Field emission device with nanotube or nanowire grid

Information

  • Patent Grant
  • 9627168
  • Patent Number
    9,627,168
  • Date Filed
    Wednesday, November 12, 2014
    10 years ago
  • Date Issued
    Tuesday, April 18, 2017
    7 years ago
Abstract
A field emission device is configured with a grid that includes nanotubes or nanowires. In one embodiment a cathode, an anode, and a nanotube or nanowire grid are responsive to inputs to produce a potential barrier between the grid and at least one of the cathode and the anode such that a set of electrons from the cathode can tunnel through the potential barrier to produce a net current at the anode.
Description
SUMMARY

In one embodiment, an apparatus comprises: a cathode, an anode, and a grid, wherein the grid is at least partially formed by an array of nanotubes or nanowires; wherein the cathode, anode, and grid are responsive to inputs to produce a potential barrier between the grid and the anode such that a set of electrons from the cathode can tunnel through the potential barrier to produce a net current at the anode.


In one embodiment, a method comprises: providing a cathode, an anode, and a grid, wherein the grid is at least partially formed by an array of nanotubes or nanowires; and assembling the cathode, anode, and grid such that they are responsive to inputs to produce a potential barrier between the grid and the anode such that a set of electrons from the cathode can tunnel through the potential barrier to produce a net current at the anode.


In one embodiment a vacuum electronics device comprises: a cathode; an anode; and an array of grids configured to modulate a flow of charged particles between the cathode and the anode in device operation, wherein the array of grids is arranged to create at least one potential barrier through which the flow of charged particles can tunnel; wherein at least one grid in the array of grids is at least partially formed by an array of at least one of nanotubes and nanowires.


The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the drawings and the following detailed description.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a schematic of an apparatus comprising a cathode, a gate, a suppressor and an anode.



FIG. 2 is a schematic of energy levels corresponding to an embodiment of the apparatus of FIG. 1.



FIG. 3 is a schematic of an apparatus comprising a cathode, a gate, a suppressor, an anode, and a screen grid.



FIG. 4 is a schematic of an apparatus comprising a cathode, a gate, a suppressor, an anode, and circuitry.



FIGS. 5-6 are flow charts depicting methods.



FIGS. 7-8 are graphs of thermodynamic efficiency versus power for a heat engine.



FIG. 9 is a schematic of a portion of a field emission device including a thin film.



FIG. 10 is a schematic of a field emission device having a cathode and anode that form a substantially interlocking structure.



FIG. 11 is a schematic of a field emission device having a substantially tubular cathode and anode.



FIG. 12 is a schematic of a field emission device, wherein the anode includes a thin coating.



FIG. 13 is a schematic of a field emission device having a gate and suppressor that are fabricated on a first substrate, and having a cathode and anode that are fabricated on a second substrate.



FIG. 14 is a schematic of a field emission device having a cathode, anode, and a gate/suppressor.



FIG. 15 is a schematic of the potential corresponding to the schematic of FIG. 14.



FIG. 16 is a schematic of a back-gated field emission device.



FIG. 17 is a schematic of electromagnetic energy incident on a field emission device.



FIG. 18 is a schematic of an anode and a suppressor with an electric field.



FIG. 19 is a schematic of a grid that includes nanotubes and/or nanowires.



FIG. 20 is a schematic of a grid that includes nanotubes and/or nanowires.



FIG. 21 is a schematic of a field emission device including a nanotube and/or nanowire grid.



FIG. 22 is a schematic of a field emission device including a nanotube and/or nanowire grid.





DETAILED DESCRIPTION

In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.


In one embodiment, shown in FIG. 1, an apparatus 100 comprises a cathode 102, an anode 108 arranged substantially parallel to the cathode 102, wherein the anode 108 and cathode 102 are receptive to a first power source 110 to produce an anode electric potential 202 higher than a cathode electric potential. It is the convention in this discussion to generally reference electric potentials relative to the value of the cathode electric potential, which in such circumstances can be treated as zero. The anode electric potential 202 and other electric potentials corresponding to the apparatus of FIG. 1 are shown in FIG. 2 for an embodiment of FIG. 1 corresponding to a heat engine. The apparatus 100 further comprises a gate 104 positioned between the anode 108 and the cathode 102, the gate 104 being receptive to a second power source 112 to produce a gate electric potential 204, wherein the gate electric potential 204 is selected to induce electron emission from the cathode 102 for a first set of electrons 206 having energies above a first threshold energy 208. The apparatus 100 further comprises a suppressor 106 positioned between the gate 104 and the anode 108, the suppressor 106 being receptive to a third power source 114 to produce a suppressor electric potential 210 selected to block electron emission from the anode 108 for a second set of electrons 207 having energies below a second threshold energy 209 while passing at least a portion of the first set of electrons 206. In this embodiment the anode 108 is positioned to receive the passed portion of the first set of electrons 206. In some embodiments the anode output 124 may be electrically connected to power a device.


Although conventionally a cathode is considered an electron emitter and an anode is an electron receiver, in the embodiments presented herein, the cathode and anode generally both emit and receive electrons. The net current and heat flow in the embodiments described herein may be determined by the temperatures of the cathode 102 and the anode 108, the anode electric potential 202, and the gate and suppressor electric potentials 204, 210. In some embodiments described herein, such as an electricity producing heat engine that moves heat from a higher temperature to a lower temperature, net electron flow and heat flow is from the cathode 102 to the anode 108, and in other embodiments described herein, such as an electricity consuming heat engine that moves heat from a lower temperature to a higher temperature, net electron flow and heat flow is from the anode 108 to the cathode 102. Further, in the embodiments presented herein, both the cathode 102 and the anode 108 are electron emitters, and either or both of the cathode 102 and/or the anode 108 may include field emission enhancement features 103.



FIG. 1 shows the cathode 102 having a field emission enhancement feature 103, however in some embodiments the cathode may be substantially flat and may not include the field emission enhancement feature 103. In some embodiments including one or more field emission enhancement features 103, the field emission enhancement features 103 may include a geometric tip and/or a carbon nanotube.


The apparatus 100 includes at least one region including gas through which at least a first portion of the first set of electrons 206 pass. Normally, the region between the cathode 102 and anode 108 is a gas-filled region (or, spacer region) through which at least a portion of the first set of electrons 206 passes. The gas may be comprised of at least one atomic or molecular species, partially ionized plasma, fully ionized plasma, or mixtures thereof. The gas composition and density may be chosen to be conducive to the passage of electrons. The gas density may be below atmospheric density, and may be sufficiently low as to be effectively a vacuum. This region may, in some embodiments, be air or its equivalent, wherein the pressure of the region may or may not be adjusted.


The resulting potential 215 as a function of distance from the cathode in the x-direction 126 in the apparatus 100 is shown in FIG. 2 for an embodiment of FIG. 1 corresponding to a heat engine. The potential 215 does not take into account the space charge electric potential due to the emitted electrons between the cathode and anode. It also does not take into account the image charge electric potential due to image charge effects of a flat plate (i.e., the cathode and anode). The net electric potential 216 experienced by the electrons between the cathode and anode is a function of all of the electric potentials acting on the electrons, including the space charge electric potential and the image charge electric potential. Further, electric potentials such as those shown in FIG. 2 are defined herein for negatively-charged electrons, instead of the Franklin-conventional positive test charges, such that electrons gain kinetic energy when moving from high to low potential.


In the above description and the remainder of the description, it is to be understood that electrons obey the laws of quantum mechanics and therefore, given a potential barrier such as that formed between the cathode and gate (i.e., the portion of the potential 216 that is between the cathode and gate), electrons having energies between the bottom and top of the potential barrier have some probability of tunneling through the barrier. For example, some electrons having energies above the threshold energy 208 may not be emitted from the cathode 102. Further, for the first set of electrons 206 that is emitted from the cathode, there is some probability, based on their energy and the suppressor electric potential 210, that they will tunnel through the potential barrier that is formed between the suppressor and the anode (i.e., the portion of the potential 216 that is between the suppressor and the anode).


Although the first, second and third power sources 110, 112 and 114 are shown in FIG. 1 as being different, in some embodiments the power sources 110, 112 and 114 may be included in the same unit. There are many different ways that the power sources 110, 112 and 114 may be configured relative to the elements 102, 104, 106 and 108, and one skilled in the art may determine the configuration depending on the application.


Also shown in FIG. 2, on the left and right sides of the graph of the potentials 215, 216, are graphs of the Fermi-Dirac distributions F(E, T) for the electrons in the cathode 102 and the anode 108.


On the left side is a graph of the Fermi-Dirac distribution corresponding to the cathode Fc(Ec, Tc) (222) as a function of electron energy Ec (221). Also shown is the cathode Fermi energy μc (214) and the cathode work function φc (213).


On the right side is a graph of the Fermi-Dirac distribution corresponding to the anode Fa(Ea, Ta) (226) as a function of electron energy Ea (225). Also shown is the anode Fermi energy μa (220) and the anode work function φa (219).


Electrons in a reservoir (e.g., the cathode 102 and anode 108) obey the Fermi-Dirac distribution:







F


(

E
,
T

)


=

1

1
+




(

E
-
μ

)

/
kT








where μ is the Fermi energy, k is the Boltzmann constant, and T is the temperature. The energy where the Fermi occupation of the cathode Fc(Ec, Tc) equals the Fermi occupation of the anode Fa(Ea, Ta) is the Carnot-efficiency energy Ecarnot:







E
carnot

=




μ
a



T
c


-


μ
c



T
a





T
c

-

T
a







where μc is the cathode Fermi energy 214 and μa is the anode Fermi energy 220 shown in FIG. 2, measured from the bottom of the conduction band of the cathode 102, and Tc is the cathode temperature and Ta is the anode temperature.


In cases where the cathode 102 and anode 108 are the same material, the Carnot-efficiency energy Ecarnot is the energy at which the Fermi occupation of the cathode 102 and the anode 108 are equal, and theoretically electron flow between the two occurs without change in entropy. Absent potential barrier 216, at any given electron energy above Ecarnot there are more electrons in the hotter plate, so the net flow of electrons at these energies go from hot plate to cold plate. Conversely, at any given electron energy below Ecarnot there are more electrons in the colder plate, so the net flow of electrons at these energies go from cold plate to hot plate.


In the embodiment of FIG. 1 corresponding to a heat engine, the cathode 102 is hotter than the anode 108 (Tc>Ta) and the anode 108 is biased above the cathode 102 as shown in FIG. 2. In this embodiment, μac+V0, where V0 is the anode electric potential 202. Then the Carnot-efficiency energy is equal to:







E
carnot

=


μ
c

+


V
0


η
carnot








where






η
carnot

=



T
c

-

T
a



T
c






is the Carnot efficiency. Due to the potential bias V0, every electron going from the cathode 102 to the anode 108 gains useful potential energy V0 that can be used to do work, and every electron going from the anode 108 to the cathode 102 expends potential energy V0 to transport heat instead.


Without potential barriers (such as the gate 104 and/or the suppressor 106), at any given electron energy below Ecarnot the net flow of electrons go from the anode 108 to the cathode 102, expending potential energy V0 per electron to transport heat. Therefore, in an embodiment where the apparatus is an electricity-producing heat engine, the electrons from the anode having energies less than Ecarnot are blocked by the suppressor 106, reducing the loss of thermodynamic efficiency.


