuesday, October 26, 2004
    20 years ago
Abstract
A field emission device (FED) and a method for fabricating the FED are provided. The FED includes micro-tips with nano-sized surface features. Due to the micro-tips as a collection of a large number of nano-tips, the FED is operable at low gate turn-on voltages with high emission current densities, thereby lowering power consumption.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a field emission device (FED) operable at low gate turn-on voltages with high emission current densities, and a method for fabricating the FED.




2. Description of the Related Art




An FED panel with a conventional FED is illustrated in

FIG. 1. A

cathode


2


is formed over a substrate


1


with a metal such as chromium (Cr), and a resistor layer


3


is formed over the cathode


2


with an amorphous silicon. A gate insulation layer


4


with a well


4




a


, through which the bottom of the resistor layer


3


is exposed, is formed on the resistor layer


3


with an insulation material such as SiO


2


. A micro-tip


5


formed of a metal such as molybdenum (Mo) is located in the well


4




a


. A gate electrode


6


with a gate


6




a


aligned with the well


4




a


is formed on the gate insulation layer


4


. An anode


7


is located a predetermined distance above the gate electrode


6


. The gate electrode


7


is formed on the inner surface of a faceplate that forms a vacuum cavity in associated with the substrate


1


. The faceplate


8


and the substrate


1


are spaced apart from each other by a spacer (not shown), and sealed at the edges. As for color displays, a phosphor screen (not shown) is placed on or near the anode


7


.




The conventional FED emits a small amount of electrons from the micro-tip, so that a high gate voltage is required for high emission current densities. However, if the gate voltage level is beyond a predetermined voltage limit, the problems of leakage current and short life time occur. For these reasons, increasing the gate voltage is limited. As an experiment result, the frequency of arcing increases with higher gate voltage level. When an arcing occurs in the FED, damage caused by the arcing is detected at the edges of the gate


6




a


of the gate electrode


6


, wherein the gate


6




a


serves as a passageway of electrons. Also, an electrical short occurs between the anode


7


and the gate electrode


6


due to the arcing. As a result, a high anode voltage is applied to the gate electrode


6


, thereby damaging the gate insulation layer


4


below the gate electrode


6


, and the resistor layer


3


exposed through the well


4




a


. This damage is more likely caused as the gate and anode voltage levels increase.




SUMMARY OF THE INVENTION




To solve the above problems, it is an object of the present invention to provide a field emission display (FED) operable at low gate turn-on voltages with high emission current densities, and a method for fabricating the FED.




According to an aspect of the present invention, there is provided a field emission device (FED) comprising: a substrate; a cathode formed over the substrate; micro-tips having nano-sized surface features, formed on the cathode; a gate insulation layer with wells each of which a single micro-tip is located in, the gate insulation layer formed over the substrate: and a gate electrode with gates aligned with the wells such that each of the micro-tips is exposed through a corresponding gate, the gate electrode formed on the gate insulation layer.




It is preferable that a resistor layer is formed over or beneath the cathode, or resistor layers are formed both over and beneath the cathode in the FED.




According to another aspect of the present invention, there is provided a method for fabricating a field emission device (FED), comprising: forming a cathode, a gate insulation layer with wells, and a gate electrode with gates on a substrate in sequence, and forming micro-tips on the cathode exposed by the wells; forming a carbonaceous polymer layer on the gate electrode, such that the wells having the micro-tips are filled with the carbonaceous polymer layer; and etching the carbonaceous polymer layer and the surface of the micro-tips by plasma etching using a gas mixture containing O


2


for the carbonaceous polymer layer, and a gas for the micro-tips, as a reaction gas, so that the micro-tips with nano-sized surface features are formed.




It is preferable that the carbonaceous polymer layer is formed of polyimide or photoresist. The carbonaceous polymer layer may be etched by reactive ion etching (REI). The nano-sized surface features of the micro-tips can be adjusted by varying the etch rates of the carbonaceous polymer layer and the micro-tips. It is preferable that the etch rates are adjusted by varying the oxygen-to-the gas for the micro-chips in the reaction gas, plasma power, or plasma pressure during the etching process.




It is preferable that the micro-tips are formed of at least one selected from the group molybdenum (Mo), tungsten (W), silicon (Si) and diamond.




