Field emission displays having a light-blocking layer in the extraction grid

Information

  • Patent Grant
  • 6278229
  • Patent Number
    6,278,229
  • Date Filed
    Wednesday, July 29, 1998
    26 years ago
  • Date Issued
    Tuesday, August 21, 2001
    23 years ago
Abstract
A display apparatus includes a substrate and a plurality of emitters formed on the substrate. The apparatus also includes a dielectric layer formed on the substrate. The dielectric layer includes a plurality of openings each formed about one of the plurality of emitters. The dielectric layer and extraction grid together have a thickness, measured perpendicular to the substrate, similar to a height of the emitters above the substrate. The apparatus also includes an extraction grid formed on the dielectric layer. The extraction grid is formed substantially in a plane of tips of the plurality of emitters and includes openings each formed about and in close proximity to a tip of one of the plurality of emitters. The extraction grid includes germanium so that photons incident on exposed portions of the extraction grid are absorbed and are not transmitted to depletion regions associated with the emitters. This reduces distortion in operation of the display.
Description




TECHNICAL FIELD




This invention relates in general to visual displays for electronic devices, and in particular to an improved extraction grid for displays.




BACKGROUND OF THE INVENTION





FIG. 1

is a simplified side cross-sectional view of a portion of a display


10


including a faceplate


20


and a baseplate


21


in accordance with the prior art.

FIG. 1

is not drawn to scale. The faceplate


20


includes a transparent viewing screen


22


, a transparent conductive layer


24


and a cathodoluminescent layer


26


. The transparent viewing screen


22


supports the layers


24


and


26


, acts as a viewing surface and as a wall for a hermetically sealed package formed between the viewing screen


22


and the baseplate


21


. The viewing screen


22


may be formed from glass. The transparent conductive layer


24


may be formed from indium tin oxide. The cathodoluminescent layer


26


may be segmented into pixels yielding different colors for color displays. Materials useful as cathodoluminescent materials in the cathodoluminescent layer


26


include Y


2


O


3


:Eu (red, phosphor P-56), Y


3


(Al, Ga)


5


O


12


:Tb (green, phosphor P-53) and Y


2


(SiO


5


):Ce (blue, phosphor P-47) available from Osram Sylvania of Towanda PA or from Nichia of Japan.




The baseplate


21


includes emitters


30


formed on a planar surface of a semiconductor substrate


32


. The substrate


32


is coated with a dielectric layer


34


. In one embodiment, this is effected by deposition of silicon dioxide via a conventional TEOS process. The dielectric layer


34


is formed to have a thickness, measured in a direction perpendicular to a surface of the substrate


32


as indicated by direction arrow


36


, that is less than a height of the emitters


30


. An extraction grid


38


comprising a conductive material is formed on the dielectric layer


34


. The extraction grid


38


may be realized, for example, as a thin layer of polysilicon. The radius of an opening


40


created in the extraction grid


38


, which is also approximately the separation of the extraction grid


38


from the tip of the emitter


30


, is about 0.4 microns, although larger or smaller openings


40


may also be employed. This separation is defined herein to mean being “in close proximity.”




Another dielectric layer


42


is formed on the extraction grid


38


. A chemical isolation layer


44


, such as titanium, is formed on the dielectric layer


42


. A high atomic mass layer


46


, such as tungsten, is formed on the chemical isolation layer


44


for reasons that will be explained below.




The baseplate


21


also includes a field effect transistor (“FET”)


50


formed in the surface of the substrate


32


for controlling the supply of electrons to the emitter


30


. The FET


50


includes an n-tank


52


formed in the surface of the substrate


32


beneath the emitter


30


. The n-tank


52


serves as a drain for the FET


50


and may be formed via conventional masking and ion implantation processes. The FET


50


also includes a source


54


and a gate electrode


56


. The gate electrode


56


is separated from the substrate


32


by a gate dielectric


57


and a field oxide layer


58


. The opening


40


in the high atomic mass layer


46


is typically about


10


microns in diameter, while the n-tank


52


is typically about 13 microns in diameter. The emitter


30


is typically about a micron wide, and several (e.g., four 25 or five) emitters


30


are included together with each n-tank


52


, although only one emitter


30


is illustrated.




