Field emission display cathode (FED) plate with an internal via and the fabrication method for the cathode plate

Information

  • Patent Grant
  • 6749476
  • Patent Number
    6,749,476
  • Date Filed
    Wednesday, November 7, 2001
    23 years ago
  • Date Issued
    Tuesday, June 15, 2004
    20 years ago
Abstract
an FED cathode plate with internal via includes an internal via; a second dielectric layer; a second gate line; a metal layer 12 covering the gate line and the internal via; and a contact. The internal via is located on a typical tape line. The second dielectric layer is located on the tape line and abutted against the internal via, thereby connecting to an anode by an adhesive. The second gate line is located on the second dielectric layer and abutted against the internal via. The metal layer is covered over the first gate line, the internal via, and the second gate line; and the contact is located on the tape line and connected adjacent to the second dielectric layer, thereby electrically connecting a lead to outside.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The invention relates to an FED structure, particularly to an FED cathode plate with an internal via and the fabrication method for the cathode plate, which uses the vaporization to form the internal via such that the cathode sealing area of FED appears homogeneous, thereby increasing the yield.




2. Description of the Related Art





FIG. 1

is a schematic diagram of a typical FED cathode plate. In

FIG. 1

, the FED cathode plate is generally formed by layers successively deposited onto a substrate


10


. The layers include a resistive layer


11


, a cathode conductor layer


13


, a microtip


2


, a microtip cavity


3


, a microtip hole


4


, a gate line


5


, a contact


7


, a dielectric layer


16


, a tape line


18


, a seal


8


, and an anode plate


9


.




As shown in

FIG. 1

, in such a structure, the FED emits electrons induced by the electrical field of the gate line


5


from the microtip


2


through the hole


4


. The emitted electrons are conducted and sped up by the anode plate


9


and impact the fluorescent powder (not shown) distributed on the surface of the anode plate


9


. Thus, fluorescent light is emitted. The light can pass through the anode


9


and present on the back of the anode


9


(i.e. display plate (not shown)) to display an image. The operation principle of the FED is generally similar to a Cathode Ray Tube (CRT), except that the FED can be produced in a thin flat panel display.




A typical FED cathode plate is prepared through


6


photolithography,


6


etchings, and


6


thin film processes. Like numbers refer to like components in all drawings.

FIG. 2

is a diagram of the fabrication steps of FIG.


1


. In

FIG. 2

, the steps include deposition, etching, evaporation, and lift-off. As shown in

FIG. 2

, the FED cathode plate is successively deposited onto a substrate


10


to constitute the layers having a microtip hole


4


on the top, as shown in

FIG. 2



a


. As shown in

FIG. 2



b


, the dielectric layer


16


is etched to form the microtip cavity


3


about 2 μm wide, using dry and wet etching. As shown in

FIG. 2



c


, graze evaporation is used on the plate with a slope of 20° to form an aluminium conductor layer


19


. As shown in

FIG. 2



d


, the evaporation is used in the plate with a vertical position like the arrow shown to form the microtip


2


within the microtip cavity


3


. As shown in

FIG. 2



e


, the phosphoric acid solution is used to lift off excessive deposition, including the layer


19


, and only leave the microtip


2


within the cavity


3


. Thus, a typical cathode plate is completed. Further, a glass frit is used to join the cathode plate to the anode plate


9


which are then sealed to form an electrode in vacuum.




The sealing area of the electrode is located around the light-emitting region of the display (FIG.


1


). The sealing prevents outside air from diffusing into the display, thus ensuring the integrity of the display's vacuum. The glass frit, however, has a tendency toward corruption. Accordingly, chromium (Cr) is used in the passages (i.e. tape line


18


) of the two lateral edges through which the glass frit passes. Although the chromium can prevent corruption from the glass frit, the adhesion difference between chromium and the SiO


2


composing the dielectric layer


16


can easily cause splits in the edge of the structure during durability testing of the product, compromising the vacuum inside the display. In such cases, the display provides uneven illumination and a friable structure in the sealed area, thus reducing the yield. As well, the hole


4


is small, about 1 μm, and the efficient depth of focus (DOF) for photolithography is low, so that exposure uniformity may be insufficient, further causing stepper shots' marks, reducing the yield of the cathode plate.




