1. Field of the Invention
The invention relates to field emission lamps and, particularly, to a carbon nanotube-based field emission lamp.
2. Description of Related Art
A display device, such as a LCD, often requires a backlight device installed at a rear side thereof to provide illumination. Typically, a cold cathode fluorescent lamp (CCFL) has been commonly used as a light source of the backlight device. The CCFL includes a sealed tube and a pair of electrodes respectively disposed at two ends of the sealed tube. A fluorescent layer is coated on an inner surface of the sealed tube. The sealed tube is filled with a mixture including an inert gas and a mercury-based substance. When electric voltage is applied to the electrodes, electrons are emitted and cause the mercury-based substance to discharge, thereby ultraviolet radiation is generated. The ultraviolet, in turn, strikes the fluorescent layer to result in visible radiation. However, the mercury-based substance, a prominent component of CCFL, is harmful to people and is a potentially dangerous pollutant.
Therefore, a field emission lamp, without using the mercury-based substance to achieve illumination, has been explored as an alternative light source for the backlight device. The field emission lamp includes a cathode electrode and an anode electrode disposed opposite to each other. An electron emitting layer is disposed on the cathode electrode. A fluorescent layer is disposed on the anode electrode and corresponding to the electron emitting layer. When a predetermined voltage is applied to the cathode electrode and the anode electrode, electrons emitted from the electron emitting layer collide against the fluorescent layer, and thereby visible light is generated.
As mentioned above, in such a backlight device using the field emission lamp, visible light is emitted in all directions from the fluorescent layer. That is, emitted light is not controlled to illuminate toward a particular direction.
What is needed, therefore, is a field emission lamp having high luminous efficiency to provide high luminance and in which light is emitted in a controlled, predetermined direction.
A field emission lamp is provided. In one embodiment, the field emission lamp includes a tubular-shaped housing, a first electrode, an electron emitting layer, a second electrode, and a fluorescent layer. The housing has an inner surface. The first electrode is centrally and longitudinally accommodated in the housing. The electron emitting layer is disposed on the first electrode. The second electrode is spaced apart from the first electrode and includes a reflective layer. The reflective layer is disposed on a portion of an inner surface of the housing. The fluorescent layer is disposed on the reflective layer.
Other advantages and novel features of the present field emission lamp will become more apparent from the following detailed description of preferred embodiments, when taken in conjunction with the accompanying drawings.
Many aspects of the present field emission lamp can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, the emphasis instead being placed upon clearly illustrating the principles of the present field emission lamp.
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate at least one preferred embodiment of the present field emission lamp, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Reference will now be made to the drawings to describe embodiments of the present field emission lamp, in detail.
Referring to
In the present embodiment, the housing 20 is a sealed tube and thereby defines an accommodating space 201 therein. The housing 20 has an inner surface. Additionally, the housing 20 is made of a transparent material, such as glass. The housing 20, in operation, is an evacuated chamber and is designed so as to maintain a sufficient operational vacuum level over the lifetime of the device. Advantageously, the housing 20 is cylindrical in shape and has a central, longitudinal axis.
The first electrode 22 is centrally and longitudinally accommodated in the housing 20, e.g., coaxially therewith. That is, the first electrode 22 is in the accommodating space 201 of the housing 20. In the present embodiment, the first electrode 22 has a cylindrical shape (as shown in
Furthermore, an elastic element, such as a spring, can be disposed between the first electrode 22 and the electric conduction element 32. In such a manner, when the external power supply is on, the elastic element is configured for compensating for expansion and/or contraction of the first electrode 22, due to heating/thermal effects (e.g., the first electrode heating and expanding when power supplied thereto; and cooling and shrinking once power is off).
Referring to
The second electrode 26 is spaced apart from the first electrode 22 by a predetermined distance. The second electrode 26 includes a reflective layer 261 disposed (e.g., directly) on a portion of an inner surface of the housing 20. Particularly, the reflective layer 261 is disposed along an axial direction of the housing 20. The reflective layer 261 is configured to reflect light generated by electrons from the electron emitter to collide against the fluorescent layer. In addition, an area upon which the reflective layer 261 disposed is determined based on a need for allowing the emitted light to be directed in a particular luminance direction. For example, in order to allow emitted light to collectively radiate from a given side/portion of the housing 20, the reflective layer 261 should be disposed on the diametrically opposite side of the housing 20. Therefore, in such the field emission lamp 2 with the reflective layer 261 is capable to provide high luminance and high luminous efficiency in the particular luminance direction. In the present embodiment, the reflective layer 261 is disposed along an angular portion of the housing 20 of approximately 10°˜180° to generate a sufficient yet relatively concentrated beam of light.
The reflective layer 261 is, usefully, comprised of an electrically conductive material, is opaque, and, of course, is highly reflective. In the present embodiment, the electrically conductive material is a metal selected from a group consisting of silver (Ag), aluminum (Al), and alloys incorporating such metals. In the present embodiment, a reflective layer 261 made of silver can be formed, e.g., using a silver mirror reaction process. A reflective layer 261 made of aluminum can be, e.g., deposited on the inner surface of the housing 20 via a vacuum deposition process.
The reflective layer 261 is connected with the external power supply by an electric conduction assembly 34. In such case, as shown in
The fluorescent layer 28 is disposed on the reflective layer 261, and a portion of the reflective layer 261 is exposed and thereby configured for facilitating the electric conduction assembly 34, in particular, to be attached to the lead pad 341. In addition, the carbon nanotubes 242 of the first electrode 22 directly point to the fluorescent layer 28. The fluorescent layer 28 is made of material with a high efficiency, low applied voltage, and high luminance. In practice, the fluorescent layer 28 can, e.g., be comprised of a white fluorescent material or a colored fluorescent material.
In addition, referring to
When the predetermined voltage is applied to the first electrode 22 and the second electrode 26, an electric field is formed between the reflective layer 261 and the electron emitting layer 24. Electrons are emitted from the carbon nanotubes 242 and are accelerated to impinge on the fluorescent layer 28, under the effect of the electric field. As a result, colored light is emitted from the fluorescent layer 28 made of the color fluorescent material, while white light is emitted from the fluorescent layer 28 made of the white fluorescent material. Moreover, by way of disposing the reflective layer 261 over a limited angular range of the housing interior, the light emitted from the fluorescent layer 28 (given that the reflective layer 261 acts as an anode for activating emission and as a reflector for redirecting emitted light) can be controlled to emit/radiate in a particular direction, according to the distribution of the reflective layer 261 disposed.
Finally, it is to be understood that the above-described embodiments are intended to illustrate rather than limit the invention. Variations may be made to the embodiments without departing from the spirit of the invention as claimed. The above-described embodiments illustrate the scope of the invention but do not restrict the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2006 1 0157376 | Dec 2006 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
5600200 | Kumar et al. | Feb 1997 | A |
6008595 | Fink et al. | Dec 1999 | A |
20040061429 | Sakai et al. | Apr 2004 | A1 |
20060017370 | Wei et al. | Jan 2006 | A1 |
20060022576 | Wei et al. | Feb 2006 | A1 |
20060146561 | Gu et al. | Jul 2006 | A1 |
20060197424 | Takata | Sep 2006 | A1 |
20060197426 | Chen | Sep 2006 | A1 |
20070057619 | Chou et al. | Mar 2007 | A1 |
20070278931 | Mii | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
1750227 | Mar 2006 | CN |
200618033 | Jun 2006 | TW |
I265356 | Nov 2006 | TW |
Number | Date | Country | |
---|---|---|---|
20080136312 A1 | Jun 2008 | US |