The substrate


32


may be formed from p-type silicon material having an acceptor concentration N


A


ca. 1-5×10


15


/cm


3


, while the n-tank


52


may have a surface donor concentration N


D


ca. 1-2×10


16


/cm


3


. A depletion region


60


is formed at a p-n junction between the n-tank


52


and the p-type substrate


32


.




In operation, the extraction grid


38


is biased to a voltage on the order of 100 volts, although higher or lower voltages may be used, while the substrate


32


is maintained at a negative voltage. Signals coupled to the gate


56


of the FET


50


turn the FET


50


on, allowing electrons to flow from the source


54


to the n-tank


52


and thus to the emitter


30


. Intense electrical fields between the emitter


30


and the extraction grid


38


then cause field emission of electrons from the emitter


30


. A larger positive voltage, ranging up to as much as 5,000 volts or more but often 2,500 volts or less, is applied to the faceplate


20


via the transparent conductive layer


24


. The electrons emitted from the emitter


30


are accelerated to the faceplate


20


by this voltage and strike the cathodoluminescent layer


26


. This causes light emission in selected areas, i.e., those areas adjacent to where the FETs


50


are conducting, and forms luminous images such as text, pictures and the like. Integrating the FETs


50


in the substrate


32


to provide an active display


10


(i.e., a display


10


including active circuitry for addressing and providing control signals to specific emitters


30


etc.) yields advantages in size, simplicity and ease of interconnection of the display


10


to other electronic componentry.




Visible photons from the cathodoluminescent layer


26


and photons that travel through the faceplate


20


can also travel back through the openings


40


. When photons travel through the portions of the extraction grid


38


exposed by the openings


40


and impinge on the substrate


32


, electron-hole pairs are generated. When electron-hole pairs are produced near the p-n junction between the n-tank


52


and the p-type substrate


32


, the electrons and holes are efficiently separated by the electrical fields associated with the p-n junction. The electrons are swept into the n-tank


52


and the holes are swept into the p-type substrate


32


surrounding the n-tank


52


. The electrons provide an undesirable component to electrons emitted by the emitter


30


. This results in distortion in the images produced by the display


10


.




For example, a blue pixel emitting blue light could provide a photon that reaches semiconductor material underlying the emitter


30


associated with an adjacent red pixel, which is not intended to be emitting light. This may cause an emitter current component resulting in an anode current in the red pixel, thus providing unwanted red light and thereby distorting the color intended to be displayed.




Alternatively, an area intended to be a dark area in the display


10


may emit light when that area is exposed to high ambient light conditions. These effects are undesirable and tend to reduce display dynamic range in addition to distorting the intended image.




There is therefore a need for a way to shield p-n junctions associated with monolithic emitters for use in field emission displays from photons incident on exposed portions of the extraction grid.




SUMMARY OF THE INVENTION




In accordance with one aspect of the invention, a field emission display includes a substrate, a plurality of emitters formed on the substrate, a semiconductor device formed in or on the substrate for controlling the flow of electrons to the emitters, and a dielectric layer formed on the substrate. The dielectric layer includes an opening formed about each of the emitters. The display also includes an extraction grid formed substantially in a plane of tips of the plurality of emitters and includes openings each formed about and in close proximity to a tip of one of the plurality of emitters. Significantly, the extraction grid is fabricated from germanium.




As a result, the extraction grid has significantly greater optical absorption of light incident on it through openings in the layers on it. This prevents visible photons from traveling through the extraction grid and creating electron-hole pairs in a depletion region associated with the semiconductor device. This reduces distortion in field emission displays.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a simplified side cross-sectional view of a portion of a display including a faceplate and a baseplate in accordance with the prior art.





FIG. 2

is a simplified side cross-sectional view of a portion of a display according to an embodiment of the present invention.





FIG. 3

is a simplified side cross-sectional view of a portion of an emitter and extraction grid assembly at one stage of fabrication according to an embodiment of the present invention.