An electron at energy Ecarnot takes away Ecarnot from the hot cathode 102 upon emission, and is replaced by an electron with average energy μc, so the net heat loss due to the emission of this electron at the hot plate is V0carnot. Thus, the ratio of useful-energy-gained to heat-loss is ncarnot, and we conclude that emitted electrons of energy Ecarnot are Carnot efficient, hence the name.


Because the first set of electrons 206 has momentum in the y- and z-directions (128, 130) as well as in the x-direction (126), in an embodiment in which electron flow from the cathode 102 below the Carnot-efficiency energy Ecarnot is blocked, the gate electric potential Eg (204) is slightly below the Carnot-efficiency energy Ecarnot:

Eg≈Ecarnot−kTc
or,







E
g







μ
a



T
c


-


μ
c



T
a





T
c

-

T
a



-

kT
c







where kTc represents the average energy of the electrons in the y- and z-directions (128, 130) combined. The suppressor electric potential Es (210) may be selected to be the same as the gate electric potential Eg (204).


In some embodiments, the gate electric potential 204 and the suppressor electric potential 210 may have other values. For example, one or both of the gate and/or suppressor electric potentials 204, 210 may be lower than previously described. In one embodiment, the apparatus is configured such that the peak of the portion of the potential 216 that is between the cathode 102 and the gate 104 is around the Carnot-efficiency energy Ecarnot, and/or the peak of the portion of the potential 216 that is between the suppressor 106 and the anode 108 is around the Carnot-efficiency energy Ecarnot. In such an embodiment the efficiency of the apparatus may be different from previously described. These are just a few examples of potentials that may be applied to the gate 104 and/or the suppressor 106, and the actual potentials at the gate 104 and suppressor 106 may depend on the particular application and the selected energy ranges of electron emission to be screened from the cathode 102 and the anode 108. While in general, the sign of net electron-carried heat flow matches that of the net electron current flow, for some embodiments the different energy weighting of different portions of the electron distribution may result in opposite net flow of electron-carried heat and electron current.


The separations between the different elements 102, 104, 106 and 108 depend on the particular embodiment. For example, in some embodiments the apparatus 100 is a nanoscale device. In this embodiment, the cathode 102 and anode 108 may be separated by a distance 122 that is 10-1000 nm, the cathode 102 and gate 104 may be separated by a distance 116 that is 1-100 nm, and the anode 108 and the suppressor 106 may be separated by a distance 120 that is 1-100 nm. These ranges are exemplary embodiments and not meant to be limiting. In the case where the apparatus 100 is a nanoscale device, the lower limit of distances 116, 118, 120, and/or 122 may be at least partially determined by fabrication technology that is evolving. To illustrate existing technology for producing small separations, cathode-gate and suppressor-anode separations 116, 120 on the order of 1 nm may be achieved by depositing a nm scale dielectric layer on the cathode 102 and/or anode 108 and depositing the gate 104 and/or suppressor 106 on the dielectric layer. Further, in cases where the cathode 102 includes one or more field emission enhancement features 103, the cathode-gate separation 116 may be at least partially determined by the length of the feature 103 in the x-direction 126. For example, if the length of the feature 103 in the x-direction 126 was 5 nm, the cathode-gate separation 116 would be at least 5 nm.


In other embodiments the apparatus is larger than nanoscale, and exemplary separation distances 116, 118, 120, and/or 122 may range between the nanometer to millimeter scale. However, this scale is again exemplary and not limiting, and the length scales 116, 118, 120, 122 may be selected at least partially based on operating parameters of other gridded electron emitting devices such as vacuum tubes.


The cathode and anode work functions 213, 219 are determined by the material of the cathode 102 and anode 108 and may be selected to be as small as possible. The cathode and anode may comprise different materials. One or both materials can include metal and/or semiconductor, and the material(s) of the cathode 102 and/or anode 108 may have an asymmetric Fermi surface having a preferred Fermi surface orientation relative to the cathode or anode surface. An oriented asymmetric Fermi surface may be useful in increasing the fraction of electrons emitted normally to the surface and in decreasing the electron's transverse momentum and associated energy. In some embodiments, it is useful to reduce the electron current emitted from one of the surfaces (such as reducing anode emission current in an electricity producing heat engine, or reducing cathode emission current in an electricity consuming heat engine). This reduction may utilize an asymmetric Fermi surface which reduces momentum components normal to the surface. This reduction may involve minimization of the material's density of states (such as the bandgap of a semiconductor) at selected electron energies involved in the device operation.


Although the embodiments described with respect to FIG. 2 correspond to a heat engine, the device as shown in FIG. 1 may be configured, for example, as a heat pump or a refrigerator. In an embodiment where the apparatus of FIG. 1 is configured as a heat pump, the bias V0 is applied to the cathode 102 instead of to the anode 108 as shown in FIG. 2. In an embodiment where the apparatus of FIG. 1 is configured as a refrigerator to cool the anode 108, the bias V0 (202) is applied to the anode and the suppressor electric potential 210 and gate electric potential 204 may be chosen to be substantially below the Carnot-efficiency energy Ecarnot. In this case, net current flow and heat transport is from the anode to the cathode.


As shown in FIG. 3, in some embodiments the apparatus 100 further includes a screen grid 302 positioned between the gate 104 and the suppressor 106, the screen grid 302 being receptive to a fourth power source 304 to produce a screen grid electric potential. The screen grid electric potential can be chosen to vary the electric potential 216 between the gate 104 and the suppressor 106, and to accelerate electrons to another spatial region and thus reduce the effects of the space charge electric potential on the field emission regions of the cathode and/or anode.


In an embodiment shown in FIG. 4, the apparatus 100 further comprises circuitry 402 operably connected to at least one of the first, second and third power sources 110, 112 and 114 to vary at least one of the anode, gate and suppressor electric potentials 202, 204 and 210. The circuitry 402 may be receptive to signals to determine a relative power output and/or thermodynamic efficiency of the apparatus 100 and to dynamically vary at least one of the first, gate and suppressor electric potentials 202, 204, 210 responsive to the determined relative power output and/or thermodynamic efficiency. The apparatus 100 may further comprise a meter 404 configured to measure a current at the anode 108, and wherein the circuitry 402 is responsive to the measured current to vary at least one of the first, gate and suppressor electric potentials 202, 204 and 210. The apparatus 100 may further comprise a meter 406 configured to measure a temperature at the anode 108, and wherein the circuitry 402 is responsive to the measured temperature to vary at least one of the anode, gate and suppressor electric potentials 202, 204 and 210. The apparatus 100 may further comprise a meter 408 configured to measure a temperature at the cathode 102, and wherein the circuitry 402 is responsive to the measured temperature to vary at least one of the anode, gate and suppressor electric potentials 202, 204 and 210.


In some embodiments the circuitry 402 may be configured to iteratively determine optimal anode, gate, and suppressor electric potentials 202, 204, 210. For example, the circuitry 402 may be operably connected to the meter 404 configured to measure a current at the anode 108, and may iteratively change one of the anode, gate, and suppressor potentials to maximize the current at the anode.


Further, the circuitry 402 may be configured to iteratively determine optimal cathode 102 and anode 108 temperatures. For example, as described above relative to electric potentials, the circuitry 402 may be operably connected to the meter 404 configured to measure a current at the anode 108, and may iteratively change one of the cathode 102 and anode 108 temperatures to maximize the current at the anode 108.


In some embodiments the gate and suppressor electric potentials 204, 210 may be varied as a function of time. For example, the gate electric potential 204 may be switched on to release the first set of electrons 206 from the anode, and switched off once the first set of electrons 206 has passed through the gate 104. The suppressor electric potential 210 may be switched on to accelerate the first set of electrons 206 towards the anode 108, and switched off once the first set of electrons 206 has passed through the suppressor 106. Such an embodiment assumes high switching speeds. In some embodiments, switching such as that described above occurs cyclically and responsive to the circuitry 402.


In one embodiment, depicted in the Flow Chart of FIG. 5, a method comprises: (502) applying a gate electric potential 204 to selectively release a first set of electrons 206 from a bound state in a first region (where in one embodiment the first region corresponds to the cathode 102); (504) applying a suppressor electric potential 210 to selectively release a second set of electrons from emission from a bound state in a second region different from the first region, the second region having an anode electric potential that is greater than a cathode electric potential of the first region (where in one embodiment the second region corresponds to the anode 108), the second region having an anode electric potential 202 that is greater than a cathode electric potential of the first region; and (506) passing a portion of the first set of electrons 206 through a gas-filled region and binding the passed portion of the first set of electrons 206 in the second region.


Various methods have been described herein with respect to FIGS. 1-4 and may apply to the methods depicted in the flow chart of FIG. 5. For example, methods related to the circuitry 402 and another apparatus shown in FIG. 4 apply to the method of FIG. 5, where the first region includes at least a portion of the cathode 102 and the second region includes at least a portion of the anode 108.


In one embodiment, depicted in the flow chart of FIG. 6, a method comprises (602) receiving a first signal corresponding to a heat engine, the heat engine including an anode, cathode, gas-filled region, gate and suppressor; (604) processing the first signal to determine a first power output and/or relative thermodynamic efficiency of the heat engine as a function of an anode electric potential, a gate electric potential, and a suppressor electric potential; (606) producing a second signal based on a second power output and/or thermodynamic efficiency greater than the first power output and/or thermodynamic efficiency; and (608) transmitting the second signal corresponding to the second power output and/or thermodynamic efficiency.


The method of FIG. 6 is applicable, for example, in an embodiment where a device as shown in FIG. 1 is received and the optimal parameters for a heat engine must be determined.


In one embodiment the first signal includes a user input including known dimensions, materials, and temperatures of the cathode and anode. In this embodiment, the known parameters may be used to calculate the optimal electric potentials applied to the anode 108, gate 104, and suppressor 106.


In another embodiment the first signal includes a measured parameter such as a current at the anode 108, where the electric potentials are varied to optimize the current at the anode. Such a scenario has been described with respect to the circuitry 402 shown in FIG. 4.


In one embodiment, producing the second signal may further include determining a change in at least one of the anode, gate and suppressor potentials, and the method may further comprise varying at least one of the anode, gate, and suppressor potentials in response to the determined change.


In another embodiment, producing the second signal may further include determining a change in at least one of a cathode and an anode temperature, and the method may further comprise varying at least one of the cathode and anode temperatures in response to the determined change.


In one embodiment, the anode, cathode, gate, and suppressor are separated by cathode-gate, gate-suppressor, and suppressor-anode separations, and producing the second signal may include determining a change in at least one of the cathode-gate, gate-suppressor, and suppressor-anode separations, and the method may further comprise varying at least one of the cathode-gate, gate-suppressor, and suppressor-anode separations in response to the determined change. For example, in some embodiments one or more of the cathode-gate, gate-suppressor, and suppressor-anode separations (116, 118, 120) may be variable (such as where one or more of the cathode 102, gate 104, suppressor 106, and anode 108 are mounted on a MEMS) and may be varied to optimize the efficiency of the device.


In one embodiment the received first signal corresponds to an anode current, and processing the first signal to determine a first relative thermodynamic efficiency of the heat engine as a function of an anode electric potential, a gate electric potential, and a suppressor electric potential includes determining the relative thermodynamic efficiency based on the anode current.