It is preferable that the reaction gas is a gas mixture of O


2


and fluorine-based gas, such as CF


4


/O


2


, SF


6


/O


2


, CHF


3


/O


2


, CF


4


/SF


6


/O


2


, CF


4


/CHF


3


/O


2


or SF


6


/CHF


3


/O


2


. Alternatively, the reaction gas may be a gas mixture of O


2


and chlorine-based gas, such Cl


2


/O


2


, CCl


4


/O


2


, or Cl


2


/CCl


4


/O


2


.











BRIEF DESCRIPTION OF THE DRAWINGS




The above object and advantages of the present invention will become more apparent by describing in detail preferred embodiments thereof with reference to the attached drawings in which:





FIG. 1

is a sectional view of a conventional field emission device (FED);





FIG. 2

is a sectional view of a preferred embodiment of a FED according to the present invention;





FIGS. 3

,


4


and


5


are sectional views illustrating the fabrication processes of an FED according to a preferred embodiment of the present invention;





FIG. 6

is a scanning electron microscope (SEM) photo showing a section of the FED fabricated by the inventive method;





FIG. 7

is a SEM photo showing the configuration of a micro-tip of the FED of

FIG. 6

;





FIG. 8

is a graph comparatively showing the current-gate voltage characteristic of a conventional FED and the FED fabricated by the inventive method;





FIG. 9

is a front photo of the conventional FED with poor brightness uniformity; and





FIG. 10

is a front photo of the FED fabricated by the inventive method.











DETAILED DESCRIPTION OF THE INVENTION




The present invention will now be described more fully with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. Referring to

FIG. 2

, which is a sectional view of a preferred embodiment of a field emission device (FED) according to the present invention. Referring to

FIG. 2

, a cathode


120


is formed over a substrate


100


with a metal such as chromium (Cr), and a resistor layer


130


is formed over the cathode


120


with an amorphous silicon. A gate insulation layer


140


with a well


140




a


, through which the bottom of the resistor layer


130


is exposed, is formed on the resistor layer


130


with an insulation material such as SiO


2


. Use of the resistor layer


130


is optional. In other words, formation of the resistor layer


130


may be omitted so that the cathode


120


is exposed through the well


140




a


.

FIGS. 2A and 2B

illustrate embodiments in which the resistor layer is above, and above and below, the cathode layer, respectively. A micro-tip


150


, which is a feature of the present invention, is formed in the well


140




a


on the resist layer


130


with a metal such as molybdenum (Mo). A micro-tip


150


is a collection of a large number of nano-tips with nano-size surface features. The micro-tip


150


is formed of Mo, W, Si or diamond, or a combination of these materials.




A gate electrode


160


with a gate


160




a


aligned with the well


140




a


is formed on the gate insulation layer


140


. An anode electrode (not shown) is formed above the gate electrode


160


, and a faceplate (not shown) that forms a vacuum cavity along with the substrate


100


is located outward the anode electrode. The anode electrode is formed on the inner surface of the anode electrode.




In the FED having the configuration described above, since the micro-tip


150


as a collection of a number of nano-tips has nano-sized surface features, a large amount of electrons can be emitted from the micro-tip


150


even at a low gate voltage. In other words, the FED has high emission current densities with low gate voltages, thereby lowering power consumption.




A preferred embodiment of a method for fabricating a FED according to the present invention will be described. Referring to

FIG. 3

, a cathode


120


, a resistor layer


130


, a gate insulation layer


140


with a well


140




a


, and a gate electrode


160


with a gate


160




a


are formed on a semiconductor wafer


100


in sequence by a conventional method, and then a micro-tip


150


is formed in the well


140




a


on the resistor layer


130


.




Referring to

FIG. 4

, polyimide is deposited to have a predetermined thickness over the stack by spin coating, thereby resulting in a carbonaceous polymer layer


190


. The carbonaceous polymer layer


190


is formed by spin coating, soft baking and then curing, and the thickness of the carbonaceous polymer layer


190


ranges from 3 to 150 μm.




Following this, as shown in

FIG. 5

, the carbonaceous polymer layer


190


is etched by dry etching, for example, plasma etching, and preferably by reactive ion etching (RIE). When a plasma etching method is applied, a gas mixture containing O


2


as a major component, and a fluorine-based gas such as CF


4


, SF


6


or CHF


3


may be used as a reaction gas. The gas mixture may be CF


4


/O


2


, SF


6


/O


2


, CHF


3


/O


2


, CF


4


/SF


6


/O


2


, CF


4


/CHF


3


/O


2


, or SF


6


/CHF


3


/O


2


. Alternatively, a gas mixture of O


2


and a chlorine-based gas, for example, Cl


2


/O


2


, CCl


4


/O


2


, or Cl


2


/CCl


4


/O


2


, can be used as a reaction gas.




