The carbon nanotubes are employed as field emitters in the field emission display device. The carbon nanotubes have large surface areas easily bonding gas thereto and the carbon nanotubes growing by the conventional ways are easily stacked together to result in gas accumulation in the interstices of the stacking carbon nanotubes. The above process disadvantages often cause the field emission effect unclear, and affecting the illuminating efficiency of the display panel. As such, before gas exhausting until vacuum inside the panel, the conventional processes employ an aging process on the carbon nanotubes to release gas bonding to their surfaces and accumulated in the interstices of the stacking carbon nanotubes to stabilize the vacuum. inside the panel and improve field emission performance. The present invention utilizes the characteristic of the carbon nanotubes whose surfaces easily absorb gas to grow the carbon nanotubes in the non-display area of the field emission display, and aging the carbon nanotubes to become absorbing material having surface-unsaturated and gas-absorbing properties. The surface-unsaturated carbon nanotubes absorb residual gas inside the panel after sealing it so as to improve and maintain the vacuum level inside the panel.
In other words, the present invention provides a getter mechanism, which grows surface-unsaturated carbon nanotubes in the non-display area of the field emission system such that after sealing the field emission system, the surface-unsaturated carbon nanotubes absorb residual gas within the system to improve the vacuum level inside the system.
The field emission system and the method for improving its vacuum of the present invention will be described in detail in the following according to preferred embodiments with reference to accompanying drawings. Besides, the field emission system of the present invention also is applicable in illuminating systems such as a backlight source.
Before sealing the panel of the field emission display of the first embodiment, the aging process is performed unto the carbon nanotube units 2042 in the display area 23 and the carbon nanotubes 207 in the getter area 24 such that the gases bonding to the surfaces of the carbon nanotubes and accumulated in the interstices of the stacking carbon nanotubes are released, and the carbon nanotubes 207 in the getter area 24 become surface-unsaturated absorbing material. The residual gas within the system is exhausted by a vacuum system, and then the panel is sealed. While the field emission display is operated, voltage is not applied to the second anode wire 205 and the second cathode wire 206 of the getter area 24. As such, the carbon nanotubes 207 are only functioned as getter agent but do not provide field emission.
In addition, the surface-unsaturated carbon nanotubes also can be formed on other non-display areas such as the inner surface areas of the lower substrate 22 corresponding to the black matrix 208 as getter material (not shown), and the voltage is not applied to these surface-unsaturated carbon nanotubes, while the field emission display is operated, such that these surface-unsaturated carbon nanotubes are only functioned as getter agent.
Similarly, before sealing the panel of the field emission display device of the third embodiment, the aging process is performed unto the carbon nanotube units 305 in the display area 33 and the carbon nanotubes 309 in the getter area 34 such that the gases bonding to the surfaces of the carbon nanotubes and accumulated in the interstices of the stacking carbon nanotubes are released, and the carbon nanotubes 309 in the getter area 34 become surface-unsaturated absorbing material. The residual gas within the system is exhausted by the vacuum system, and then the panel is sealed. While the field emission display device is operated, the voltage is not applied to the second anode wire 307 and the second cathode wire 308 of the getter area 34. Thus, the carbon nanotubes 309 are only functioned as getter agent but do not provide field emission. Alternatively, the carbon nanotubes 309 in the getter area 34 also can grow on the second anode wire 307.
The geometric shape of the getter area of the present field emission display device can be varied according to the shape of the display panel, the carbon nanotubes grow and arrange in a way depending on the geometric shape of the getter area. Referring to
Besides, the field emission system of the present invention can be served as a backlight module. Under this situation, the phosphor layer does not need to be provided with a black matrix therein.
On the other hand, the present invention provides a method for improving the vacuum of the field emission system. Before sealing the field emission system, the aging process is applied to the carbon nanotubes in the field emission area and the getter area by external stimulus such that the gases bonding to the surfaces of the carbon nanotubes and accumulated in the interstices of the stacking carbon nanotubes are released, and the carbon nanotubes in the getter area become surface-unsaturated absorbing nanomaterial. The residual gas within the system is exhausted by the vacuum system, and then the panel is sealed. After sealing the system, the surface-unsaturated carbon nanotubes in the getter area serve as getter agent to absorb the residual gas within the system to improve the system vacuum. FIG. 5A and
The present invention provides a getter mechanism that employs the aging surface-unsaturated carbon nanotubes in the non-display area to serve as the getter agent of the present field emission system. The present getter structure can be integrated in standard processes of the field emission display devices without additional fabricating steps. The fabricating cost can be decreased, and advantageously mass-producing the field emission display devices. Moreover, it is unnecessary to add a getter device in the present field emission system. The thickness and weight of the system can be decreased.
While the invention will be described by way of examples and in terms of preferred embodiments, it is to be understood that those who are familiar with the subject art can carry out various modifications and similar arrangements and procedures described in the present invention and also achieve the effectiveness of the present invention. Hence, it is to be understood that the description of the present invention should be accorded with the broadest interpretation to those who are familiar with the subject art, and the invention is not limited thereto.
Number | Date | Country | Kind |
---|---|---|---|
95130455 | Aug 2006 | TW | national |