The “relative power output” and/or “relative thermodynamic efficiency” may be an actual power output and/or thermodynamic efficiency or it may be a quantity that is indicative of the power output and/or thermodynamic efficiency, such as the current at the anode. The relative power output and relative thermodynamic efficiency represent performance characteristics of the heat engine.


The following presents a calculation of the thermodynamic efficiency of a heat engine as described previously, and corresponding to the potentials of FIG. 2. Again, Tc and Ta are the temperatures of the cathode and anode, μc (214) and μa (220) are the Fermi levels of the cathode and anode (where, for simplicity, we take μc=0, and μac+V0=V0); and φc (213) and φa (219) are the work functions of the cathode and anode, where we assume that the cathode and anode are made from the same materials, so we set φca=φ.


In this one-dimensional model, the potential barrier (216) that is created between the cathode and anode only filters electrons with respect to their momentum in the x-direction (126), not with respect to their total momentum. Assuming ballistic, energy-conserving transport across the barrier (216), the current density J(W) as a function of energy Win the x-direction (126) is:

J(W)dW=eN(W)D(W)dW

Here, e is the electron charge. W is the electron energy associated with the component of momentum in the x-direction (126), which we will call the normal energy, and is defined by:






W
=



p
x
2


2

m


+

V


(
x
)








Where px is the electron momentum in the x-direction (126), and V(x) is the net electric potential 216.


D(W) is the transmission function and represents the probability that an electron inside the emitter (for the heat engine, both the cathode and anode are emitters) with normal energy W either crosses over or tunnels through the energy barriers defined by the net electric potential (216).


The Wentzel-Kramers-Brillouin (WKB) approximation of the tunneling transmission coefficient is given by:







D


(
W
)


=



-




x
1


x
2








8

m


h
2







V


(
x
)


-
W








x










Here, V(x) is the net electric potential (216), x1 and x2 are the roots of V(x)−W=0, m is the mass of an electron, and h is Planck's constant h divided by 2π(h=h/2π).


The potential of a single field emission barrier (e.g., one of the peaks of the net electric potential (216) forms a single field emission barrier) is of the form:








V
SB



(
x
)


=

φ
-
eFx
-




2


4

π






ɛ
0





1

4

x









Here, φ is the work function (again, here we choose the same material for the anode and cathode, so φca=φ), x is absolute value of the component of the distance from the emitter that is along the x-direction 216 (for the barrier between the cathode and gate, this is the distance from the cathode; for the barrier between the anode and suppressor, this is the distance from the anode), F is the effective electric field at the emitter (F=βFi, where β is the field enhancement factor due to the shape of the emitter and Fi is the field without enhancement), and ∈0 is the permittivity of free space. The last term in the above equation for VSB(x) is the potential due to image charge effects of a flat plate, which lowers the peak of the potential barrier. This is known as the Schottky effect, which can lower the barrier peak (i.e., the peak of the potential (216)) by as much as a few tenths of an eV for applied fields on the order of 1 V/nm. Note that in our system, we have two of these barriers, one between the cathode 102 and gate 104, and the other between the suppressor (106) and anode (108).


Including the image potential, the tunneling transmission coefficient DSB(W) for a single rounded barrier (like one of the barriers formed by potential (216)) is given by:








D
SB



(
W
)


=




-

(



b


(

φ
-
W

)



3
/
2


F

)




v


(
f
)









Where:











b
=



4



2

m




3







e




6.830890





in





e







V


-
3

/
2




(

Vnm

-
1


)












v


(
f
)




1
-
f
+


1
6


f





ln





f








f
=





3


4

π






ɛ
0





F


(

φ
-
W

)

2





1.439964


F


(

φ
-
W

)

2







in





e






V
2







(

nm


/


V

)








The equation above for DSB(W) for a single rounded barrier is only valid when the WKB approximation is valid, that is, when W is well below the peak of the barrier. Moreover, that equation gives nonsensical values for f>1, or equivalently, when:






W
>

φ
-





3


F


4

π






ɛ
0










That is, when W exceeds the peak of the barrier. For electrons that have sufficient energy to pass over the barrier, classically, it might seem reasonable to take the transmission coefficient to be unity. Therefore, we can use:













D
SB



(
W
)







-
b





(

φ
-
W

)


3
/
2


F



v


(
f
)














for





f

<
1








D
SB



(
W
)



1





for





f


1













This is not exact, since for electrons with energies above a barrier's peak there is still a non-zero probability for the approaching electron wave to be reflected back from it. However, the above expression for DSB(W) provides a good approximation. More accurate values for DSB(W) can be found using numerical methods such as the transfer matrix method, and/or using more accurate models of the potential barrier that takes into account the geometry of the emitter.


N(W)dW is the electron supply function and describes the number of electrons incident on the emitter surface per second per unit area with normal energy inside the interval defined by W and W+dW. For a metal, this is:








N


(
W
)



dW

=



4

π





mkT


h
3




log


[

1
+



-


(

W
-
μ

)

kT




]



dW






(For semiconductors and other materials, the supply function can be calculated from their band structures and density of states.)


Denoting the supply function of the hot cathode and cold anode as Nc and Na, the differential net current density from the cathode to the anode is:

Jnet(W)dW=e[Nc(W)−Na(W)]D(W)dW

Here, D(W) is the tunneling transmission coefficient that takes into account both barriers formed by the net electric potential 216. Denoting the barrier between the cathode and gate as DSBc(W) and the barrier between the anode and suppressor as DSBa(W), and taking reflections into account, D(W) is given by:







D


(
W
)


=




D
SBc



(
W
)





D
SBa



(
W
)






D
SBc



(
W
)


+


D
SBa



(
W
)


-



D
SBc



(
W
)





D
SBa



(
W
)










Not including reflections, D(W) is approximately:

D(W)≈DSBc(W)DSBa(W)

The total net current density J would then be:

Jnet=∫Jnet(W)dW

And the power (the terms “power” and “power output” are used interchangeably herein) is:

P=JnetV0


The above calculations do not take into account the space charge potential built by the electrons traversing between the cathode and anode. Below is an example method for estimating this space charge potential and its effects.


If the gate (104) and suppressor (106) are set at the same potential bias Vgrid, it is reasonable to assume that the electrons are uniformly distributed in the cathode-anode gap, with constant space charge density ρ. In this case, the space charge potential will be shaped like a parabola (and therefore, the portion of (216) between the gate (104) and the suppressor (106) will be a parabola), with its peak in the middle of the gap between the cathode (102) and anode (202), and a peak height ΔWsc that is offset from Vgrid by:







Δ






W
sc


=



e





ρ


2


ɛ
0






d
2

4







Here d is the distance between the cathode and anode. Electrons with energies lower than this peak will find the space charge potential difficult to travel through. Therefore, we approximate the effect of the space charges as an additional, uniform potential barrier, equal to the peak height of the space charge potential. The total barrier height WB will then be:







W
B

=



V
grid

+

Δ






W
sc



=


V
grid

+



e





ρ


2


ɛ
0






d
2

4









Electrons with energies below WB are assumed to have a transmission probability of zero:

D(W)≈DSBc(W)DSBa(W)θ(W−WB)

Here θ(W) is the Heaviside step function.


WB is a function of ρ, but the charge density ρ(W) as a function of the normal energy W depends on the sum of the cathode-emitted and anode-emitted current:








ρ


(
W
)



dW

=




J
sum



(
W
)



dW




2
m



(

W
-

W
B


)









Here the summed current is:

Jsum(W)dW=e[Nc(W)+Na(W)]D(W)dW

Hence, the summed current depends on the transmission probability D(W), which itself is dependent on WB. Therefore, we can solve for these quantities self-consistently using iterative numerical methods. For example, we can find ρ by solving for ρ in this equation:






ρ
=





V
grid

+



e





ρ


2


ɛ
0






d
2

4










J
sum



(
W
)



dW




2
m



(

W
-

V
grid

-



e





ρ


2


ɛ
0






d
2

4



)










We can then determine the total barrier height WB, including the contribution of the space charge potential, and calculate its influence on the current, power, and thermodynamic efficiency of the device.


The exiting heat flux density {dot over (Q)} due to the transfer of electrons at the cathode and anode may be approximated by:

{dot over (Q)}c=∫0[(W+kTa−μc)Na(W)−(W+kTc−μc)Nc(W)]D(W)dW
{dot over (Q)}a=∫0[(W+kTc−μa)Nc(W)−(W+kTa−μa)Na(W)]D(W)dW

Here, W+kT is the total energy of the emitted electron, including the kinetic energy in all directions, and we assume that the replacement electron comes in at the Fermi energy μ. For an electricity-generating heat engine, the cathode (102) should be losing heat energy while the anode should be receiving some heat, hence {dot over (Q)}c>0 and {dot over (Q)}a<0.


The thermodynamic efficiency η is the ratio between work gained to heat used, or, equivalently, the ratio of the useful power gained (JnetV0) to the total heat flux density expended (|{dot over (Q)}c|+{dot over (Q)}other):






η
=



J
net



V
0







Q
.

c



+


Q
.

other








{dot over (Q)}other is all heat loss other than {dot over (Q)}c. For the heat engine having a cathode-anode separation distance 122 (d), {dot over (Q)}other can be mainly due to the heat transfer between the cathode (102) and anode (108) via evanescent waves (Wevanescent). This can be approximated by:








Q
.

other



W
evanescent



4
×

10

-
12




(

1

d
2


)







in Watt/nm2/K, for d<1000 nm.


We can include other forms of heat transfer, for example heat conduction, in {dot over (Q)}other if needed.


Using the equations provided herein for power (P) and thermodynamic efficiency (η), these parameters are graphed as a function of varying anode electric potential 202 in FIG. 7.



FIG. 7 corresponds to a cathode (102) and an anode (108) having field emission enhancement features (103), such that β>1. For FIG. 7, the cathode temperature Tc=1000 K, the anode temperature Ta=300 K, the work functions of the cathode and anode φ=2.1 eV, the cathode-anode separation (122) is 50 nm, the cathode-gate separation (116) and the suppressor-anode separation 120 are both 5 nm, and the field enhancement factors β=5 for each of the cathode (102) and anode (108), and the gate and suppressor electric potentials 204, 210 are set to Ecarnot−kTc.



FIG. 7 shows how the thermodynamic efficiency and power of a heat engine are related. By graphing this relationship the tradeoffs between thermodynamic efficiency and power are illustrated. The applied anode bias may be selected to maximize the thermodynamic efficiency, or it may be selected to maximize the power, or the anode electric potential 202 may be selected to correspond to some other point on the graph, such as between the maximum thermodynamic efficiency and the maximum power.


There are a number of embodiments for which a graph such as FIG. 7 (or simply the corresponding data) may be created. For example, in an embodiment where the heat engine device has fixed dimensions, such as where the device has already been created, a user may want to select the applied voltage V0 based on a maximum thermodynamic efficiency, power, or optimal but not necessarily maximized values for each.


