The present invention relates to displays, to be specific, a field emission display having multi-layer structure.
Flat panel display devices are widely used for their light weight and thin structure, and the common flat panel displays include liquid crystal displays (LCD), plasma display panels(PDP), electroluminescent (EL) displays, and field emission displays (FED) and so on. Among them, because of its high-definition and lower power consumption, LCD has occupied the whole display market for notebook computers and partial display market for desktop computers. But it is not the ideal display due to the high cost and long response time. Plasma Display Panels have a shorter lifetime and their image quality will decrease after certain working period.
Using cold-cathode arrays as its electron source, a field emission display (FED) implements displaying through electron bombardment on phosphor. Having the same display principle as the traditional cathode ray tubes (CRT), FEDs have advantages in active luminescence, image quality, display speed, brightness, and resolution. Although CRTs have high power consumption and large volume for adopting thermionic cathodes, FEDs have low power consumption and can realize the flat-panel structure by introducing field-emission cold cathodes.
In prior art, the existing field emission displays currently have a triode structure, as shown in the
The Invention is about a multi-layer structure field emission display, whose fabrication process is simple, and whose performance is excellent.
The said multi-layer structure field emission display is composed of three separated plates, a cathode plate, a gate plate, and an anode plate. The three plates are separated and insulated from each other by solid insulating materials and have fixed distance from each other. Operation voltages are applied to the three plates. Using sealing materials, the whole multiple-layered display device can be sealed into an isolated space, whose internal gas can be pumped by a vacuum pump to form an internal vacuum space. Cathodes are prepared on the cathode plate, which work as electron emission sources. The said gate plate has arrays of apertures, which act as the channels limiting the electron trajectory. Gate electrodes are prepared on corresponding positions to gate apertures. The said anode plate is a glass plate covered by a conductive layer and a phosphor layer.
When the device is working, its whole interior is in vacuum. When a voltage is applied between one cathode row and one gate electrode column, electrons will be emitted out from the cathode, through the gate aperture, and bombard the anode. The bombardment of electrons on the phosphor layer will give out light and implement the displaying of pixels.
The multi-layer structure field emission display device structure in the invention simplifies the manufacturing process by assembling several plates together, on which the cathodes, the gate electrons, and the anodes are separately fabricated. Consequentially, the manufacturing cost will be reduced, and at same time, the focus electrodes can be built easily on the multiple-layer structure to focus the electron beams emitted by cathode and eliminate the inter-pixel crosstalk effectively.
In these figures: Substrate - - - 1; Insulating Layer - - - 2, 18, 19; Cathode - - - 3, 9; Gate Electrode - - - 4; Insulation Spacer - - - 5; Anode - - - 6; Cathode Plate - - - 7; Cathode electrode - - - 8; Gate Electrode - - - 10; Gate Plate - - - 11; Gate Aperture - - - 12; Anode Plate - - - 13; Transparent Conducting Layer - - - 14; Phosphor Layer - - - 15; Insulator - - - 16; Focusing Electrode - - - 17; Insulating-film Layer - - - 18, 19.
Combing with figures, the following contents give more detailed descriptions to the invention.
As shown in
The gate plate 11 can be made of glass, ceramic, and metals. Firstly, the gate apertures can be prepared through machinery drilling, chemical corrosion, laser processing, or sandblast techniques. As shown in
As shown in
The focusing electrode 17 and cathode electrode 8 are parallel or perpendicular to each other. The leads of focusing electrode strip 17 can be led out from one or two sides of the gate plate.
The anode plate 13 is made of glass. First a transparent conducting layer 14 (for example, indium tin oxide, ITO for short) is prepared on the glass plate first, and then a phosphor layer 15 in strips or points is prepared on the transparent conducting layer 14. For mono-color displays, the phosphor layer 15 can be also painted as a continuous layer. An alternative approach is that a phosphor layer is prepared first and an aluminum thin film is evaporated on it.
After the three plates are fabricated separately, they are assembled together and insulated from one another. During the assembling, the cathode, the gate aperture, and the phosphor pixel are aligned to one another. Sealant, such as low melting-point glass frit, is applied between the plates to fix and seal them. Solid Insulating spacers are used to insulate the three plates. Insulating spacers can be built on the plates at appropriate positions through screen printing technique to limit the distances between plates. Or, independent spacers made of insulating materials can be used and fixed by the pressure of plates, which also limit the intervals between plates.
Combining with
The gate plate 11 is made of ceramic. Round gate apertures are prepared on the gate plate 12 through laser beam processing technique. Strips of chromium layer were fabricated using magnetron sputtering technique on the gate plate 11 through a shadow mask.
Conducting layer 14 of ITO is prepared using electron beam evaporation on glass anode plate 13. Strips of phosphors layer are then prepared on ITO conducting layer 14.
After the three plates described above all have been finished, layers of solid insulating material is applied among the three plates of gate, cathode, and anode to insulate them from each other. Low melting-point glass frit is applied to fix and assemble them. During the assembly, the cathode, gate electrode, and phosphor pixel are aligned to one another.
After the whole display device has been assembled together, the device is tested when the internal space is pumped to vacuum. After applying a voltage between one gate electrode column and one cathode row, electrons will be emitted from the cathodes, through the gate apertures to bombard the anode. The displaying of pixels can be achieved.
Based on the technology of this invention, displays of various sizes can be manufactured using various size plates, and large displays can also be manufactured through combination of the small size plates. And the newly invented display device can be applied in various display terminals and televisions, especially in digital high definition televisions larger than 40 inch.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN2005/000432 | 4/1/2005 | WO | 00 | 6/19/2009 |