This invention relates to field emission materials and devices, and is concerned particularly but not exclusively with methods of manufacturing addressable field electron emission cathode arrays. Preferred embodiments of the present invention aim to provide low manufacturing cost methods of fabricating multi-electrode control and focusing structures.
It has become clear to those skilled in the art that the key to practical field emission devices, particularly displays, lies in arrangements that permit the control of the emitted current with low voltages. At the present time, the majority of the art in this field relates to tip-based emitters—that is, structures that utilise atomically sharp micro-tips as the field emitting source.
There is considerable prior art relating to tip-based emitters. The main objective of workers in the art has been to place an electrode with an aperture (the gate) less than 1 micron away from each single emitting tip, so that the required high fields can by achieved using applied potentials of 100V or less—these emitters are termed gated arrays. The first practical realisation of this was described by C A Spindt, working at Stanford Research Institute in California (J.Appl.Phys. 39.7. pp3504-3505, (1968)). Spindt's arrays used molybdenum emitting tips which were produced, using a self masking technique, by vacuum evaporation of metal into cylindrical depressions in a SiO2 layer on a Si substrate. Many variants and improvements on the basic Spindt technology are described in the scientific and patent literature.
An alternative important approach is the creation of gated arrays using silicon micro-engineering. Field electron emission displays utilising this technology are being manufactured at the present time, with interest by many organisations world-wide. Again many variants have been described.
A major problem with all tip-based emitting systems is their vulnerability to damage by ion bombardment, ohmic heating at high currents and the catastrophic damage produced by electrical breakdown in the device. Making large area devices is both difficult and costly. Furthermore, in order to get low control voltages, the basic emitting clement, consisting of a tip and its associated gate aperture, must be approximately one micron or less in diameter. The creation of such structures requires semiconductor-type fabrication technology with its high associated cost structure. Moreover, when large areas are required, expensive and slow step and repeat equipment must be used.
In about 1985, it was discovered that thin films of diamond could be grown on heated substrates from a hydrogen-methane atmosphere, to provide broad area field emitters.
In 1988 S Bajic and R V Latham, (Journal of Physics D Applied Physics, vol. 21 200-204 (1988)), described a low-cost composite that created a high density of metal-insulator-metal-insulator-vacuum (MIMIV) emitting sites. The composite had conducting particles dispersed in an epoxy resin. The coating was applied to the surface by standard spin coating techniques.
Much later (1995) Tuck, Taylor and Latham (GB 2 304 989) improved the above MIMIV emitter by replacing the epoxy resin with an inorganic insulator that both improved stability and enabled it to be operated in sealed off vacuum devices.
The best examples of such broad-area emitters can produce usable electric currents at fields less than 10 V□m−1. In the context of this specification, a broad-area field emitter is any material that by virtue of its composition, micro-structure, work function or other property emits useable electronic currents at macroscopic electrical fields that might be reasonably generated at a planar or near-planar surface—that is, without the use of atomically sharp micro-tips as emitting sites.
Electron optical analysis shows that the feature size required to control a broad-area emitter is nearly an order of magnitude larger than for a tip-based system. Zhu et al (U.S. Pat. No. 5,283,501) describes such structures with diamond-based emitters. Moyer (U.S. Pat. No. 5,473,218) claims an electron optical improvement in which a conducting layer sits upon the broad-area emitter to both prevent emission into the gate insulator and focus electrons through the gate aperture. The concept of such structures was not new and is electronoptically equivalent to arrangements that had been used in thermionic devices for many decades. For example Winsor (U.S. Pat. No. 3,500,110) described a shadow grid at cathode potential to prevent unwanted electrons intercepting a grid set at a potential positive with respect to the cathode. Somewhat later Miram (U.S. Pat. No. 4,096,406) improved upon this to produce a bonded grid structure in which the shadow grid and control grid are separated by a solid insulator and placed in contact with the cathode. Moyer's arrangement simply replaced the thermionic cathode in Mirarm's structure with an equivalent broad-area field emitter. However, such structures are useful, with the major challenge being methods of constructing them at low cost and over large areas. It is in this area that preferred embodiments of the present invention make a contribution to the art.