SUMMARY OF THE INVENTION




Accordingly, an object of the invention is to provide an FED cathode plate with an internal via, which prevents diffusion of outside air from corrupting the vacuum inside, thus increasing the evenness and durability of the FED frame.




Another object of the invention is to provide a fabrication method for the FED cathode plate with an internal via, which uses the internal via and improves the processes, thereby reducing the cycle, the limit, and the cost in the processes.




The invention is an FED cathode plate with an internal via and the fabrication method for the FED cathode plate. The FED cathode plate with an internal via includes: a substrate; a resistive layer with a cathode conductor deposited over the substrate; a tape line located on the substrate and kept separate from the resistive layer; a first dielectric layer, located on the resistive layer and part of the tape line and having a microtip cavity to accommodate a microtip; a first gate line, located over the first dielectric layer and having a respective microtip hole of the microtip; an internal via, located on the tape line and abutted against the first dielectric layer and the gate line; a second dielectric layer, located on the tape line and abutted against the internal via, thereby connecting to an anode by an adhesive; a second gate line, located on the second dielectric layer and abutted against the internal via; a metal layer covering the first gate line, the internal via, and the second gate line; and a contact, located on the tape line and connected adjacent to the second dielectric layer, thereby electrically connecting a lead to the outside. The fabrication method includes the following steps: depositing an FED cathode structure from bottom to top including a substrate, a resistive layer, a dielectric layer, and a gate line; dry etching the cathode structure to form a cathode plate with the hole and cavity of a microtip, an internal via, and a contact; sloping the plate to a predetermined angle to form a metal layer by evaporation; forming a microtip within the microtip cavity by vertical layer evaporation; and lifting off the excessive deposition on the surface of the plate by immersing the plate in a chemical solution.











BRIEF DESCRIPTION OF THE DRAWINGS




The aforementioned objects, features and advantages of this invention will become apparent by referring to the following detailed description of a preferred embodiment with reference to the accompanying drawings, wherein:





FIG. 1

is a schematic diagram of a typical FED cathode plate;





FIG. 2

is a diagram of the fabrication steps of

FIG. 1

;





FIG. 3

is a schematic diagram of an FED cathode plate of the invention;





FIG. 4

is a diagram of the fabrication steps of

FIG. 3

;





FIG. 5

is a comparison table of the fabrication steps of

FIGS. 2 and 4

; and





FIGS. 6



a


to


6




f


are cross sections of the manufacturing process for the FED cathode plate as shown in FIG.


3


.











DETAILED DESCRIPTION OF THE INVENTION





FIG. 3

is a schematic diagram of an FED cathode plate according to the invention. In

FIG. 3

, in addition to the typical FED structure, the structure also includes an internal via


6


; a second dielectric layer


16




b


, a second gate line


5




b


, and a metal layer


12


covering the gate lines


5




a


,


5




b


and the internal via


6


.




As shown in

FIG. 3

, the FED cathode plate with the internal via has a substrate


10


as the base of deposition. The material of the substrate


10


is glass. The resistive layer


11


, a doped layer with a plurality of cathode conductors


13


, is implemented over the substrate


10


to prevent a microtip


2


from being formed from excessive current. The material for the cathode conductors is niobium (Nb). The cathode conductors


13


are etched based on a column pattern to create a column line surrounding the cathode conductors


13


. At the same time, the tape line


18


is formed on the substrate


10


maintaining a distance from the resistive layer


11


. The tape line


18


is chromium (Cr). The tape line


18


is a thin film deposited along with the path from gate lines


5




a


and


5




b


, through a contact


7


, bond wiring to a metal pad (not shown) outside. Next, the cathode is joined and sealed to the anode


9


with an adhesive


8


, e.g. glass frit, thereby producing an electrode. The electrode interacts with the outside through the thin film