FIG. 4

is a simplified side cross-sectional view of a portion of an emitter and extraction grid assembly at one stage of fabrication according to another embodiment of the present invention.





FIG. 5

is a simplified side cross-sectional view of a portion of the emitter and extraction grid assembly at a later stage of fabrication according to an embodiment of the present invention.





FIG. 6

is a simplified side cross-sectional view of a portion of the emitter and extraction grid assembly at a still later stage of fabrication according to an embodiment of the present invention.





FIG. 7

is a flow chart of a process for fabricating emitter and extraction grid assemblies according to an embodiment of the present invention.





FIG. 8

is a simplified block diagram of a computer using the extraction grid assembly according to an embodiment of the present invention.











DETAILED DESCRIPTION OF THE INVENTION





FIG. 2

is a simplified side cross-sectional view of a portion of a display


10


′ in accordance with one embodiment of the invention.

FIG. 2

is not drawn to scale. Many of the components used in the display


10


′ shown in

FIG. 2

are identical to components used in the display


10


of FIG.


1


. Therefore, in the interest of brevity, these components have been provided with the same reference numerals, and an explanation of them will not be repeated. Some of the elements shown in

FIG. 1

are not repeated in

FIG. 2

for clarity of representation.




When the extraction grid


38


of

FIG. 1

is formed as a (e.g., ca. 0.1-0.2 micron) polysilicon layer, light that is incident on those portions of the extraction grid


38


that are exposed by the openings


40


in the high atomic mass layer


46


, may penetrate the extraction grid


38


. This leads to unwanted electron emission and results in distortion of images displayed on the display


10


. The optical absorption coefficient α for silicon is about 10


4


/cm in the middle of the visible range. The attenuation factor (transmitted optical intensity I divided by incident optical intensity I


o


) is found from the optical absorption coefficient α via I=I


o


e


−αx


, where x is the thickness of the material through which the light is transmitted.




The optical absorption coefficient of germanium is about 50 times greater than the optical absorption coefficient of silicon. More specifically, the optical absorption coefficient for germanium is at least one order of magnitude greater than that of silicon over the entire visible range and approaches a value two orders of magnitude greater than that of silicon at the red end of the visible spectrum. It has been discovered that extraction grids


38


′ or


38


″ (

FIG. 2

) incorporating germanium layers are markedly more effective in blocking transmission of incident light in the visible range than are those layers consisting only of polysilicon layers of comparable thickness. Each 0.1 micron of germanium provides an attenuation factor of about 6.7×10


−3


, which is more than two orders of magnitude more attenuation than that of silicon. In other words, less than one percent of the light that is incident on such layers is transmitted through these layers, compared to about 90% transmission for a comparable thickness of silicon. Baseplates


21


′ incorporating extraction grids


38


′ or


38


″ including germanium thus can be formed into displays


10


′ providing increased display dynamic range and reduced sensitivity to ambient light conditions than baseplates


21


(

FIG. 1

) that do not include germanium in the extraction grid


38


. This is because much less of the light that is incident on the portions of the extraction grid


38


′ or


38


″ that are exposed to ambient light by the openings


40


can be transmitted through the extraction grid


38


′ or


38


″ to the n-tank


52


to give rise to optically-induced emission of electrons from the emitters


30


.





FIG. 3

is a simplified side cross-sectional view of a portion of the emitter


30


and extraction grid


38


′ assembly at one stage in fabrication according to an embodiment of the present invention. In this embodiment, the extraction grid


38


′ is formed by a two layer structure fabricated on the dielectric layer


34


. A first layer


38


A may comprise polysilicon. A second layer


38


B of germanium is formed on the first layer


38


A. The first layer


38


A is provided to chemically isolate the second layer


38


B from the dielectric layer


34


to prevent the germanium in the second layer


38


B from reacting with the oxygen that is present in the dielectric layer


34


when an oxide is used for this layer. A thickness of between 0.05 and 0.15 microns provides adequate chemical isolation of the second layer


38


B from the dielectric layer


34


. A thickness of between 0.1 and 0.2 microns for the second layer


38


B provides both adequate conductivity and adequate light blocking characteristics. In one embodiment, the first layer


38


A has a thickness of 0.1 micron measured along the direction indicated by direction arrow


36


and the second layer


38


B has a thickness of 0.15 microns. Alternatively, a dielectric layer


34


could be used that is not an oxide, e.g., silicon nitride.