Carbonaceous polymer layers such as polyimide or photoresist are etched into a grass-like structure by dry plasma etching using O


2


. The glass-like structure describes rough surface features of the resulting structure due to different etch rates over regions of the carbonaceous polymer layer. The addition of O


2


to the fluorine-to chlorine-based gas is for increasing the etch rate of the polyimide layer, such that the micro-tip


150


below the carbonaceous polymer layer can be etched by plasma. The etch rate of the micro-tip


150


by plasma can be adjusted by varying the O


2


-to-chlorine-based gas, plasma pressure, and plasma power in plasma etching the carbonaceous polymer layer


190


. Since the carbonaceous polymer


190


is etched into a grass-like structure, the carbonaceous polymer layer


190


randomly remain over the micro-tip


150


. The carbonaceous polymer remaining on the micro-tip


150


acts as a mask for a further etching to the micro-tip


150


. As the etching continues, the carbonaceous polymer layer


190


are removed from the micro-tip


150


and the micro-tip


150


is etched. As a result, the original smooth surface of the micro-tip


150


changes into the surface with nano-sized features, as shown in FIG.


2


.

FIG. 6

is a scanning electron microscope (SEM) photo showing the micro-tip, gate insulation layer, and gate electrode formed on the substrate, and

FIG. 7

is a magnified view of the micro-tip of FIG.


6


. As shown in

FIGS. 6 and 7

, the micro-tip as a collection of nano-tips has nano-sized surface feature.




As a test result, the gate turn-on voltage of the FED fabricated by the method according to the present invention is reduced by about 20V, and the working voltage (a voltage level at a 1/90 duty ratio and a 60 Hz frequency) is lowered by about 40-50V, compared with a conventional FED. The height of the micro-tip and the size of the nano-tips can be varied by adjusting the etching ratios or etching rates of the carbonaceous polymer layer and the micro-tip during the plasma etching, as described previously. For example, the etch rates of the carbonaceous polymer layer and the micro-tip can be adjusted by varying the O


2


-to-the etching gas for the micro-tip in a reaction gas used, plasma pressure, or plasma power during the etching process.





FIG. 8

is a graph comparatively showing the current-gate voltage characteristic of a conventional FED and the FED fabricated according to the present invention. As shown in

FIG. 8

, the current level of the inventive FED is higher than that of the conventional FED at the same gate voltage levels, and 10 times higher than that at the highest gate voltage.





FIGS. 9 and 10

, which are front photos of the conventional FED and the inventive FED taken with a digital camera, comparatively show the bright uniformity of the conventional FED and the inventive FED. As shown in

FIGS. 9 and 10

, the brightness uniformity of the FED according to the present invention is better than that of the conventional FED. The inventive FED shows the excellent brightness uniformity.




Unlike the conventional FED having the micro-tips with smooth surface, the FED according to the present invention, has the micro-tips with nano-sized surface features as a collection of a large number of nano-tips. The inventive FED has high emission current densities at low gate turn-on voltages, and thus the brightness of the FED is enhanced. In addition, occurrence of arcing in the FED is suppressed due to the reduced gate turn-on voltage level.




While this invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made to the described embodiments without departing from the spirit and scope of the invention as defined by the appended claims.