Further, although FIG. 7 shows results of varying the anode potential V0 of the heat engine, there are a number of other parameters of the device on which the thermodynamic efficiency and power output depend. These include, but are not limited to, the cathode temperature Tc, the anode temperature Ta, the cathode and anode work functions φc and φa, the gate and suppressor electric potentials 204, 210, the cathode-gate separation 116, suppressor-anode separation 120, and cathode-anode separation 122, and field enhancement factors of the cathode 102 and anode 108.


In different embodiments some of these values may be fixed and other may be variable. For example, in some embodiments the temperature of the cathode 102 and/or anode 108 may be determined by the operating conditions of the device such as ambient temperature and/or a temperature of the heat source that provides heat to the cathode. Further, these values may change in time. Therefore, in embodiments where the operating conditions determine the values of one or more parameters of the heat engine, other values may be selected to optimize the performance of the heat engine for the given parameters.


Further, in some embodiments more than one parameter may be optimized. For example, the anode electric potential 202 may be selected according to optimal values of thermodynamic efficiency and power as shown in FIG. 7, and the thermodynamic efficiency and power calculated as a function of varying gate and suppressor electric potentials 204, 210.



FIG. 8 shows the thermodynamic efficiency plotted versus power for varying gate and suppressor electric potentials 204, 210. FIG. 8 corresponds to a cathode (102) and an anode (108) having no field emission enhancement features (103), such that β=1. For FIG. 8, the cathode temperature Tc=1000 K, the anode temperature Ta=300 K, the work functions of the cathode and anode φ=2.1 eV, the cathode-anode separation (122) is 50 nm, the cathode-gate separation (116) and the suppressor-anode separation 120 are both 2 nm, and the anode electric potential 202 is 4k(Tc−Ta).


In one embodiment a method of optimizing the performance of a heat engine comprises: determining substantially fixed parameters of the heat engine, the substantially fixed parameters including at least one of a cathode-gate separation, a suppressor-anode separation, and a cathode-anode separation; calculating a first relative thermodynamic efficiency and/or a first relative power output of the heat engine as a function of the substantially fixed parameters and as a function of a first set of values for variable parameters of the heat engine, the variable parameters including a cathode temperature, an anode temperature, an anode electric potential, a gate electric potential, and a suppressor electric potential; calculating a second relative thermodynamic efficiency and/or a second relative power output of the heat engine as a function of the substantially fixed parameter and as a function of a second set of values for the variable parameters, wherein at least one variable parameter has a different value in the first and second sets of values; and setting the at least one variable parameter according to the calculated first and second relative thermodynamic efficiencies and/or according to the calculated first and second relative power outputs.


A method of the embodiment as described above may be employed when, for example, a device including a heat engine is received and the device has been manufactured with a substantially fixed cathode-gate separation (116), suppressor-anode separation (120), and/or cathode-anode separation (122). Or, in some embodiments, the device may not yet have been manufactured but some parameters of the device may be fixed for other reasons. Determining the substantially fixed parameters may include measuring the parameters, receiving the parameters (wherein the parameters may be, for example, listed on the device, provided in a computer program, or provided in a different way), or determining the fixed parameters in a different way. Further, the substantially fixed parameters may include a cathode and/or anode field enhancement factor (or, more generally, a cathode and/or anode geometry). The substantially fixed parameters may further include the cathode work function (213), anode work function (219), cathode and anode band structures, and/or cathode and anode emissivities. Although parameters that may be substantially fixed have been listed above, in some embodiments there may be only one substantially fixed parameter, or there may be more or different substantially fixed parameters. Which parameters are substantially fixed and which ones are variable may depend on the particular embodiment.


For one or more substantially fixed parameters of the heat engine, the relative power output and/or the relative thermodynamic efficiency may be calculated for one or more variable parameters, and the one or more variable parameters may be selected according to a chosen value for the relative power output and/or relative thermodynamic efficiency. For calculations of relative thermodynamic efficiency and/or relative power output for more than one variable parameter, the variable parameters may be varied individually or simultaneously for each calculation.


In some embodiments, the gate (104) and/or the suppressor (106) may include a thin film (904), as shown in FIG. 9 (FIG. 9 shows an embodiment with a cathode (102), dielectric (902), and thin film (904) that forms the gate (104), however a similar embodiment includes an anode (108), dielectric (902), and thin film (904) that forms the suppressor (106)), where the thin film (904) may be metal and/or graphene, and where graphene may be a single layer or a bilayer film. The graphene may, in some embodiments, include a graphene allotrope, doped graphene, and/or functionalized graphene. The thin film (904) may be fabricated by depositing the dielectric (902) on the cathode (102) and/or anode (108), then depositing the thin film (904) of metal or graphene that forms the gate (104) and/or suppressor (106). In some embodiments, the dielectric (902) can be at least partially etched away, or in other embodiments it may be left in place. Thin film grids as described above that may be used for the gate(104) and/or suppressor (106) have been used for cathodes, such as in metal-insulator-metal tunneling cathodes, and also in metal-oxide-semiconductor cathodes. These emitters include a metal or semiconductor base electrode, an insulator, and a thin top electrode serving as the gate/suppressor. Although FIG. 9 shows a single thin film (904) that forms the gate (104), in some embodiments two or more thin films such as the film (904) may form the gate.


In an embodiment including a dielectric (902) proximate to the cathode (102) and/or anode (108), the gate (104) and/or suppressor (106) may be a thin film as described with respect to FIG. 9, or the gate (104) and/or the suppressor (106) may have a different configuration. The dielectric (902) may be used to support the gate (104) and/or suppressor (106), and/or it may serve to maintain the separation between the cathode (102) and gate (104) and/or the separation between the anode (108) and suppressor (106). In some embodiments, the dielectric (902) may be silicon oxide (SiO2), boron nitride, diamond, and/or a self-healing dielectric, e.g., glassy rather than crystalline materials.


In different embodiments, at least one of the cathode (102) and anode (108) includes at least one of: tungsten, thoriated tungsten, an oxide-coated refractory metal, a boride, lanthanum hexaboride, molybdenum, tantalum, and hafnium.


In particular, in an embodiment where the cathode (102) is heated, the cathode (102) may include thoriated tungsten, which has a work function of approximately 2.5 eV. When heated, the lower-work-function thorium in the material migrates to the surface. In another embodiment of a heated cathode (102), the cathode (102) includes an oxide-coated refractory metal, which has a work function of approximately 2 eV. In yet another embodiment of a heated cathode (102), the cathode (102) includes a boride having a work function of approximately 2.5 eV. In particular, borides such as lanthanum hexaboride are amenable to physical vapor deposition techniques, and the cathode may be relatively easily coated with these materials.


In an embodiment of a heat engine where the cathode (102) is heated, but at a relatively low temperature (e.g., scavenging waste heat), a material with a relatively low work function, such as diamond-like carbon (DLC), may be incorporated as a coating for the cathode (102). In some embodiments the DLC may be doped with nitrogen. DLC is amenable to low temperature deposition techniques, and may be directly coated on Spindt tips, for example.


In some embodiments at least one of the cathode (102) and anode (108) includes diamond, and, in particular, may be coated with diamond. A diamond coating can be deposited from a methane atmosphere. Pure diamond has a relatively high work function, however diamond can be doped (with, for example, hydrogen) to have a low work function, and may be especially useful at relatively low operating temperatures. Hydrogen-terminated diamond surfaces have been found to exhibit negative electron affinity (NEA). To further increase field emission with diamond coatings, the diamond may be selected to have small grain sizes, or nano-crystalline diamond may be used. To take full advantage of the NEA of diamond at relatively low applied fields, the diamond may be n-type doped to place its Fermi level close to the conduction band. Further, since pure diamond can withstand electric field stresses up to about 1-2 V/nm before dielectric breakdown commences, it may be used as the dielectric to support the gate (104) and/or suppressor (106) relative to the anode (102) and/or the cathode (108).


In some embodiments, the cathode (102) and/or the anode (108) may include one or more carbon nanotubes that serve as field emission enhancement feature(s) (103). There may be a single nanotube serving as a single field emission enhancement feature (103) or multiple nanotubes serving as multiple field emission enhancement features (103) depending on the particular embodiment. For embodiments including multiple nanotubes (sometimes called nanotube forests), individual nanotubes may be selectively ablated to control emission. In some embodiments one or more carbon nanobuds may serve as one or more field emission enhancement feature(s) (103).


In some embodiments the cathode (102) and/or the anode may include a semiconductor, which may include silicon. In some embodiments the semiconductor may be doped. Specifically, doping the semiconductor may change its density of states, and so a semiconductor may be doped according to a selected density of states. A semiconductor cathode (102) and/or anode (108) may further be coated in order to vary the electron affinity and/or the work function, and/or to optimize the performance and/or the stability of the heat engine. The semiconductor may further be doped to vary the electron affinity, in some cases producing negative electron affinity (NEA) material.


In some embodiments the cathode (102) and anode (108) may form a substantially interlocking structure (“interlocking combs”), as shown in FIG. 10. In FIG. 10 the gate (104) and the suppressor (106) are shown as being substantially continuous, however in some embodiments they may be discontinuous. Further, the spacings in the gate (104) and suppressor (106) shown in FIG. 10 are largely symbolic, and may be oriented differently according to a particular embodiment. Notably, the comb structure of the cathode (102) and anode (108) are relatively large in comparison with the size of a field emission enhancement structure (103), and an embodiment that employs such a comb structure may also include one or more field emission enhancement structures (103), although these are not shown in FIG. 10. The structure of FIG. 10 shows a cathode (102) having a spatially-varying slope, and an anode (108) also having a spatially varying slope that is complementary to the spatially-varying slope of the cathode (102). The spatially-varying slopes of the cathode (102) and anode (108) shown in FIG. 10 are substantially periodic, however in other embodiments they may be a-periodic and/or quasi-periodic. In some embodiments the slope of the cathode (102) and/or the slope of the anode (108) may be more smoothly varying that what is shown in FIG. 10. As shown in FIG. 10, the cathode-anode separation (122) varies slightly, however this separation is minimized. In some embodiments the cathode-anode separation (122) is substantially constant. In other embodiments, the cathode-anode separation (122) may have greater spatial variations, or in the case where the cathode (102) and anode (108) are substantially sinusoidal, the cathode-anode separation (122) may be configured with very little spatial variation.


In one embodiment, shown in FIG. 11, the cathode (102) and anode (108) are substantially tubular, wherein at least a portion of the anode (108) is substantially circumscribed by at least a portion of the cathode (102). In this embodiment electrons flow radially from the cathode (102) to the anode (108), and vice-versa. Although the cathode (102) and anode (108) are shown as being substantially cylindrical in FIG. 11, in some embodiments there may be deviations from the cylindrical structure (i.e., they may be dented, their cross-sections may be an n-gon such as a hexagon or octagon, or they may form a different type of substantially co-axial structure). In some embodiments, cathode (102) may form the inner structure and the anode (108) may form the outer structure. Further, in some embodiments a coolant or heating structure may be placed inside the inner structure (for example, where the anode (108) forms the inner structure of a heat engine, a coolant may be configured to flow through or proximate to the anode (108), or where the cathode (102) forms the inner structure of a heat engine, a heating mechanism such as a heated fluid may be configured to flow through or proximate the cathode (102)). In some embodiments the gap between the cylinders as shown in FIG. 11 may change as a function of the temperature of the cylinders. Although the gate (104) and suppressor (106) are not shown in FIG. 11 for clarity, in most embodiments of a heat engine at least one grid would be included.