Typically, the second layer


38


B is formed via plasma-enhanced chemical vapor deposition or low pressure chemical vapor deposition using germane (GeH


4


) in a carrier gas such as helium, argon and/or hydrogen. If required, the second layer


38


B may be patterned in conventional CF


4


or SF


6


plasmas. The second layer


38


B may include amorphous or polycrystalline germanium.





FIG. 4

is a simplified side cross-sectional view of a portion of the emitter


30


and extraction grid


38


″ assembly at one stage in fabrication according to another embodiment of the present invention. In this embodiment, a third layer


38


C of the extraction grid


38


″ is formed on the second layer


38


B. The third layer


38


C may also comprise polysilicon. In one embodiment, the third layer


38


C has a thickness of 0.1 micron measured in the direction indicated by direction arrow


36


. One reason that the third layer


38


C might be desirable is to permit an oxide layer comprising the dielectric layer


42


(

FIG. 1

) to be formed on the extraction grid


38


″. This might be desirable and useful for electrically isolating the high atomic mass layer


46


(

FIG. 1

) from the extraction grid


38


″ by the dielectric layer


42


and for chemically isolating the second layer


38


B from the dielectric layer


42


. Alternatively, the embodiment of

FIG. 3

could be used with a dielectric layer


42


that is not an oxide, e.g., silicon nitride.




In the embodiments of

FIGS. 2 through 4

, it is advantageous to design the doping of the layers


38


A,


38


B and optional layer


38


C to provide a net sheet resistivity of between 500 and 5,000 ohms per square. In one embodiment, a sheet resistivity of 1,000 ohms per square is used. This sheet resistivity is low enough to allow the extraction grid


38


′ or


38


″ to provide the fields needed for field emission from the emitters


30


, and is high enough to prevent a short circuit between any one emitter


30


and the extraction grid


38


′ or


38


″ from preventing the display


10


′ from functioning.





FIG. 5

is a simplified side cross-sectional view of a portion of the substrate


32


, including the extraction grid


38


′ or


38


″ of

FIG. 3

or


4


, after planarization of the extraction grid


38


′ or


38


″ and dielectric layer


34


. Following deposition of the extraction grid


38


′ or


38


″, a conventional chemical-mechanical polish removes the “hill” comprising the dielectric layer


34


and extraction grid


38


′ or


38


″ immediately above the tip of the emitter


30


. This is typically carried out via a potassium hydroxide solution that incorporates suspended particles of controlled size, which may be silicon particles. It is important that the chemical-mechanical polish not damage the tip of the emitter


30


, i.e., that the polishing process stops short of reaching this tip.





FIG. 6

is a simplified side cross-sectional view of a portion of the emitter


30


and extraction grid


38


′ or


38


″ that illustrates the result of etching the structure of FIG.


5


. Following the chemical-mechanical polishing operation, the extraction grid


38


′ or


38


″ may be used as a mask for etching of the dielectric layer


34


to expose at least the tips of the emitters


30


in the openings


40


. This has the advantage of not requiring another cycle of photoresist application, exposure and development. This reduces labor content and materials requirements and also promotes increased yields by reducing the number of processing steps. When silicon dioxide is used to form the dielectric layer


34


, this step is usefully carried out by etching the dielectric layer


34


in buffered oxide etch (“BOE”), a conventional buffered aqueous hydrogen fluoride etch solution.




When the dielectric layer


34


is etched with BOE using the extraction grid


38


′ or


38


″ as an etch mask, it is important that the etch rate for the dielectric layer


34


be substantially higher than the etch rate for the extraction grid


38


′ or


38


″. Germanium and silicon are both substantially unaffected by exposure to BOE and thus are both well suited for forming the extraction grid


38


′ or


38


″.