The applicants patent GB 2 330 687 B describes a low manufacturing cost method of manufacturing a field emission display (FED) cathode plane using a broad-area field emitter.
Although this invention offers many advantages over the previous art it is best suited to emitter layers that have a surface roughness significantly less than the thickness of the gate insulator layer.
Many so-called broad-area emitters contain particles that either form the emitters themselves or are part of a composite emitter where one of their roles is to concentrate the macroscopic electric field. Examples of emitters of this type are described in the applicant's specifications GB 2 332 089 and GB 2 330 687.
b of the accompanying diagrammatic drawings shows an exemplary case where an emitter with 2 micron particles is used in an 8 micron diameter emitter cell fabricated in a nominal 4 micron thick gate insulator. The layered structure is as follows: substrate 210 (usually glass), conducting cathode track 211, conducting particles 227 in insulator medium 228, focus grid track 222, gate insulator layer 223 and gate track 224. The emitter cell opening 225 just exposes a potential emitter 226. From a device operational perspective this example is satisfactory for use in say a FED, since the high electric field between the gate and the anode of the display will tend to straighten the electron trajectories.
c of the accompanying diagrammatic drawings shows a far less satisfactory occurrence in which a large particle and its associated insulator coating 230 disrupt the gate structure to form two potential emitting sites. Emitting site 231 is benign since electrons 232 will only be emitted when the gate electrode 224 is in the “on” condition. Potential emitting site 233 presents a major problem since it could, under the influence of the DC field between the gate and anode, emit a continuous and uncontrolled current. In a display device this would result in a permanent bright spot and a scrapped panel.
It has occurred to us that it would be very desirable for such devices if the electrode and gate structures, which are made from materials that yield smooth films, could be fabricated first and the particle-containing emitter layer added as a final operation.
Moving now to
Danroc (U.S. Pat. No. 5,836,796) describes the use of electrophoresis to coat microtip emitters with fine diamond particle emitters to enhance emission. A metal additive deposited by electroplating is used to provide good electrical contact between the diamond and the metal microtip. Danroc is concerned only with microtip emitters.
Jin (U.S. Pat. No. 5,811,916) is concerned with field emission displays using a very specific type of diamond material. Jin mentions in passing the use of electrophoresis to dispose particles of this material, which is an emitting material per se, on a substrate, but no details are given.
EP-A-0932180 describes techniques for fixing conductive particles to a substrate in a defined pattern to form a field emitter. The particles are deposited in a uniform manner, and patterned by removal in unwanted areas. The particles are disclosed as being an emitting material per se.
FR-A-2723255 adapts standard tip-emitter techniques (namely use of an aluminium separation layer) to thin-film diamond. The specification describes the deposition of thin-film diamond onto a structure, and its subsequent removal of material by dissolving the separation layer 22. The diamond is deposited in a uniform manner, and patterned by removal in unwanted areas. The diamond is assumed to be an emitting material per se.
Preferred embodiments of the present invention aim to provide improved field emitting structures wherein a particulate-containing composite field electron emitter is made in situ within a previously fabricated electrode structure. Said process preferably includes the use of electrophoresis to optimally locate the particles within the electrode structure. The emitter structures may be used in devices that include: field electron emission display panels; high power pulse devices such as electron MASERS and gyrotrons; crossed-field microwave tubes such as CFAs; linear beam tubes such as klystrons; flash x-ray tubes; triggered spark gaps and related devices; broad area x-ray sources for sterilisation; vacuum gauges; ion thrusters for space vehicles; particle accelerators; lamps; ozonisers; and plasma reactors.
According to one aspect of the present invention, there is provided a method of creating a composite broad area field electron emitter within an electrode structure that is at least partly preformed, the method comprising the steps of:
Preferably, step d) is carried out after step c).
Said particles may be applied in step b) as a plurality of electrically conductive particles in a solution or colloidal dispersion of an electrically insulating material or a chemical precursor therefore, with the process of step d) resulting in said electrically conductive particles being coated in said electrically insulating material.