In an embodiment shown in FIG. 12 a thin dielectric coating (1202) is included on the anode (108). The thin dielectric coating may, in some embodiments, include a negative electron affinity (NEA) material such as hydrogen terminated diamond, which may be deposited on a metal that forms the anode (108). Such an embodiment may lower the effective work function of the metal that forms the anode (108). This embodiment may or may not include the suppressor (106).


In one embodiment the NEA material forms the anode (108), and in this embodiment the suppressor (106) may not be included and the device may still function as a heat engine. In this embodiment the NEA material may be chosen or doped such that its electron quasi-Fermi level is close to the conduction band.


In some embodiments, one or more of the gate (104) and suppressor (106) (and/or other grids that may be incorporated in the design) may be at least partially coated with one or more insulating materials.


In one embodiment all or part of the apparatus may be fabricated, e.g. via lithography, on a substrate. For example, in one embodiment the cathode (102), gate (104), suppressor (106), and the anode (108) are formed via lithography on a substrate such that they are all substantially one-dimensional and coplanar.


In another embodiment, a cross-section of which is shown in FIG. 13, the gate (104) and the suppressor (106) are fabricated on a first substrate (1302) and the cathode (102) and anode (108) are fabricated on a second substrate (1304), wherein the first and second substrates (1302, 1304) are then positioned such that together the elements (1302, 1304, 1306, 1308) form the field emission device. In this embodiment the gate (104) and the suppressor (106) are effectively insulated from the cathode (102) and the anode (108) by the second substrate (1304). There are many other embodiments that are similar to this that may be implemented. For example, different elements such as (1302, 1304, 1306, 1308) may each be fabricated on their own substrate. Further, additional layers of insulators or other materials may be incorporated according to the particular embodiment. Further, more or fewer elements such as (1302, 1304, 1306, 1308) may be incorporated in the designs. There are many permutations that may be designed that incorporate the idea of fabricating elements on a substrate and combining the substrates to form a field emission device.


In some embodiments the gate (104) and the suppressor (106) may be created with a single grid, as shown in FIG. 14. The resulting potential (1502) as a function of distance from the cathode in the x-direction 126 is shown in FIG. 15 for the embodiment shown in FIG. 14. This embodiment is similar to that of FIG. 1, but having a single grid (the gate/suppressor 1402) that replaces the gate (104) and the suppressor (106). In this embodiment, the gate/suppressor (1402) is placed close enough to the anode (108) to be able to induce electron emission from the anode (108). Further, it can also be sufficiently close to the cathode (102) to induce electron emission from the cathode (102), and has a gate/suppressor electric potential (1504) that is selected to produce a net flow of electrons from the cathode (102) to the anode (108). There are a number of ways of constructing the apparatus of FIG. 14. In one embodiment, a gated field-emitter array such as a Spindt array is fabricated to produce the cathode (102) and the gate/suppressor (1402), and an anode (108) is arranged proximate to the gate/suppressor (1402). In another embodiment, the gate/suppressor (1402) is supported on and proximate to the anode (108), and there is no additional grid structure supported on the cathode (102), although the cathode (102) may still have field-enhancement structures.


In some embodiments the field emission device is back-gated, as shown in FIG. 16. In FIG. 16, the gate (104) and the suppressor (106) are not positioned between the cathode (102) and anode (108), rather, the cathode (102) and anode (108) are positioned between the gate (104) and suppressor (106). Although the configuration of FIG. 16 is different in this way from the configuration of FIG. 1, they both may be configured as heat engines, such that electrons are emitted from both the cathode (102) and anode (108) and produce a net flow of electrons from the cathode (102) to the anode (108). The embodiment of FIG. 16 may include a dielectric layer between the gate (104) and cathode (102), and or between the anode (108) and suppressor (106). In such an embodiment, the dielectric (an example of a dielectric included between elements is shown in FIG. 9) may be continuous or discontinuous. Further, the apparatus as shown in FIG. 16 may be configured to reduce or remove accumulations of charge that may occur, for example, as a result of a dielectric layer. As described previously with respect to other embodiments described herein, there may be more or fewer elements than shown in FIG. 16. Further, the order of the elements may be different than what is shown in FIG. 16. For example, FIG. 16 shows the order being gate (104), cathode (102), anode (108), suppressor (106). However, in other embodiments the order may be gate (104), cathode (102), suppressor (106), anode (108). Or, the elements may be in a different order.


In some embodiments, emission from the cathode (102) may be enhanced electromagnetically, as shown in FIG. 17. FIG. 17 is shown with the configuration of FIG. 1 as an example, however any of the embodiments described herein may include enhanced cathode emission via electromagnetic energy. FIG. 17 shows electromagnetic energy (1702) incident on the cathode (102). This electromagnetic energy (1702) may be used to increase the number of electrons emitted, the rate of electrons emitted, and/or the energy of the emitted electrons from the cathode (102), which may therefore increase the power density of the device. In some embodiments the properties of the cathode (102) such as the cathode thickness, the cathode materials such as dopants, may be selected such that the photo-excited electrons tend to be emitted from the cathode (102) before they thermalize, or after they thermalize in the conduction band. FIG. 17 shows the electromagnetic energy (1702) hitting the cathode (102) at a single location, however in different embodiments the electromagnetic energy (1702) may impinge on a greater area of the cathode (102). The source of the electromagnetic energy (1702) includes, but is not limited to, solar and/or ambient electromagnetic energy, radiation from a local heat source, one or more lasers, and/or a different source of electromagnetic energy. There are many sources of electromagnetic energy that may be used in an embodiment such as that shown in FIG. 17 and one skilled in the art may select the source according to the particular embodiment. The properties of the electromagnetic energy (1702) such as the frequency, polarization, propagation direction, intensity, and other properties may be selected according to a particular embodiment, and in some embodiments may be selected to enhance the performance of the device. Further, optical elements such as lenses, photonic crystals, mirrors, or other elements may be incorporated in an embodiment such as that shown in FIG. 17, for example, to adjust the properties of the electromagnetic energy. In some embodiments the emission from the cathode (102) may be enhanced sufficiently such that the position and/or electric potentials applied to the gate (104) and/or suppressor (106) may be adjusted according.


In some embodiments the suppressor (106) and the anode (108) as shown and described with respect to FIGS. 1 and 2 may be incorporated in a different device, such as a different thermionic converter, a thermionic refrigerator, a photomultiplier, an electron multiplier, low energy electron detectors, or another device. In these embodiments the suppressor (106) is placed proximate to the anode (108) (in the case of an electron multiplier, the anode (108) is usually called a dynode in conventional literature; however, for consistency with other embodiments the word anode is used herein), and the suppressor electric potential (210) and the anode electric potential (202) are selected such that the net electric field (1802) points from the anode (108) to the suppressor (106). This electric field (1802) is configured such that an electron placed in the field experiences a force in a direction pointing away from the anode (108). Although conventionally electric field lines are drawn according to the direction of force on a positive test particle, here (and in particular, in FIG. 18) they are drawn according to the direction of force on a negative test particle (e.g., electrons) since most of the embodiments herein employ electrons.


For a first set of electrons (206) having energies above a first threshold energy (208) there will be some possibility that the electrons can pass through the field (1802) and to the anode (108), such as in the direction (1806) as shown in FIG. 18. Depending on the material of the anode (108) the electrons (206) may be configured to bind to the anode (108) (such as in the embodiment of a heat engine) or the electrons may be configured to interact with the anode (108) to produce secondary electrons (such as in the embodiment of an electron multiplier). Although the first set of electrons (206) are represented symbolically in FIG. 18 as a single object, one skilled in the art will understand that this is a simplified representation and that the actual transport and spatial distribution of electrons is more complex.


For simplicity, FIG. 18 is substantially two-dimensional and the field (1802) is shown as being substantially constant and pointing in one direction. However the field (1802) may vary in one, two, or three spatial dimensions, and/or the field may have components along each of the three dimensions. For example, the field may include edge effects (not shown) near the edge(s) of the suppressor. The embodiment of FIG. 18 includes a segment of the embodiments described previously with respect to FIGS. 1, 2, and other related figures that include the suppressor (106) and the anode (108). Therefore, the embodiment of FIG. 18 may be included in previously described embodiments and/or it may be incorporated in other, different embodiments than previously described, such as in an electron multiplier. Further, components as described previously herein such as the circuitry (402) and/or the meters (404, 406, 408) may also be included in the embodiment of FIG. 18.


The suppressor electric field (1802) may be varied. For example, in some embodiments the suppressor electric field (1802) may be varied based on measurements of current, temperature, and/or other parameters. It may be varied substantially periodically or in a different way.


The suppressor electric field (1802) includes the net field between the anode (108) and the suppressor (106). Different embodiments include elements that produce an electric field, which add together to produce an electric field such as (1802) that points away from the anode (108) (i.e., the electric field (1802) provides a force on an electron in the direction of the electric field (1802)). For example, in the embodiment of FIG. 1, an electric potential may be applied to each of the cathode (102), gate (104), suppressor (106), and anode (108). There may even be additional elements having an applied electric potential. For the embodiment as described with respect to FIG. 18, the net effect of all of the electric fields produced by the electric potentials includes an electric field that is between the anode (108) and the suppressor (106) and has at least one component that points away from the anode (108) and to the suppressor (106) (where, again, the electric field provides a force on an electron in the direction of the electric field (1802)).


In accordance with the principles of the disclosure herein one or more of the grids (e.g., the gate 104 and/or the suppressor 106 shown in FIG. 1, and/or the screen grid 302 shown in FIG. 3) in a field emission device may be at least partially comprised of nanotubes and/or nanowires 1904, where a top view of a nanotube/nanowire grid 1902 on a support structure 1906 is shown in FIG. 19. The nanotube and/or nanowires used as electrode material may be substantially transparent to the flow of charged carriers between the cathode 102 and the anode 108 in device operation. The nanotube or nanowire material may be electrically conductive, for example metallic or semiconducting carbon nanotubes, or metallic or semiconducting nanowires. A nanotube may comprise carbon, silicon, or a different material. In particular, carbon nanotubes can be metallic or semiconducting, and can be single-walled nanotubes or multi-walled nanotubes. A nanowire material may be made of metals (e.g. Nickel, Platinum, Silver, Gold, or a different metal) or semiconductors (e.g. Silicon, Gallium nitride, or a different semiconductor).


The nanotubes/nanowires 1904 shown in FIG. 19 are shown as being not straight but substantially aligned with one another, however some fabrication techniques may allow for nanowires that are substantially closer to a straight line than is shown in FIG. 19. Further, the pattern of the nanotubes/nanowires 1904 shown in FIG. 19 is just one exemplary embodiment, and in other embodiments the nanotubes/nanowires 1904 may be fabricated in other ways, such as a random deposition of nanotubes/nanowires 1904, and/or other controlled deposition patterns that produce patterns different from that shown in FIG. 19, where the nanotubes/nanowires 1904 may be non-overlapping as shown in FIG. 19, or overlapping, in a controlled or random arrangement. For example, FIG. 20 shows the nanotubes/nanowires 1904 in an overlapping configuration. In some embodiments where the nanotubes/nanowires 1904 are configured in an overlapping arrangement, they may form a thin film having many holes. The density of the nanotubes/nanowires 1904 shown in FIGS. 19 and 20 are exemplary embodiments, and in other embodiments the density may be greater or smaller than that shown in FIGS. 19 and 20.