Aluminum and titanium are both etched by BOE, for example. BOE does not etch tungsten, but tungsten does not adhere well to silicon dioxide, which is often used to form the dielectric layer


34


. As a result, a metallurgically compatible adhesion-promoting layer is required between tungsten and the dielectric layer


34


, such as titanium. Chromium resists etching by BOE, but reacts chemically with silicon dioxide. Germanium in the extraction grid


38


′ or


38


″ provides light-blocking capability together with chemical compatibility.





FIG. 7

is a flowchart of a process


70


for fabricating the emitter


30


and extraction grid


38


′ or


38


″ assemblies of

FIGS. 2 through 6

according to an embodiment of the present invention. The substrate


32


having a plurality of the emitters


30


has been previously formed, and the surface of the substrate


32


and the emitters


30


have been previously coated with the dielectric layer


34


. The process


70


begins in step


72


by forming the first layer


38


A (see

FIGS. 3 and 4

) on the dielectric layer


34


. In step


74


, the second layer


38


B comprising germanium is formed on the barrier layer


38


A. In step


76


, the third layer


38


C (see

FIG. 4

) may be formed on the second layer


38


B. In step


78


, chemical


30


mechanical polishing is used to remove those portions of the dielectric layer


34


, and the layers comprising the extraction grid


38


′ or


38


″, that are immediately above the emitters


30


, to provide the structure shown in FIG.


5


. The process


70


then ends and the display


10


′ is subsequently completed via conventional fabrication steps.





FIG. 8

is a simplified block diagram of a portion of a computer


80


using the display


10


′ fabricated as described with reference to

FIGS. 2 through 7

and associated text. The computer


80


includes a central processing unit


82


coupled via a bus


84


to a memory


86


, function circuitry


88


, a user input interface


90


and the display


10


′ including the second layer


38


B comprising germanium according to the embodiments of the present invention. The memory


86


may or may not include a memory management module (not illustrated) and does include ROM for storing instructions providing an operating system and a read-write memory for temporary storage of data. The processor


82


operates on data from the memory


86


in response to input data from the user input interface


90


and displays results on the display


10


′. The processor


82


also stores data in the read-write portion of the memory


86


. Examples of systems where the computer


80


finds application include personal/portable computers, camcorders, televisions, automobile electronic systems, microwave ovens and other home and industrial appliances.




Field emission displays


10


′ for such applications provide significant advantages over other types of displays, including reduced power consumption, improved range of viewing angles, better performance over a wider range of ambient lighting conditions and temperatures and higher speed with which the display can respond. Field emission displays


10


′ find application in most devices where, for example, liquid crystal displays find application.




An improved extraction grid


38


′ or


38


″ for the display


10


′ having improved optical isolation properties has been described. The extraction grid


38


′ or


38


″ is not significantly larger than conventional extraction grids


38


and does not require additional photolithographic steps. Increased optical isolation of the emitter


30


and any p-n junctions in the immediate vicinity of the emitter


30


lead to improvements in display dynamic range and reduced distortion in displays


10


′.




Although the present invention has been described with reference to specific embodiments, the invention is not limited to these embodiments. Rather, the invention is limited only by the appended claims, which include within their scope all equivalent devices or methods which operate according to the principles of the invention as described.