Claims
  • 1. A field emission device (FED) comprising:a substrate; a cathode formed over the substrate; micro-tips having nano-sized surface features, each micro-tip, including the nano-sized surface features, being of a single homogenous material and, formed in electrical contact with the cathode; a gate insulation layer with wells each of which a single micro-tip is located in, the gate insulation layer formed over the substrate; and a gate electrode with gates aligned with the wells such that each of the micro-tips is exposed through a corresponding gate, the gate electrode formed on the gate insulation layer.
  • 2. The field emission device of claim 1, wherein a resistor layer is formed over or beneath the cathode, or a resistor layers are formed over and beneath the cathode.
  • 3. A method for fabricating a field emission device (FED), comprising:forming a cathode, a gate insulation layer with wells, and a gate electrode with gates on a substrate in sequence, and forming micro-tips on the cathode exposed by the wells; forming a carbonaceous polymer layer on the gate electrode, such that the wells having the micro-tips are filled with the carbonaceous polymer layer; and etching the carbonaceous polymer layer and the surface of the micro-tips by plasma etching using a gas mixture containing O2 for the carbonaceous polymer layer, and a gas for the micro-tips, as a reaction gas, so that the micro-tips with nano-sized surface features are formed wherein each micro-tip, including the nano-sized surface features, is of a single homogenous material.
  • 4. The method of claim 3, wherein the carbonaceous polymer layer is formed of polyimide or photoresist.
  • 5. The method of claim 3, wherein the carbonaceous polymer layer is etched by reactive ion etching (REI).
  • 6. The method of claim 5, wherein the nano-sized surface features of the micro-tips are adjusted by varying the etch rates of the carbonaceous polymer layer and the micro-tips.
  • 7. The method of claim 6, wherein the etch rates are adjusted by varying the oxygen-to-the gas for the micro-chips in the reaction gas, plasma power, or plasma pressure during the etching process.
  • 8. The method of claim 5, wherein the micro-tips are formed of at least one selected from the group molybdenum (Mo), tungsten (W), silicon (Si) and diamond, and the reaction gas is a gas mixture of O2 and fluorine-based gas.
  • 9. The method of claim 8, wherein the reaction gas comprises CF4/O2, SF6/O2, CHF3/O2, CF4/SF6/O2, CF4/CHF3/O2, and SF6/CHF3/O2.
  • 10. The method of claim 5, wherein the micro-tips are formed of at least one selected from the group molybdenum (Mo), tungsten (W), silicon (Si) and diamond, and the reaction gas is a gas mixture of O2 and chlorine-based gas.
  • 11. The method of claim 10, wherein the reaction gas comprises Cl2/O2, CCl4/O2, and Cl2/CCl4/O2.
  • 12. A method of fabricating a field emission device (FED) comprising:providing a substrate; forming a cathode over the substrate; forming micro-tips having nano-sized surface features on the cathode, wherein each micro-tip, including the nano-sized surface features, is of a single homogenous material; providing a gate insulation layer with wells each of which a single micro-tip is located in, the gate insulation layer formed over the substrate; and providing a gate electrode with gates aligned with the wells such that each of the micro-tips is exposed through a corresponding gate, the gate electrode formed on the gate insulation layer.
  • 13. The method of claim 12, further comprising forming a resistor layer over or beneath the cathode, or forming a resistor layers over and beneath the cathode.
  • 14. A field emission device (FED) comprising:a substrate; a cathode formed over the substrate; micro-tips having nano-sized surface features, wherein each micro-tip, including the nano-sized surface features, is of a single homogenous material, and formed in electrical contact with the cathode; a gate insulation layer with wells each of which a single micro-tip is located in, the gate insulation layer formed over the substrate; a gate electrode with gates aligned with the wells such that each of the micro-tips is exposed through a corresponding gate, the gate electrode formed on the gate insulation layer, wherein said micro-tips having nano-sized surface features is the product of a process of forming a carbonaceous polymer layer on the gate electrode, such that the wells having the micro-tips are filled with the carbonation polymer layer; and etching the carbonaceous layer and the surface of the micro-tips by plasma etching using a gas mixture O2 for the carbonaceous polymer layer, and a gas for the micro-tips, as a reaction gas, so that the micro-tips with nano-sized surface features are formed.
  • 15. The field emission device of claim 14, wherein a resistor layer is formed over or beneath the cathode, or resistor layers formed over and beneath the cathode.
Priority Claims (1)
Number Date Country Kind
2000-362 Jan 2000 KR
US Referenced Citations (7)
Number Name Date Kind
5290610 Kane et al. Mar 1994 A
5836796 Danroc Nov 1998 A
5892321 Itoh et al. Apr 1999 A
5952987 Browning et al. Sep 1999 A
6097138 Nakamoto Aug 2000 A
6455989 Nakada et al. Sep 2002 B1
6632114 Choi et al. Oct 2003 B2
Foreign Referenced Citations (3)
Number Date Country
WO 99 10974 Mar 1999 WO
WO 98 21736 Sep 1999 WO
WO 98 44526 Jan 2000 WO