The grid 1902 may be configured in a number of ways. In one embodiment, the nanotubes/nanowires 1904 are deposited on a support structure 1906, where the support structure may be a continuous or discontinuous substrate comprising a dielectric, oxide, polymer, insulator, and/or a glassy material. Further, in some embodiments the support structure 1906 is a substrate that is etched to facilitate throughput of charged particles. For example, the support structure 1906 may be etched to produce an array of holes through which the charged particles can travel. The etching may be done before or after the deposition of the nanotubes/nanowires 1904. In some embodiments, the etchings may be small enough that the nanotubes/nanowires 1904 extend over the etchings. In some embodiments a discontinuous support structure 1906 is fabricated using a “bottom up” approach (e.g., depositing an array of material or materials) rather than the “top down” approach described herein (e.g., etching a substrate), which will be described further with respect to FIG. 22. Further, in some embodiments the support structure 1906 is metal, such as metal wires that are configured to support an array of nanotubes/nanowires 1904.


In one embodiment, shown in FIG. 21, the support structure 1906 is deposited directly on the cathode 102, and the nanotubes/nanowires 1904 are fabricated directly on the support structure 1906 and forming the gate 104. The support structure 1906 may in some embodiments be a nano-scale layer having a thickness 1907 that is, for example, between 0.3-20 nm. This thickness range is an exemplary embodiment, and in other embodiments the thickness may be outside of this range. FIG. 21 shows the support structure 1906 as having a substantially uniform thickness, however in other embodiments the support structure 1906 has a non-uniform thickness, either by design or due to fabrication limitations. Further, FIG. 21 shows the support structure 1906 as having a gap proximate to the field emission enhancement feature 103, however in some embodiments the support structure 1906 may be a substantially continuous layer on the cathode 102, where the materials and dimensions of the support structure 1906 are chosen to facilitate throughput of charged particles. In the embodiment shown in FIG. 21 the support structure 1906 may be electrically isolated from the cathode 102.


Although FIG. 21 shows the support structure 1906 being deposited directly on the cathode 102, in another embodiment the support structure 1906 may be deposited directly on the anode 108, with the nanotubes/nanowires 1906 forming the suppressor 106. In yet another embodiment, both the cathode 102 and the anode 108 are in contact with a support structure 1906 that supports a nanotube/nanowire 1904 grid. Further, the embodiment of FIG. 21 is not limited to a single support structure 1906. For example, a second support structure (not shown) may be deposited over the first support structure 1906 after the nanotube/nanowire grid 1904 is deposited, where one or both of the support structures may be etched to facilitate passage of charged particles.


In the embodiment of FIG. 21, the support structure 1906 is shown as being a substantially rectilinear layer, however the support structure 1906 may take a different shape or form in another embodiment. For example, in an embodiment shown in FIG. 22, the support structure 1906 is a series of posts that are deposited on the cathode 102 and that support the nanotube/nanowire grid 1902, where in such an embodiment the spacing between the posts may be selected to prevent portions of the grid 1902 from touching the cathode 102 and creating a short. The embodiment shown in FIG. 22 is just one example of an embodiment where the support structure 1906 is not continuous, and there are many ways of configuring a support structure 1906 to support the grid 1902.


The field emission device 100 may be encased in container 2102, which may isolate the anode 102, the cathode 108, and the one or more grids in a controlled environment (e.g., a vacuum or gas-filled region). In an embodiment where the container 2102 is filled with a gas different from air, the gas may include one or more atomic or molecular species, partially ionized plasmas, fully ionized plasmas, or mixtures thereof. A gas composition and pressure in container 2102 may be chosen to be conducive to the passage of charged carrier flow between anode 102 and cathode 108. The gas composition, pressure, and ionization state in container 2102 may be chosen to be conducive to the neutralization of space charges for charged carrier flow between anode 102 and cathode 108. The gas pressure in container 2102 may, as in conventional vacuum tube devices, be substantially below atmospheric pressure. The gas pressure may be sufficiently low, so that the combination of low gas density and small inter-component separations reduces the likelihood of gas interactions with transiting electrons to low enough levels such that a gas-filled device offers vacuum-like performance. The gas composition and pressure may be chosen so as to increase the breakdown voltage of the device and reduce the likelihood of occurrence of electric arcs.


In some embodiments, at least a portion of nanotube/nanowire grid 1902 is sheathed in an insulating dielectric, where doing so can in some embodiments prevent charge carriers from being absorbed by the grid 1902. The insulating dielectric can be “wrapped” around a nanotube via atomic layer deposition. Further, in some embodiments the nanotube/nanowire grid 1902 is treated (e.g. via applying additional material) to increase the grid's rigidity. In other embodiments, the nanotube/nanowire grid 1902 may be intentionally flexible, so that when a voltage bias is applied to the grid, the grid flexes and moves closer to other electrodes (such as the cathode 102 and/or the anode 108) due to electrostatic attraction. The decreased distance between the grid and other electrode can increase the electric field strength in between, and can be useful for applications such as increasing field emission, field desorption, or field-assisted tunneling of charged particles.


A nanotube grid such as those shown in FIGS. 19-22 may be fabricated in a number of ways. For example, in one embodiment the grid 1902 is fabricated by using a plurality of catalyst nanoparticles on an existing metal grid framework. In another embodiment nanotubes are grown on a substrate (examples of which are given with respect to support structure 1906) and later aligned (for example, by electrospinning), where crossed networks of nanotube arrays can be fabricated in a multi-step process. In another embodiment DNA nanostructures may be used as a scaffold to arrange the nanotubes.


In some embodiments the field emission devices as described herein may be configured as an amplifier, where the frequency of the amplifier depends on the configuration of the field emission device, and includes, but is not limited to, radio and/or microwave frequencies. In such an embodiment nanotube and/or nanowire grids as described herein may provide advantageous thermal and/or conductive properties. The field emission device as described herein may further be configured as/may otherwise be described as a vacuum tube, a power amplifier, a klystron, a traveling-wave tube, a gyrotron, a field-emission triode, and a field emission display.


Those skilled in the art will appreciate that the foregoing specific exemplary processes and/or devices and/or technologies are representative of more general processes and/or devices and/or technologies taught elsewhere herein, such as in the claims filed herewith and/or elsewhere in the present application.


Those having skill in the art will recognize that the state of the art has progressed to the point where there is little distinction left between hardware, software, and/or firmware implementations of aspects of systems; the use of hardware, software, and/or firmware is generally (but not always, in that in certain contexts the choice between hardware and software can become significant) a design choice representing cost vs. efficiency tradeoffs. Those having skill in the art will appreciate that there are various vehicles by which processes and/or systems and/or other technologies described herein can be effected (e.g., hardware, software, and/or firmware), and that the preferred vehicle will vary with the context in which the processes and/or systems and/or other technologies are deployed. For example, if an implementer determines that speed and accuracy are paramount, the implementer may opt for a mainly hardware and/or firmware vehicle; alternatively, if flexibility is paramount, the implementer may opt for a mainly software implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software, and/or firmware. Hence, there are several possible vehicles by which the processes and/or devices and/or other technologies described herein may be effected, none of which is inherently superior to the other in that any vehicle to be utilized is a choice dependent upon the context in which the vehicle will be deployed and the specific concerns (e.g., speed, flexibility, or predictability) of the implementer, any of which may vary. Those skilled in the art will recognize that optical aspects of implementations will typically employ optically-oriented hardware, software, and or firmware.


In some implementations described herein, logic and similar implementations may include software or other control structures. Electronic circuitry, for example, may have one or more paths of electrical current constructed and arranged to implement various functions as described herein. In some implementations, one or more media may be configured to bear a device-detectable implementation when such media hold or transmit a device detectable instructions operable to perform as described herein. In some variants, for example, implementations may include an update or modification of existing software or firmware, or of gate arrays or programmable hardware, such as by performing a reception of or a transmission of one or more instructions in relation to one or more operations described herein. Alternatively or additionally, in some variants, an implementation may include special-purpose hardware, software, firmware components, and/or general-purpose components executing or otherwise invoking special-purpose components. Specifications or other implementations may be transmitted by one or more instances of tangible transmission media as described herein, optionally by packet transmission or otherwise by passing through distributed media at various times.


Alternatively or additionally, implementations may include executing a special-purpose instruction sequence or invoking circuitry for enabling, triggering, coordinating, requesting, or otherwise causing one or more occurrences of virtually any functional operations described herein. In some variants, operational or other logical descriptions herein may be expressed as source code and compiled or otherwise invoked as an executable instruction sequence. In some contexts, for example, implementations may be provided, in whole or in part, by source code, such as C++, or other code sequences. In other implementations, source or other code implementation, using commercially available and/or techniques in the art, may be compiled/implemented/translated/converted into a high-level descriptor language (e.g., initially implementing described technologies in C or C++ programming language and thereafter converting the programming language implementation into a logic-synthesizable language implementation, a hardware description language implementation, a hardware design simulation implementation, and/or other such similar mode(s) of expression). For example, some or all of a logical expression (e.g., computer programming language implementation) may be manifested as a Verilog-type hardware description (e.g., via Hardware Description Language (HDL) and/or Very High Speed Integrated Circuit Hardware Descriptor Language (VHDL)) or other circuitry model which may then be used to create a physical implementation having hardware (e.g., an Application Specific Integrated Circuit). Those skilled in the art will recognize how to obtain, configure, and optimize suitable transmission or computational elements, material supplies, actuators, or other structures in light of these teachings.


The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, several portions of the subject matter described herein may be implemented via Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), digital signal processors (DSPs), or other integrated formats. However, those skilled in the art will recognize that some aspects of the embodiments disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment of the subject matter described herein applies regardless of the particular type of signal bearing medium used to actually carry out the distribution. Examples of a signal bearing medium include, but are not limited to, the following: a recordable type medium such as a floppy disk, a hard disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer memory, etc.; and a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link (e.g., transmitter, receiver, transmission logic, reception logic, etc.), etc.).


In a general sense, those skilled in the art will recognize that the various embodiments described herein can be implemented, individually and/or collectively, by various types of electro-mechanical systems having a wide range of electrical components such as hardware, software, firmware, and/or virtually any combination thereof; and a wide range of components that may impart mechanical force or motion such as rigid bodies, spring or torsional bodies, hydraulics, electro-magnetically actuated devices, and/or virtually any combination thereof. Consequently, as used herein “electro-mechanical system” includes, but is not limited to, electrical circuitry operably coupled with a transducer (e.g., an actuator, a motor, a piezoelectric crystal, a Micro Electro Mechanical System (MEMS), etc.), electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of memory (e.g., random access, flash, read only, etc.)), electrical circuitry forming a communications device (e.g., a modem, communications switch, optical-electrical equipment, etc.), and/or any non-electrical analog thereto, such as optical or other analogs. Those skilled in the art will also appreciate that examples of electro-mechanical systems include but are not limited to a variety of consumer electronics systems, medical devices, as well as other systems such as motorized transport systems, factory automation systems, security systems, and/or communication/computing systems. Those skilled in the art will recognize that electro-mechanical as used herein is not necessarily limited to a system that has both electrical and mechanical actuation except as context may dictate otherwise.