Claims
  • 1. A field emission display baseplate, comprising:a substrate; a plurality of emitters formed on the substrate; a dielectric layer formed on the substrate, the dielectric layer having an opening formed about each of the emitters; and an extraction grid formed on the dielectric layer and including a first non-germanium layer adjacent the dielectric layer and a second light-blocking layer formed on the first layer, the second light-blocking layer comprising germanium and having an optical transmissivity of less than one percent, the extraction grid formed substantially in a plane defined by the tips of the emitters and having an opening surrounding each tip of a respective one of the emitters.
  • 2. The baseplate of claim 1 wherein:the first layer comprises a polysilicon layer having a thickness of between 0.05 microns and 0.15 microns; and the second light-blocking layer includes a germanium-containing layer having a thickness of about 0.15 microns.
  • 3. The baseplate of claim 1 wherein the first and second layers together include a layer having a sheet resistance between 500 and 5,000 ohms per square.
  • 4. The baseplate of claim 1 wherein the extraction grid further includes a third layer formed on the second layer.
  • 5. The baseplate of claim 4 wherein the first and third layers include polysilicon.
  • 6. The baseplate of claim 1 wherein the extraction grid provides a sheet resistance of about 1,000 ohms per square.
  • 7. The baseplate of claim 1 wherein:the substrate includes silicon; and the plurality of emitters include n+ silicon, each of the plurality of emitters being formed on a n-tank including n-doped silicon, each of the n-tanks in turn formed in p-doped silicon, each of the plurality of emitters comprising a drain of a FET.
  • 8. The baseplate of claim 1 wherein the second lightblocking layer comprises polycrystalline germanium.
  • 9. The baseplate of claim 1 wherein the second lightblocking layer comprises amorphous germanium.
  • 10. A field emission display baseplate, comprising:a substrate; a plurality of emitters formed on the substrate; a dielectric layer formed on the substrate, the dielectric layer having an opening formed about each of the emitters; and an extraction grid formed on the dielectric layer and including a first non-germanium layer adjacent the dielectric layer and a second light-blocking layer formed on the first layer, the second light-blocking layer comprising germanium, the extraction grid having an opening surrounding each tip of a respective one of the emitters.
  • 11. The baseplate of claim 10 wherein the first layer of the extraction grid comprises a polysilicon layer.
  • 12. The baseplate of claim 11 wherein:the first layer comprises a polysilicon layer having a thickness of between 0.05 microns and 0.15 microns; and the second light-blocking layer includes a germanium-containing layer having a thickness of about 0.15 microns.
  • 13. The baseplate of claim 10 wherein the first and second layers together includes a layer having a sheet resistance between 500 and 5,000 ohms per square.
  • 14. The baseplate of claim 10 wherein the extraction grid further includes a third layer formed on the second layer.
  • 15. The baseplate of claim 14 wherein the first and third layers include polysilicon.
  • 16. The baseplate of claim 10 wherein the extraction grid provides a sheet resistance of about 1,000 ohms per square.
  • 17. The baseplate of claim 10 wherein:the substrate includes silicon; and the plurality of emitters include n+ silicon, each of the plurality of emitters being formed on a n-tank including n-doped silicon, each of the n-tanks in turn formed in p-doped silicon, each of the plurality of emitters comprising a drain of a FET.
  • 18. The baseplate of claim 10 wherein the second light-blocking layer comprises polycrystalline germanium.
  • 19. The baseplate of claim 10 wherein the second light-blocking layer comprises amorphous germanium.
  • 20. A field emission display comprising:a substrate including p-doped silicon; a plurality of silicon emitters formed on the substrate, each of the emitters being formed on a respective n-tank of n-doped silicon formed in the substrate; a dielectric layer formed on the substrate, the dielectric layer having an opening formed about each of the emitters; an extraction grid formed on the dielectric layer and including a first non-germanium layer adjacent the dielectric layer and a second light-blocking layer formed on the first layer, the second light-blocking layer comprising germanium and having an optical attenuation factor of at least two orders of magnitude, the extraction grid formed substantially in a plane defined by respective tips of the plurality of emitters and having an opening surrounding each tip of a respective one of the emitters, the extraction grid providing a sheet resistance of about 1,000 ohms per square; and a cathodoluminescent-coated faceplate having a planar surface formed parallel to and near the plane of tips of the plurality of emitters.