The process of step d) may include removing fugitive components of said solution or dispersion.
A liquid component of said solution or dispersion may have dissolved in it a chemical precursor for said electrically insulating material, and the method may comprises decomposing said precursor by heat, ultra-violet light or other means to form said electrically insulating material.
Said precursor may be in the form of a sol-gel.
Said precursor may comprise a soluble polymer.
Said particles may comprise electrically conductive particles pre-coated with an electrically insulating material.
Said electrically insulating material may comprise silica.
Step (b) may comprise spray applying said first and second constituents onto said selected areas of said electrode structure, through apertures which are provided on said electrode structure and which direct said particles of said first constituent selectively towards said desired locations.
Said apertures may be defined by parts of said electrode structure which overlie recesses formed in said electrode structure, such that said first and second constituents are directed selectively towards the bottoms of said recesses rather than side walls thereof.
Said recesses may have side walls which slope inwardly towards the bottoms of the recesses.
Preferably, each said recess is formed by a wet-etch process which forms an undercut below the respective part of said electrode structure which overlies the respective recess.
Said electrically insulating material may be in the form of a dispersion of colloidal or fine particles which subsequently are sintered together by the action of heat to form a solid phase.
A method as above may include the step of applying to said particles a metal and subsequently oxidising that metal to form an electrically insulating material.
Said metal may be applied also to a cathode track.
Said metal may be applied by electroplating.
Preferably, said particles are electrically conductive particles, which may comprise graphite.
The process of step d) may result in said conductive particles each with a layer of electrically insulating material disposed in a first location between said conductive surface and said particle, and/or in a second location between said particle and the environment in which the electrode structure is disposed, such that at least some of said particles form electron emission sites at said first and/or second locations.
A method as above may include the step of adding to said conductive particles and/or layers of electrically insulating material further layers to promote electron emission.
A method as above may include the further step of curing or part-curing between steps b) and c).
Said processing step d) may include curing.
Preferably, said electrode structure has preformed emitter cells and said desired locations are within said emitter cells.
Preferably, each of said desired locations comprises the bottom of a hole.
Preferably, each of said desired locations is at an electrically conductive surface.
Said particles may be applied in a carrier in step b) and the method may include the step of subsequently removing excess of said carrier from said electrode structure.
Said excess of said carrier may be removed by a squeegee or similar means.
Preferably, said selective application of said particles is effected by electrophoresis.
Preferably, said masking layer is provided in step (a) as part of a process to form at least part of said electrode structure, prior to carrying out step (b).
Preferably, said second constituent is a precursor for an electrical insulator which is formed in step (d).
The invention extends to a field electron emitter created by a method according to any of the preceding aspects of the invention.
In another aspect, the invention provides a field electron emission device comprising such a field electron emitter, and means for subjecting said emitter to an electric field in order to cause said emitter to emit electrons.
Such a device may comprise a substrate with an array of emitter patches of said field electron emitters, and control electrodes with aligned arrays of apertures, which electrodes are supported above the emitter patches by insulating layers.
Preferably, said apertures are in the form of slots.
A device as above may comprise a plasma reactor, corona discharge device, silent discharge device, ozoniser, an electron source, electron gun, electron device, x-ray tube, vacuum gauge, gas filled device or ion thruster.
The field electron emitter may supply the total current for operation of the device.
The field electron emitter may supply a starting, triggering or priming current for the device.
A device as above may comprise a display device.
A device as above may comprise a lamp.
Said lamp may be substantially flat.
Said emitter may be connected to an electric driving means via a ballast resistor to limit current.
Said ballast resistor may be applied as a resistive pad under each said emitting patch.
Said emitter material and/or a phosphor may be coated upon one or more one-dimensional array of conductive tracks which are arranged to be addressed by electronic driving means so as to produce a scanning illuminated line.
Such a device may include said electronic driving means.
Said field emitter may be disposed in an environment which is gaseous, liquid, solid, or a vacuum.