In a general sense, those skilled in the art will recognize that the various aspects described herein which can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, and/or any combination thereof can be viewed as being composed of various types of “electrical circuitry.” Consequently, as used herein “electrical circuitry” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of memory (e.g., random access, flash, read only, etc.)), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, optical-electrical equipment, etc.). Those having skill in the art will recognize that the subject matter described herein may be implemented in an analog or digital fashion or some combination thereof.


Those skilled in the art will recognize that at least a portion of the devices and/or processes described herein can be integrated into an image processing system. Those having skill in the art will recognize that a typical image processing system generally includes one or more of a system unit housing, a video display device, memory such as volatile or non-volatile memory, processors such as microprocessors or digital signal processors, computational entities such as operating systems, drivers, applications programs, one or more interaction devices (e.g., a touch pad, a touch screen, an antenna, etc.), control systems including feedback loops and control motors (e.g., feedback for sensing lens position and/or velocity; control motors for moving/distorting lenses to give desired focuses). An image processing system may be implemented utilizing suitable commercially available components, such as those typically found in digital still systems and/or digital motion systems.


Those skilled in the art will recognize that at least a portion of the devices and/or processes described herein can be integrated into a data processing system. Those having skill in the art will recognize that a data processing system generally includes one or more of a system unit housing, a video display device, memory such as volatile or non-volatile memory, processors such as microprocessors or digital signal processors, computational entities such as operating systems, drivers, graphical user interfaces, and applications programs, one or more interaction devices (e.g., a touch pad, a touch screen, an antenna, etc.), and/or control systems including feedback loops and control motors (e.g., feedback for sensing position and/or velocity; control motors for moving and/or adjusting components and/or quantities). A data processing system may be implemented utilizing suitable commercially available components, such as those typically found in data computing/communication and/or network computing/communication systems.


Those skilled in the art will recognize that it is common within the art to implement devices and/or processes and/or systems, and thereafter use engineering and/or other practices to integrate such implemented devices and/or processes and/or systems into more comprehensive devices and/or processes and/or systems. That is, at least a portion of the devices and/or processes and/or systems described herein can be integrated into other devices and/or processes and/or systems via a reasonable amount of experimentation. Those having skill in the art will recognize that examples of such other devices and/or processes and/or systems might include—as appropriate to context and application—all or part of devices and/or processes and/or systems of (a) an air conveyance (e.g., an airplane, rocket, helicopter, etc.), (b) a ground conveyance (e.g., a car, truck, locomotive, tank, armored personnel carrier, etc.), (c) a building (e.g., a home, warehouse, office, etc.), (d) an appliance (e.g., a refrigerator, a washing machine, a dryer, etc.), (e) a communications system (e.g., a networked system, a telephone system, a Voice over IP system, etc.), (f) a business entity (e.g., an Internet Service Provider (ISP) entity such as Comcast Cable, Qwest, Southwestern Bell, etc.), or (g) a wired/wireless services entity (e.g., Sprint, Cingular, Nextel, etc.), etc.


In certain cases, use of a system or method may occur in a territory even if components are located outside the territory. For example, in a distributed computing context, use of a distributed computing system may occur in a territory even though parts of the system may be located outside of the territory (e.g., relay, server, processor, signal-bearing medium, transmitting computer, receiving computer, etc. located outside the territory).


A sale of a system or method may likewise occur in a territory even if components of the system or method are located and/or used outside the territory.


Further, implementation of at least part of a system for performing a method in one territory does not preclude use of the system in another territory.


All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in any Application Data Sheet, are incorporated herein by reference, to the extent not inconsistent herewith.


One skilled in the art will recognize that the herein described components (e.g., operations), devices, objects, and the discussion accompanying them are used as examples for the sake of conceptual clarity and that various configuration modifications are contemplated. Consequently, as used herein, the specific exemplars set forth and the accompanying discussion are intended to be representative of their more general classes. In general, use of any specific exemplar is intended to be representative of its class, and the non-inclusion of specific components (e.g., operations), devices, and objects should not be taken limiting.


With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations are not expressly set forth herein for sake of clarity.


The herein described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures may be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected”, or “operably coupled,” to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable,” to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components, and/or wirelessly interactable, and/or wirelessly interacting components, and/or logically interacting, and/or logically interactable components.


In some instances, one or more components may be referred to herein as “configured to,” “configured by,” “configurable to,” “operable/operative to,” “adapted/adaptable,” “able to,” “conformable/conformed to,” etc. Those skilled in the art will recognize that such terms (e.g. “configured to”) can generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context requires otherwise.


While particular aspects of the present subject matter described herein have been shown and described, it will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of the subject matter described herein. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that typically a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”


With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Also, although various operational flows are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.


While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.

Claims
  • 1. An apparatus comprising: a cathode, an anode, and a grid, wherein the grid is at least partially formed by an array of nanotubes;wherein the cathode, anode, and grid are responsive to inputs to produce a potential barrier between the grid and the anode such that a set of electrons from the cathode can tunnel through the potential barrier to produce a net current at the anode.
  • 2. The apparatus of claim 1 wherein the array of nanotubes includes carbon nanotubes.
  • 3. The apparatus of claim 2 wherein the array of carbon nanotubes includes metallic carbon nanotubes.
  • 4. The apparatus of claim 2 wherein the array of carbon nanotubes includes semiconducting carbon nanotubes.
  • 5. The apparatus of claim 1 wherein the array of nanotubes includes silicon nanotubes.
  • 6. The apparatus of claim 1 wherein the array of nanotubes includes single-walled nanotubes.
  • 7. The apparatus of claim 1 wherein the array of nanotubes includes multi-walled nanotubes.
  • 8. The apparatus of claim 1 wherein at least one nanotube in the array of nanotubes is at least partially covered with an insulating dielectric.
  • 9. The apparatus of claim 1 wherein at least one of the cathode and the anode is in contact with an insulator, and wherein the array of nanotubes is in contact with the insulator.
  • 10. The apparatus of claim 1 wherein the cathode and the grid are separated by a characteristic dimension that is between 1 and 1000 microns.
  • 11. The apparatus of claim 1 wherein the cathode and the grid are separated by a characteristic dimension that is between 100 and 1000 nm.
  • 12. The apparatus of claim 1 wherein the charged particles include electrons.
  • 13. The apparatus of claim 1 wherein the charged particles include ions.
  • 14. The apparatus of claim 1 wherein the cathode, anode, and grid are arranged in a housing that is configured to support a pressure lower than atmospheric pressure.
  • 15. The apparatus of claim 14 wherein the pressure lower than atmospheric pressure is substantially vacuum.
  • 16. The apparatus of claim 14 wherein the housing is configured to support a gas different from air.
  • 17. The apparatus of claim 1 wherein each nanotube in the array of nanotubes is substantially parallel to the other nanotubes in the array.
  • 18. The apparatus of claim 1 wherein at least one of the cathode and the anode includes at least one field emission enhancement feature.
  • 19. The apparatus of claim 18 wherein the at least one field emission enhancement feature includes at least one of a nanotube and a nanowire.
  • 20. The apparatus of claim 1 wherein the array of nanotubes is further arranged to form a focusing element for a set of electrons emitted by at least one of the cathode and the anode.
  • 21. The apparatus of claim 1 wherein at least a portion of the grid is between the cathode and the anode.
  • 22. The apparatus of claim 1 wherein the grid is substantially transparent to the flow of electrons from the cathode to the anode.
  • 23. The apparatus of claim 1 wherein the grid is arranged on a surface of the anode or cathode.
  • 24. The apparatus of claim 23 wherein the surface of the anode or the cathode over which the grid is arranged is a substantially planar surface on a micron or nanometer scale.
  • 25. The apparatus of claim 23 wherein a separation distance between the grid and the surface of the anode or cathode is less than about 0.1 microns.
  • 26. The apparatus of claim 23 wherein a separation distance between the grid and the surface of the anode or cathode is greater than about 0.3 nanometers.
  • 27. The apparatus of claim 23 further comprising a support structure configured to physically support the grid over the surface of the anode or the cathode.
  • 28. The apparatus of claim 27 wherein the support structure comprises an array of spacers or support posts.
  • 29. The apparatus of claim 27 wherein the support structure includes one or more of dielectrics, oxides, polymers, insulators, and glassy material.
  • 30. The apparatus of claim 23 wherein the grid is supported by an intervening dialectic material layer arranged on the surface of the anode or the cathode.
  • 31. The apparatus of claim 30 wherein the intervening dielectric material is configured to allow transmission of a flow of electrons therethrough.
  • 32. The apparatus of claim 30 wherein the intervening dielectric material layer is partially etched to form a porous structure to support the grid.
  • 33. The apparatus of claim 1 wherein the array of nanotubes is arranged on an array of metal wires to form the grid.
  • 34. The apparatus of claim 1 wherein the grid is configured to receive an AC input having an input frequency and an input amplitude and the anode is configured to produce an ac output having an output frequency that is substantially the same as the input frequency and an output amplitude that is greater than the input frequency.
  • 35. The apparatus of claim 34 wherein the input frequency includes microwave frequencies.
  • 36. The apparatus of claim 34 wherein the input frequency includes radio wave frequencies.
  • 37. An apparatus, comprising: a cathode, an anode, and a grid, wherein the grid is at least partially formed by an array of nanowires;wherein the cathode, anode, and grid are responsive to inputs to produce a potential barrier between the grid and the anode such that a set of electrons from the cathode can tunnel through the potential barrier to produce a net current at the anode.
  • 38. The apparatus of claim 37 wherein the array of nanowires includes a metal.
  • 39. The apparatus of claim 38 wherein the metal includes at least one of nickel, platinum, silver, and gold.
  • 40. The apparatus of claim 37 wherein the array of nanowires includes a semiconductor.
  • 41. The apparatus of claim 40 wherein the semiconductor includes at least one of silicon and gallium nitride.
  • 42. The apparatus of claim 37 at least one nanowire in the array of nanowires is at least partially covered with an insulating dielectric.
  • 43. The apparatus of claim 37 wherein at least one of the anode and the cathode is in contact with an insulator, and wherein the array of nanotubes is in contact with the insulator.
  • 44. A vacuum electronics device comprising: a cathode;an anode; andan array of grids configured to modulate a flow of charged particles between the cathode and the anode in device operation, wherein the array of grids is arranged to create at least one potential barrier through which the flow of charged particles can tunnel;wherein at least one grid in the array of grids is at least partially formed by an array of at least one of nanotubes and nanowires.
  • 45. The vacuum electronics device of claim 1 wherein the cathode, anode, and array of grids at least partially forms at least one of a vacuum tube, a power amplifier, a klystron, a gryrotron, a traveling-wave tube, a field-emission triode, and a field emission display.
CROSS-REFERENCE TO RELATED APPLICATIONS