  • 21. The display of claim 20 wherein the first layer comprises a polysilicon layer having a thickness of between 0.05 microns and 0.15 microns; andthe second light-blocking layer includes a germanium-containing layer having a thickness of about 0.15 microns.
  • 22. The display of claim 20 wherein the second light-blocking layer comprises amorphous germanium.
  • 23. The display of claim 20 wherein the second light-blocking layer comprises polycrystalline germanium.
  • 24. An active display comprising:a semiconductor substrate; a plurality of emitters formed on the substrate, each emitter of the plurality comprising a drain of a FET; a dielectric layer formed on the substrate and having an opening surrounding each one of the plurality of emitters; an extraction grid formed on the dielectric layer and including a first non-germanium layer adjacent the dielectric layer and a second light-blocking layer formed on the first layer, the second light-blocking layer comprising germanium, the extraction grid having an opening surrounding each tip of a respective one of the emitters; and a faceplate disposed in a plane parallel to a plane of tips of the emitters, the faceplate including a cathodoluminescent layer formed on a transparent conductive layer in turn formed on a transparent insulator.
  • 25. The display of claim 24 wherein the first layer of the extraction grid comprises a polysilicon layer.
  • 26. The display of claim 24 wherein the first layer and the second light-blocking layer together provide a layer having a sheet resistance of about 1,000 ohms per square.
  • 27. The display of claim 24 wherein the extraction grid comprises:a first polysilicon layer formed on the dielectric layer; a germanium layer formed on the first polysilicon layer; and a second polysilicon layer formed on the germanium layer.
  • 28. The display of claim 27 wherein the first and second polysilicon layers and the germanium layer collectively form a layer having a sheet resistance of about 1,000 ohms per square.
  • 29. The display of claim 24 wherein the second light-blocking layer has a thickness of 0.15 microns.
  • 30. The display of claim 24 wherein the second light-blocking layer comprises amorphous germanium.
  • 31. The display of claim 24 wherein the second light-blocking layer comprises polycrystalline germanium.
  • 32. A computer system comprising:a central processing unit; a memory device coupled to the central processing unit, the memory device storing instructions and data for use by the central processing unit; an input interface; and a display, the display comprising: a cathodoluminescent layer formed on a conductive surface of a transparent faceplate; a group of emitters formed on a planar surface of a substrate, the substrate disposed parallel to and near the cathodoluminescent layer formed on the faceplate; a dielectric layer formed on the substrate, the dielectric layer having an opening formed about each of the emitters; and an extraction grid formed on the dielectric layer and including a first non-germanium layer adjacent the dielectric layer and a second light-blocking layer comprising germanium and formed on the first layer, the extraction grid substantially in a plane defined by tips of the emitters and having an opening formed surrounding a tip of a respective one of the emitters.
  • 33. The computer system of claim 32 wherein each emitter of the group of emitters comprises a drain of a FET.
  • 34. The computer system of claim 32 wherein the first layer comprises a polysilicon layer and the second layer comprisesa germanium layer.
  • 35. The computer system of claim 32 wherein the extraction grid comprises a layer having a sheet resistance of about 1,000 ohms per square.
  • 36. The computer system of claim 32 wherein the extraction grid comprises:a first polysilicon layer formed on the dielectric layer; a germanium layer formed on the first polysilicon layer; and a second polysilicon layer formed on the germanium layer.
  • 37. The computer system of claim 36 wherein the first and second polysilicon layers and the germanium layer collectively form a layer having a sheet resistance of about 1,000 ohms per square.
  • 38. The display of claim 32 wherein the second light-blocking layer of the extraction grid includes a polycrystalline germanium layer.
  • 39. The display of claim 32 wherein the second light-blocking layer of the extraction grid includes an amorphous germanium layer.
GOVERNMENT RIGHTS

This invention was made with government support under Contract No. DABT63-93-C-0025 awarded by Advanced Research Projects Agency (ARPA). The government has certain rights in this invention.

US Referenced Citations (6)
Number Name Date Kind
5151061 Sandhu Sep 1992
5186670 Doan et al. Feb 1993
5210472 Casper et al. May 1993
5319279 Watanabe et al. Jun 1994
5410218 Hush Apr 1995
5585301 Lee et al. Dec 1996
Non-Patent Literature Citations (1)
Entry
Chalamala et al., “Fed Up With Fat Tubes,” IEEE Spectrum, pp. 42-51, Apr. 1998.