A device as above may comprise a cathode which is optically translucent and is so arranged in relation to an anode that electrons emitted from the cathode impinge upon the anode to cause electro-luminescence at the anode, which electro-luminescence is visible through the optically translucent cathode.
It will be appreciated that the electrical terms “conducting” and “insulating” can be relative, depending upon the basis of their measurement. Semiconductors have useful conducting properties and, indeed, may be used in the present invention as conductors. In the context of this specification, an insulating material has an electrical resistivity at least 102 times (and preferably at least 103 or 104 times) that of a conducting material.
For a better understanding of the invention, and to show how embodiments of the same may be carried into effect, reference will now be made, by way of example, to the accompanying diagrammatic drawings, and in which:
a and 1b show the structure of a cathode plane;
a shows a typical structure of an emitter;
b shows an exemplary case where an emitter with 2 micron particles is used in an 8 micron diameter emitter cell fabricated in a nominal 4 micron thick gate insulator;
a, 3b and 3C illustrate a technique that involves forming a gated structure with a gate electrode deposited on a silicon dioxide layer that is grown on a conductive silicon substrate;
a to 4e illustrate steps in one example of a method of creating a broad area field electron emitter;
a to 5c illustrate steps in another example of a method of creating a broad area field electron emitter;
a to 6c illustrate steps in yet another example of a method of creating a broad area field electron emitter, and
a to 7c illustrate examples of devices that utilise examples of broad area field electron emitters.
Embodiments of this invention may have many applications and some of these will be described by way of the following examples. It should be understood that the following descriptions are only illustrative of certain embodiments of the invention. Various alternatives and modifications can despised by those skilled in the art.
We describe, by way of example, an emitter structure utilising a MIMIV emitter system as described in our GB 2 304 989 B. In this example, an emitter composite layer is assembled within an emitter cell in, say, a display, from its components. Emitters as described in our GB 2 304 989 B are routinely deposited on plane surfaces by spin coating using inks. These inks comprise an insulator precursor, such as a polymer or sol-gel; a solvent for the precursor; dispersants and surfactants plus the conducting particles. Following spin coating, the layer is heat treated to form the final layer. One such ink consists of a silica sol-gel dissolved in propan-2-ol with graphite particles dispersed to form a suspension. After spin coating a heat treatment profile to 450° C. in air is used to cure the layer. The reader is directed to our co-pending application PCT/GB00/02537, a copy of the specification and drawing of which accompany the present application.
A suitable formulation for the ink is:
1) Sol-gel preparation
Tetraethyl orthosilicate (10 ml), and MOS grade propan-2-ol (47 ml) are mixed and cooled to 5-10° C. with stirring at 1000 r.p.m. To this stirring mixture is then added a solution of concentrated nitric acid (0.10 g) in deionised water (2.5 g). After 2 hours, the mixture is transferred to a sealed container, and stored at 4° C. in a refrigerator until required.
The proportion of MOS grade propan-2-ol is adjusted on test so that the number of particles and their ratio to insulator solid will be correct in the emitter cell that is used.
2) Dispersion Preparation
Nominal 6 micron graphite particles (0.150 g) and a sol-gel dispersion according to (1) above (9.850 g) previously filtered through a 0.2 micron filter are mixed, and ultrasonically agitated for 10 minutes using a high power ultrasonic probe. The sample is allowed to cool to room temperature and ultrasonically agitated for a further 10 minutes. This yields the required ink as a black suspension. The mixture is transferred to a sealed container and stored in a refrigerator at 4° C.
a shows a substrate (usually glass 401); a cathode conducting track 402 (typically gold); an insulating layer 403 (usually glass); and a gate conductor 404 (typically gold). A photoresist layer 405 remains following the use of a self aligning process to form emitter cells 410. Such a structure may be fabricated by using the process that is described conceptually with reference to
Again referring to
At this point in the process we have a metered volume of ink in each emitter cell. The ink is formulated such that said volume of ink contains sufficient particles to lightly cover the base of the cell and sufficient insulator precursor to form an insulator layer of the required thickness once curing has taken place. If the curing process were performed now there would be, because of surface tension, a high probability that many particles will either form piles at the base of the cell or be fixed to its wall.
