Field install fiber clip and method of use

Abstract
A clip holds a plurality of optical fibers in an array to be inserted into a fiber optic ferrule. The clip has a base member and a lid to hold the optical fibers therebetween. A stacker block assists in making the array by aligning them in a single plane. The optical fibers are then held in alignment for stripping, cleaving and inserting into the fiber optic ferrule.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The field installable MT ferrule requires fibers be inserted into the back of the ferrule that have been cleaved and stripped. To hold the loose fibers in position for cleaving and stripping, a clamping device was desired that could fit into both a cleaver and stripper and also fit into a field install ferrule assembly tool.


SUMMARY OF THE INVENTION

The present invention is directed to a clip that includes a base and a lid that is rotatably connected to one another to capture optical fibers therebetween, a stacker block having a slot therein to accept loose optical fibers, a stacker tool to compress the optical fibers in the slot, and an elastic member disposed on the lid to secure the optical fibers in the clip for further processing. By aligning the optical fibers in the clip to form a temporary ribbon, the optical fibers can be fed into a ferrule. Due to the ability of the clip to maintain the location of the optical fibers, the process of ribbonizing the fiber with either tape and/or adhesive is avoided.


In some embodiments, the stacker block is removably attached to the base.


In some embodiments, the lid and base are configured to fit into a stripping and cleaving device.


In another aspect, the invention is directed to a method of installing loose optical fibers into an MT ferrule without ribbonizing the optical fibers first that includes the steps of disposing a connector spring over the optical fibers, placing the optical fibers and spring into a clip base, arranging ends of the optical fibers into a slot in a stacker block attached to the clip base, compressing the optical fibers in the slot, securing a lid to the base and closing the lid over the optical fibers and spring, removing the stacker block from the base, stripping the optical fibers while in the clip, cleaving the optical fibers, and securing the optical fibers into an optical ferrule.


Additional features and advantages of the invention will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description which follows, the claims, as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description of the present embodiments of the invention, and are intended to provide an overview or framework for understanding the nature and character of the invention as it is claimed. The accompanying drawings are included to provide a further understanding of the invention, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments of the invention, and together with the description serve to explain the principles and operations of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a top perspective view of a prior art ribbonizing tool;



FIG. 2 is a side perspective view of a fiber clip according to one embodiment of the present invention;



FIG. 3 is a side perspective view of the fiber clip of FIG. 1 after it has been rotated 90 degrees and a lid having been attached;



FIG. 4 is a top perspective view of the fiber clip in a closed position and separated from the stacker block;



FIG. 5 is a top perspective view of a fiber clip according to a second embodiment of the present invention;



FIG. 6 illustrates a a portion of jacketed fiber optic cable positioned in the base, the optical fibers in the slot of the stacker block and pressed together with the stacker tool;



FIG. 7 illustrates the lid being disposed on the base; and



FIG. 8 illustrates that the stacker tool is removed and the base separated from the stacker block after the lid is closed and locks the optical fibers in place.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference will now be made in detail to the present preferred embodiment(s) of the invention, examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts.


Referring to FIG. 1, a prior art ribbonizer 10 is illustrated. The ribbonizer 10 is used to group loose optical fibers (whether all optical fibers are loose or they are in a jacketed fiber optic cable) in a ribbon format so the optical fibers can be installed in an optical ferrule. In the prior art ribbonization tool, the fibers are temporarily held together in a slot. While the fibers are held together in the tool, tape or adhesive is applied to the fibers to create a ribbon. However, once the optical fibers are ribbonized, they need to be transferred to other devices for stripping and cleaving. All of this handling can affect the optical fibers, their integrity and the quality of the ribbonizing.



FIG. 2 illustrates a fiber clip 20 according to a first embodiment of the present invention. The fiber clip 20 has a base member 22, a stacker block 24, a stacker tool 26, and a lid 28 (FIG. 3). The base member 22 has a groove 30 into which optical fibers 32 are disposed. As noted above, the optical fibers 32 may generally be in any configuration. The optical fibers 32 preferably have a connector spring for the connector into which the optical fibers 32 are to be installed (an MTP connector spring is illustrated in FIG. 2). Ends of the optical fibers 32 are disposed into a precision slot 34 in the stacker block 24, which is attached to a first end 36 of the base member 22. Preferably, there are pins 38 extending from the stacker block 24 that frictionally engage openings 40 in the base member 22. See FIG. 4. With the optical fibers 32 in the slot 34, the stacker tool 26 is inserted into the slot to push the ends of the optical fibers 32 together. The bottom of the precision slot 34 is in alignment with the slot 30 of the base member 22 to ensure that the ends of the optical fibers 32 are in alignment with the rest of the optical fibers 32 so that there is no kinking or bending of the optical fibers 32 and that they are straight.