If an Application Data Sheet (ADS) has been filed on the filing date of this application, it is incorporated by reference herein. Any applications claimed on the ADS for priority under 35 U.S.C. §§119, 120, 121, or 365(c), and any and all parent, grandparent, great-grandparent, etc. applications of such applications, are also incorporated by reference, including any priority claims made in those applications and any material incorporated by reference, to the extent such subject matter is not inconsistent herewith. The present application claims the benefit of the earliest available effective filing date(s) from the following listed application(s) (the “Priority Applications”), if any, listed below (e.g., claims earliest available priority dates for other than provisional patent applications or claims benefits under 35 USC §119(e) for provisional patent applications, for any and all parent, grandparent, great-grandparent, etc. applications of the Priority Application(s)). The present application constitutes a continuation-in-part of U.S. patent application Ser. No. 13/545,504, entitled PERFORMANCE OPTIMIZATION OF A FIELD EMISSION DEVICE, naming RODERICK A. HYDE, JORDIN T. KARE, NATHAN P. MYHRVOLD, TONY S. PAN, AND LOWELL L. WOOD, JR. as inventors, filed 10 Jul. 2012, which is currently co-pending or is an application of which a currently co-pending application is entitled to the benefit of the filing date, and which is a continuation of U.S. patent application Ser. No. 13/374,545, entitled FIELD EMISSION DEVICE, naming RODERICK A. HYDE, JORDIN T. KARE, NATHAN P. MYHRVOLD, TONY S. PAN, and LOWELL L. WOOD, JR. as inventors, filed 30 Dec. 2011. The present application claims benefit of priority of U.S. Provisional Patent Application No. 61/918,390, entitled USING NANOTUBES OR NANOWIRES AS GRIDS IN VACUUM ELECTRONICS, naming Roderick A. Hyde, Jordin T. Kare, Tony S. Pan and Lowell L. Wood, Jr., as inventors, filed 19 Dec. 2013, which was filed within the twelve months preceding the filing date of the present application or is an application of which a currently co-pending priority application is entitled to the benefit of the filing date. If the listings of applications provided above are inconsistent with the listings provided via an ADS, it is the intent of the Applicant to claim priority to each application that appears in the Domestic Benefit/National Stage Information section of the ADS and to each application that appears in the Priority Applications section of this application. All subject matter of the Priority Applications and of any and all applications related to the Priority Applications by priority claims (directly or indirectly), including any priority claims made and subject matter incorporated by reference therein as of the filing date of the instant application, is incorporated herein by reference to the extent such subject matter is not inconsistent herewith.

US Referenced Citations (43)
Number Name Date Kind
3254244 Gottlieb et al. May 1966 A
4721885 Brodie Jan 1988 A
5371371 Yamazaki et al. Dec 1994 A
5376184 Aspden Dec 1994 A
5834781 Fukuhara Nov 1998 A
5850120 Okamoto Dec 1998 A
6346931 Cathey et al. Feb 2002 B1
6590320 Abanshin et al. Jul 2003 B1
6621096 Lee et al. Sep 2003 B2
7122967 Jo et al. Oct 2006 B2
7173366 Choi et al. Feb 2007 B2
7268480 Choi et al. Sep 2007 B2
7462979 Konishi et al. Dec 2008 B2
8089206 Wei et al. Jan 2012 B2
8089579 Johnson et al. Jan 2012 B1
8575842 Hyde et al. Nov 2013 B2
8596466 Hauge et al. Dec 2013 B2
8674300 Adamec Mar 2014 B2
20030006684 Kawate et al. Jan 2003 A1
20030127594 Schneiker Jul 2003 A1
20050248256 Song et al. Nov 2005 A1
20060284539 Sung Dec 2006 A1
20090115305 Segal May 2009 A1
20090195138 Xiao Aug 2009 A1
20090303654 Fan et al. Dec 2009 A1
20100066245 Van Spijker Mar 2010 A1
20100283436 Chung et al. Nov 2010 A1
20110037400 Kim et al. Feb 2011 A1
20110139203 Yap Jun 2011 A1
20110192976 Own et al. Aug 2011 A1
20110201201 Arnold et al. Aug 2011 A1
20110226960 Zhang et al. Sep 2011 A1
20120006784 Lin Jan 2012 A1
20130169108 Cheatham, III et al. Jul 2013 A1
20130169142 Hyde et al. Jul 2013 A1
20130169156 Hyde et al. Jul 2013 A1
20130169193 Hyde et al. Jul 2013 A1
20130221843 Cheatham, III et al. Aug 2013 A1
20130229105 Cheatham, III et al. Sep 2013 A1
20130229133 Cheatham, III et al. Sep 2013 A1
20130313980 Cheatham, III et al. Nov 2013 A1
20140070696 Cheatham, III et al. Mar 2014 A1
20140333213 Cheatham, III et al. Nov 2014 A1
Foreign Referenced Citations (7)
Number Date Country
1069828 Mar 1993 CN
1481542 Mar 2004 CN
1816684 Aug 2006 CN
10-1635245 Jan 2010 CN
102 339 699 Feb 2012 CN
102339699 Feb 2012 CN
451256 Aug 2001 TW
Non-Patent Literature Citations (25)
Entry
European Patent Office, Supplementary European Search Report, Pursuant to Rule 62 EPC; App. No. EP12861564; Jul. 23, 2015 (received by our Agent on Jul. 20, 2015); pp. 1-6.
European Patent Office, Supplementary European Search Report, Pursuant to Rule 62 EPC; App. No. EP 12863100; Oct. 7, 2015 (received by our Agent on Oct. 14, 2015); pp. 1-6.
The State Intellectual Property Office of P.R.C., Notification of The First Office Action; App. No. 201280070838.7; Nov. 25, 2015, (received by our agent on Dec. 2, 2015); pp. 1-6 (machine translation provided).
State Intellectual Property Office of P.R.C., Notification of The First Office Action; Chinese Patent App. No. 201280070924.8; Nov. 25, 2015, (received by our agent on Dec. 2, 2015); 8 pages (machine translation provided).
Chinese State Intellectual Property Office, Decision of Final Rejection, App. No. 2012/80065581.6 (Based on PCT Patent Application No. PCT/US2012/071833); Dec. 21, 2015 (received by our Agent on Jan. 5, 2016); pp. 1-6 (machine translation provided, 6 pages total).
The State Intellectual Property Office of P.R.C., First Office Action, App. No. 2013/80015575.4 (Based on PCT Patent Application No. PCT/US2013/038254); Feb. 3, 2016 (received by our Agent on Feb. 13, 2016); pp. 1-11 (machine translation, as provided).
Chinese State Intellectual Property Office, Notification of the First Office Action, App. No. 2012/80070914.4; Apr. 20, 2016 (recieved by our Agent on Apr. 27, 2016) pp. 1-13 (machine translation provided).
The State Intellectual Property Office of P.R.C., First Office Action, App. No. 2012/80070857.X (Based on PCT Patent Application No. PCT/US2012/071837); Jun. 29, 2016 (received by our Agent on Jun. 24, 2016); pp. 1-13 (machine translation, as provided).
The State Intellectual Property Office of P.R.C.; Notification of the Second Office Action; App. No. 2012/80070924.8; Jul. 6, 2016 (received by our Agent on Jul. 11, 2016); pp. 1-3 (machine translation provided).
The State Intellectual Property Office of P.R.C.; Notification of the Second Office Action; App. No. 2012/80070838.7; Jul. 6, 2016 (received by our Agent on Jul. 11, 2016); pp. 1-7 (machine translation provided).
The State Intellectual Property Office of P.R.C.; Notification of the Second Office Action; App. No. 2013/80015575.4; Aug. 19, 2016 (recieved by our Agent on Aug. 23, 2016); pp. 1-4 (machine translation provided).
The State Intellectual Property Office of P.R.C., Second Office Action, App. No. 2012/80065581.6 (Based on PCT Patent Application No. PCT/US2012/071833); Jul. 22, 2016 (received by our Agent on Jul. 27, 2016); pp. 1-9 (machine translation, as provided).
European Search Report; European App. No. EP 12 86 3524; Jul. 9, 2015 (received by our agent on Jul. 6, 2015; pp. 1-10.
Stephanos, Cyril; “Thermoelectronic Power Generation from Solar Radiation and Heat”; Dec. 17, 2012; pp. 1-151; located at: http://opus.bibliothek.uni-augsburg.de/opus4/files/2253/Dissertation—Stephanos.pdf.
Alam et al.; “Secondary electronic yield of multiwalled carbon nanotubes”; Applied Physics Letters; bearing a date of Dec. 28, 2010; pp. 261902-1-261902-3; vol. 97; American Institute of Physics.
Farmer et al.; “Atomic Layer Deposition on Suspended Single-Walled Carbon Nanotubes via Gas-Phase Noncovalent Functionalization”; Nano Letters; bearing a date of Feb. 6, 2006; pp. 699-703; vol. 6; No. 4; American Chemical Society.
Freitag et al.; “Photoconductivity of Single Carbon Nanotubes”; Nano Letters; bearing a date of Jun. 6, 2003; pp. 1067-1071; vol. 3; No. 8; American Chemical Society.
Gao et al.; “Large-Scale Fabrication of Aligned Single-Walled Carbon Nanotube Array and Hierarchical Single-Walled Carbon Nanotube Assembly”; J. Am. Chem. Soc. Communications; bearing a date of Dec. 7, 2004; pp. 16698-16699; vol. 126; American Chemical Society.
Huang et al.; “Growth of Millimeter-Long and Horizontally Aligned Single-Walled Carbon Nanotubes on Flat Substrates”; J. Am. Chem. Soc. Communications; bearing a date of Apr. 22, 2003; pp. 5636-5637; vol. 125; American Chemical Society.
Huang et al.; “Ultralong, Well-Aligned Single-Walled Carbon Nanotube Architectures on Surfaces”; Advanced Materials Communications; Oct. 2, 2003; pp. 1651-1655; vol. 15; No. 19; WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kershner et al.; “Placement and orientation of individual DNA shapes on lithographically patterned surfaces”; Nature Nanotechnology Letters; Sep. 2009; pp. 557-561; vol. 4; Macmillan Publishers Limited.
Liu et al.; “Controlled Growth of Super-Aligned Carbon Nanotube Arrays for Spinning Continuous Unidirectional Sheets with Tunable Physical Properties”; Nano Letters; bearing a date of Dec. 10, 2007; pp. 700-705; vol. 8; No. 2; American Chemical Society.
Shulaker et al.; “Carbon nanotube computer”; Nature Letter; Sep. 26, 2013; pp. 526-530; vol. 501; Macmillan Publishers Limited.
Zhang et al.; “Superaligned Carbon Nanotube Grid for High Resolution Transmission Electron Microscopy of Nanomaterials”; Nano Letters; bearing a date of May 5, 2008; pp. 2564-2569; vol. 8; No. 8; American Chemical Society.
The State Intellectual Property Office of P.R.C., Third Office Action, App. No. 2012/80065581.6 (Based on PCT Patent Application No. PCT/US2012/071833); Dec. 7, 2016 (received by our Agent on Dec. 12, 2016); pp. 1-10 (machine translation, as provided).
Related Publications (1)
Number Date Country
20150179386 A1 Jun 2015 US
Provisional Applications (1)
Number Date Country
61918390 Dec 2013 US
Continuations (1)
Number Date Country
Parent 13374545 Dec 2011 US
Child 13545504 US
Continuation in Parts (1)
Number Date Country
Parent 13545504 Jul 2012 US
Child 14539571 US