18


. The first dielectric layer


16




a


formed of SiO


2


is located on the resistive layer


11


and part of the tape line


18


and has microtip cavities


3


to accommodate microtips


2


. Dry etching the first dielectric layer


16




a


forms the cavity


3


, about 2 μm wide. The first dielectric layer


16




a


acts as an insulator. The first gate line


5




a


is located on the first dielectric layer


16




a


in order to use the first dielectric layer


16




a


to prevent the first gate line


5




a


from directly contacting the cathode conductors


13


. The material for the pate line is niobium (Nb). The first gate line


5




a


has a respective hole


4


located at the microtip


2


. The hole


4


is deposited to be a diameter about 1.6 μm wide. The internal via


6


is located on the tape line


18


and abutted against the first dielectric layer


16




a


and the gate line


5




a


. The internal via


6


is formed by dry etching. The second dielectric layer


16




b


is located on the tape line and abutted against the internal via


6


. The first dielectric layer


16




a


and the second dielectric layer


16




b


have the same height and is SiO


2


. The adhesive


8


, for example, glass frit, is used to connect the second dielectric layer


16




b


of the cathode to an anode


9


. The second gate line


5




b


is located on the second dielectric layer


16




b


and abutted against the internal via


6


. The first gate line


5




a


is the same height as the second gate line. The metal layer is covered over the first gate line


5




a


, the internal via


6


, and the second gate line


5




b


. The metal layer


12


is about 2000 Å and is formed of niobium (Nb). The contact


7


is located on the tape line


18


and connected adjacent to the second dielectric layer


16




b


, thereby electrically connecting a lead (not shown) to the outside through the internal via


6


and the tape line


18


.




When the adhesive (glass frit)


8


combines and seals with the anode


9


, because the adhesive


8


erodes the Nb-including metal layer


12


on the second gate line


5




b


, a separate distance between the adhesive


8


and the metal


12


is necessary, as shown in FIG.


3


.





FIG. 4

is a diagram of the fabrication steps of FIG.


3


. In

FIG. 4

, The fabrication method includes the steps: depositiong an FED cathode structure (S


41


); dry etching the cathoke structure to form a cathode plate (S


42


); evaporation the plate with a predetermined slope angle (S


43


); forming a microtip by vertical layer evaporation (S


44


); and lifting off the excessive deposition by a solution (S


45


).




As shown in

FIG. 4

, in steps


341


and


342


, the detail is shown in

FIG. 5

that layers except for the substrate


10


are in the comparison table.

FIGS. 6



a


to


6




f


are cross sections of the manufacturing process for the FED cathode plate as shown in FIG.


3


. In

FIG. 6



a


. for the novel part concurrently referring to

FIG. 3

, a layer such as an Nb-including metal layer is deposited to form a plurality of cathode conductors


13


and the tape line


18


. In

FIG. 6



b


, a resistive layer


11


is formed to cover the cathode conductors


13


and maintain a distance from the tape line


18


. The resistive layer


11


is a doped-silicon resistive layer having the resistance function. In

FIG. 6



c


, a dielectric layer


16


and a gate line


5


is formed on the resistive layer


11


and the tape line


18


. In

FIG. 6



d


, the dielectric layer


16


and a gate line


5


is etched to form a microtip cavity


3


, a hole


4


an internal via


6


, and a contact


7


. Thus, the invention deposits a FED cathode structure from bottom to top including a substrate, a resistive layer, a dielectric layer and a gate line. Also, the intention uses dry etching in the cathode structure to form a cathode plate with the hole and the microtip cavity, an internal via, and a contact. In

FIG. 6



e


, the plate is sloped to a predetermined angle in order to form a metal layer on the gate line and the internal via contacting with the tape line by evaporation. The predetermined angle is preferably between 10 and 30 degrees. The material for evaporation to form the metal layer is Nb, compared to Al in the prior art. In

FIG. 6



f


, the plate is recovered in a horizontal direction with the face to be deposited downward, thereby forming a microtip


2


within the microtip cavity


3


. The microtip


2


is molybdenum. Sequentially, excessive deposition on the surface of the plate is removed by solution, e.g. phosphoric acid and the Nb-including metal layer


12


and the microtip


2


are retained. Finally, referring to FIG.


3


. the completed cathode plate is joined and sealed with the anode


9


by adhesive


8


, e.g. glass frit. A FED is thus completed.




The invention, other than the


6


photolithography,


6


etchings, and


6


film processes in the prior art (see the original part of FIG.