b shows how this may problem may be avoided. Either following the squeegee process or before it is started, an electrical potential 411 is applied between the cathode track 402 and the gate electrode 404. The particles in suspension 413 will then be swept out of suspension and electrophoretically coated directly onto the cathode track 402. With insulating solvents this requires the cathode track to be biased positively with respect to the gate tracks Electric fields in the range tens to hundreds of volts/cm are required. Any insulator precursor that adheres to the walls of the cell and is subsequently cured will be free of particles and thus not form emitting sites.
Alternative methods to a squeegee may be used to apple the suspension, such as K-coaters (wire roll) as supplied by R K Print-Coat Instruments Ltd, Litlington, Royston, Hertforshire, UK. Equally purpose-designed dispensers based, for example, on the extrusion of the suspension through slots may be utilised.
Following the electrophoretic deposition step the substrates are transferred to hotplates under the following conditions: a) 10 minutes at 50° C.—measured surface temperature of hotplate; b) 10 minutes at 120° C.—measured surface temperature of hotplate.
We are now at the stage shown in
Moving now to
The assembly is then rinsed on both sides with MOS grade acetone and again with MOS grade propan-2-ol.
Following the electrophoretic deposition step the substrates are transferred to hotplates under the following conditions: a) 10 minutes at 50° C.—measured surface temperature of hotplate; b) 10 minutes at 120° C.—measured surface temperature of hotplate.
The substrates are then transferred to an oven (air atmosphere) according to the following profile: ambient to 450° C. at 10° C./min; isotherm at 450° C. for 120 minutes; followed by cooling naturally to room temperature.
The resulting emitter structure is shown in
Moving now to
The substrate is now removed from the bath and drained, so that it is as shown in
Moving now to
a, wherein labels 401 to 405 have the same meaning as in previous examples, shows a cross-section though a part-processed gated field-emitting structure. Emitter cells 800 have sloping sides 801 which are typically formed by a wet etching process. The gate electrode 404 has apertures 802 aligned with cathode tracks 402, and overhangs the sloping sides 801 which have been undercut by the wet etching process. The objective is to deposit emitter material 810 onto the cathode track 803 whilst avoiding coating the gate insulator 801 exposed at the sides of the emitter cell. If the emitter material is sprayed onto the upper surface of the gate, preferably by means of a collimated spray 809, such as may be obtained from an inkjet print head 808, the overhanging gate electrode 404 will act as a mask, keeping the sloping sides 801 of the gate insulator clean. As the print head 808 traverses the structure, unwanted material 811 sprayed onto the surface of the gate 404 falls upon resist layer 405, with which it may subsequently be removed by a lift-off process, such as previously described, to leave a finished structure as shown in
The approach described in this example may be used for composite emitters as previously described in Example I, by co-depositing conductive particles and an insulator formed from a liquid phase precursor to form emitter material 810, as shown in
The teaching herein concerning the assembly of a composite emitter in situ may be adapted to a wide range of situations. For example, as well as sol-gel and soluble insulator precursors (e.g. polymers), colloidal and fine particle suspensions may be used.
The insulator component may be formed by applying to the cathode track and particles (e.g. by electroplating) a metal that is subsequently oxidised.
The particles may also be electrophoretically deposited using an inert liquid medium and the insulator deposited in prior and/or subsequent process steps. Additional process steps may be introduced to add electron emission enhancing interface and surface layers as described in our co-pending application GB 2 340 299.
Thus, in the above-described embodiments of the invention, selected areas of an electrode structure are defined by a masking layer, and a first particulate constituent and a second constituent are then applied to those selected areas. By selectively directing the particles to desired locations within those selected areas, there is derived the advantage that the particles end up where emissions sites are wanted, and not where emissions sites are undesirable. A further useful manufacturing advantage can be obtained by making use of the masking layer, which has already served a purpose in part-forming the electrode structure, before being used again in applying the first and second constituents to selected areas.