5


), only applies 4 photolithography, 4 etchings, and 5 film processes (the four layers of FIG.


5


+substrate), when using the selected metal material. Therefore, required processes are reduced by about ⅓ from the prior art, reducing fabrication costs and cycle times, thereby reducing the likelihood of defect occurring. In the new process, the invention replaces the original tape line and dielectric layer (both in contact with the sealing area) with a single dielectric layer


16


(including


16




a


and


16




b


). Also, the internal via


6


connecting the gate line


5


(including


5




a


and


5




b


) to the metal line (not shown) of the sealing area of the plate edge is concurrently finished in the process of forming the microtip. Thus, the sealed interface of the dielectric layer


16


(for example, SiO


2


) only exists with uniform adhesion on the surfaces of the two-side sealing areas of the cathode surface, so that splits around the sealed area of the FED edge are prevented. The inner FED maintains its high vacuum state. Moreover, the invention keeps the microtip cavity the same size as the prior art but increases the size of the microtip hole in deed such that the DOF of its photolithogpahy is increased, reducing the stepper's shot mark caused by defocus.




Although the present invention has been described in its preferred embodiment, it is not intended to limit the invention to the precise embodiment disclosed herein. Those who are skilled in this technology can still make various alterations and modifications without departing from the scope and spirit of this invention. Therefore, the scope of the present invention shall be defined and protected by the following claims and their equivalents.



Claims
  • 1. A fabrication method for the Field Emission Display (FED) cathode plate with an internal via, comprising the steps:forming and defining a plurality of cathode conductors and a tape line on a substrate at the same time; depositing a resistive layer to cover the cathode conductors; sequentially forming a dielectric layer and a gate line on the resistive layer and the tape line; etching the gate line and the dielectric layer to form a cathode plate with a cavity of microtip, a hole upon the cavity of mirotip, an internal via, and a contact; sloping the plate to a predetermined angle to form a metal layer on the gate line and the internal via to contact with the tape line by evaporation, wherein the predetermined angle is ranged between 10 to 30 degrees; forming a microtip within the microtip cavity by vertical layer evaporation; and lifting off the excessive deposition on the surface of the plate by immersing the plate in a chemical solution.
  • 2. The fabrication method of claim 1, wherein glass is used to form the substrate.
  • 3. The fabrication method of claim 1, wherein doped silicon is used to form the resistive layer.
  • 4. The fabrication method of claim 1, wherein niobium-including metal is used to form the cathode conductor, the gate line, and the metal layer.
  • 5. The fabrication method of claim 1, wherein chromium-including metal is used to form the tape line.
  • 6. The fabrication method of claim 1, wherein SiO2 is used to form the dielectric layer.
  • 7. The fabrication method of claim 1, wherein molybdenum-including metal is used to form the microtip.
  • 8. The fabrication method of claim 1, further comprising the step of joining and sealing the completed cathode plate to an anode with an adhesive.
  • 9. The fabrication method of claim 1, wherein the adhesive is glass frit.
  • 10. The fabrication method of claim 1, wherein the hole is about 1.6 μm wide.
Priority Claims (1)
Number Date Country Kind
90102470 A Feb 2001 TW
Parent Case Info

This application is a division of prior application Ser. No. 09/855,711 filed May 16, 2001, now abandoned.

US Referenced Citations (19)
Number Name Date Kind
5277638 Lee Jan 1994 A
5461009 Huang et al. Oct 1995 A
5509839 Liu Apr 1996 A
5543686 Huang et al. Aug 1996 A
5621272 Levine et al. Apr 1997 A
5663608 Jones et al. Sep 1997 A
5683282 Liu et al. Nov 1997 A
5686790 Curtin et al. Nov 1997 A
5723052 Liu Mar 1998 A
5772485 Jeng et al. Jun 1998 A
5820433 Liu et al. Oct 1998 A
5886460 Jones et al. Mar 1999 A
5893787 Chan et al. Apr 1999 A
6000980 Baldi et al. Dec 1999 A
6045425 Bothra et al. Apr 2000 A
6062931 Chuang et al. May 2000 A
6133678 Kishino et al. Oct 2000 A
6218778 Tomita et al. Apr 2001 B1
6425791 Raina et al. Jul 2002 B1