The field electron emission current available from improved emitter materials such as are disclosed above may be used in a wide range of devices including (amongst others): field electron emission display panels; lamps; high power pulse devices such as electron MASERS and gyrotrons; crossed-field microwave tubes such as CFAs; linear beam tubes such as klystrons; flash x-ray tubes; triggered spark gaps and related devices; broad area x-ray sources for sterilisation; vacuum gauges; ion thrusters for space vehicles and particle accelerators.
Examples of some of these devices are illustrated in
a shows an addressable gated cathode as might be used in a field emission display. The structure is formed of an insulating substrate 500, cathode tracks 501, emitter layer 502, focus grid layer 503 electrically connected to the cathode tracks, gate insulator 504, and gate tracks 505. The gate tracks and gate insulators are perforated with emitter cells 506. A negative bias on a selected cathode track and an associated positive bias on a gate track causes electrons 507 to be emitted towards an anode (not shown).
The reader is directed to our patent GB 2 330 687 B for further details of constructing Field Effect Devices.
The electrode tracks in each layer may be merged to form a controllable but non-addressable electron source that would find application in numerous devices.
b shows how the addressable structure 510 described above may joined with a glass fritt seal to a transparent anode plate 511 having upon it a phosphor screen 512. The space 514 between the plates is evacuated, to form a display.
Although a monochrome display has been described, for ease of illustration and explanation, it will be readily understood by those skilled in the art that a corresponding arrangement with a three-part pixel may be used to produce a colour display.
c shows a flat lamp using one of the above-described materials. Such a lamp may be used to provide backlighting for liquid crystal displays, although this does not preclude other uses, such as room lighting.
The lamp comprises a cathode plate 520 upon which is deposited a conducting layer 521 and an emitting layer 522. Ballast layers as mentioned above (and as described in our other patent applications mentioned herein) may be used to improve the uniformity of emission. A transparent anode plate 523 has upon it a conducting layer 524 and a phosphor layer 525. A ring of glass fritt 526 seals and spaces the two plates. The interspace 527 is evacuated.
The operation and construction of such devices, which are only examples of many applications of embodiments of this invention, will readily be apparent to those skilled in the art. An important feature of preferred embodiments of the invention is the ability to print an electrode pattern before assembly of the emitter layer in situ, thus enabling complex multi-emitter patterns, such as those required for displays, to be created at modest cost. Furthermore, the ability to print enables low-cost substrate materials, such as glass to be used; whereas micro-engineered structures are typically built on high-cost single crystal substrates. In the context of this specification, printing means a process that places or forms an emitting material in a defined pattern. Examples of suitable processes are (amongst others): screen printing, Xerography, photolithography, electrostatic deposition, spraying, ink jet printing and offset lithography.
Devices that embody the invention may be made in all sizes, large and small. This applies especially to displays, which may range from a single pixel device to a multi-pixel device, from miniature to macro-size displays.
Fugitive vehicles for the constituents of the emitter may be used in many examples.
In this specification, the verb “comprise” has its normal dictionary meaning, to denote non-exclusive inclusion. That is, use of the word “comprise” (or any of its derivatives) to include one feature or more, does not exclude the possibility of also including further features.
The reader's attention is directed to all papers and documents which are filed concurrently with or previous to this specification in connection with this application and which are open to public inspection with this specification, and the contents of all such papers and documents are incorporated herein be reference.
All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive.
Each feature disclosed in this specification (including any accompanying claims, abstract and drawings), may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
The invention is not restricted to the details of the foregoing embodiment(s). The invention extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
Number | Date | Country | Kind |
---|---|---|---|
9919737 | Aug 1999 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTGB00/03242 | 8/21/2000 | WO | 00 | 6/4/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO0115194 | 3/1/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6113448 | Kobayashi et al. | Sep 2000 | A |
6445114 | Kurokawa et al. | Sep 2002 | B1 |
6524154 | Xia et al. | Feb 2003 | B2 |
6626724 | Yamamoto et al. | Sep 2003 | B2 |