With the stacker tool 26 still compressing the optical fibers 32, the lid 28 is attached to the base member 22, as illustrated in FIG. 3. The lid 28 is rotatably disposed on the base member 22 and has an elastic pad 41 that compresses and holds the optical fibers 32 against the base member 22 and prevents them from moving relative to one another. The lid 28 may have latches 42 that engage corresponding structures on the base member 22. The lid 28 may also have a groove 44 corresponding to the optical fibers 32. It should be noted that while a groove 44 is shown in both the base member 22 and the lid 28, the groove may be in only one of the two and still fall within the scope of the present invention. Once the lid 28 has been secured to the base member 22, the optical fibers 32 cannot move relative to one another and the stacker tool 26 can be removed and the stacker block 24 can be separated from the base member 22 as shown in FIG. 4. The clip 20 can then be used to finalize the optical fibers 32 as described in more detail below.



FIG. 5 illustrates another embodiment of a clip 50 according to the present invention. The clip 50 has a base member 52 and a lid 54 rotatably attached along one side 56. The base member 52 and the lid 54 both have a groove 58 for the optical fibers 60. Lid 54 has a precision slot 62 to align the optical fibers 60. The optical fibers 60 are disposed in the slot 62 and the stacker tool 64 compresses the optical fibers 60 against one another in the slot 62. The lid 54 is then closed and secured against the base member 52 and pad 66 with the latch 68. The stacker tool 64 is then removed and the clip 50 can be used to further process the optical fibers 60.


The method of preparing the optical fibers for insertion into an optical connector/ferrule will now be described in conjunction with FIGS. 6-11. In FIGS. 6-8, a clip is used that is the same as that described in detail above and illustrated in FIGS. 2-4. For clarity, the element numerals have not been included in this discussion.


As illustrated in FIG. 6, the optical fibers are in a jacketed fiber optic cable and the jacket and excess kevlar has been removed to expose the optical fibers. The loose optical fibers have been inserted into the precision slot and the optical fibers and cable placed in the groove in the base member. The stacker tool has been inserted into the precision slot to compress the optical fibers against one another and align them.



FIG. 7 illustrates the attaching of the lid onto the base member with a pin at the front of the base member engaging corresponding openings on the lid. The lid is then secured to the base and the stacking tool is removed.



FIG. 8 shows the stacking block being removed from the base (and the pins that engage openings on the base member to hold the two members together are visible). The aligned optical fibers are shown extending from the front of the clip.


The clip and optical fibers are then placed into a fiber optic stripper to strip the covering from the optical fibers as is known in the art. It is important that the optical fibers do not move relative to one another during this process and the elastic pad in the lid of the clip secures the optical fibers in the clip—using about 3 pounds of force.


The clip and optical fibers can be inserted into a cleaving device that cleaves the optical fibers at the correct location for insertion into a fiber optic ferrule connector. In fact, after cleaving the optical fibers, the clip and optical fibers can be inserted into another device to insert the optical fibers into a ferrule, all without having to ribbonize the optical fibers.


It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the spirit and scope of the invention. Thus it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims
  • 1. A clip for aligning at least four optical fibers for insertion into an fiber optic ferrule comprising: a base member to receive the at least four optical fibers;a lid connectable to the base member, the lid having an elastic pad to engage and secure the at least four optical fibers between the base member and the lid; anda stacker block having a slot to receive the at least four optical fibers disposed in the base member adjacent ends thereof, the slot having a width to align the at least four optical fibers in a linear array adjacent to one another.
  • 2. The clip according to claim 1, wherein the base member has a groove to received at least a portion of the optical fibers.
  • 3. The clip according to claim 1, wherein the lid is rotatably connected to the base member.
  • 4. The clip according to claim 1, wherein the lid rotates about an axis parallel to the optical fibers.
  • 5. The clip according to claim 1, wherein the lid rotates about an axis orthogonal to the optical fibers.
  • 6. The clip according to claim 1, wherein the lid has a groove extending along at least a portion of its length to engage at least a portion of the optical fibers, the groove in the lid and the elastic pad being at different locations along the length of the lid.
  • 7. The clip according to claim 1, wherein the stacker block is removably connected to the base member.
  • 8. The clip according to claim 1, wherein the groove in the base member accommodates a spring installed on the optical fibers.
  • 9. A method of preparing at least four optical fibers to be inserted into a fiber optic ferrule without ribbonizing the at least four optical fibers comprising: assembling the at least four loose optical fibers;holding the at least four optical fibers in an organized array adjacent one another at ends thereof; andinserting the ends of the organized array of the at least four optical fibers into the fiber optic ferrule.
  • 10. The method according to claim 9, wherein the holding of the at least four optical fibers is performed by a clip that comprises a base member to receive the at least four optical fibers, a lid connectable to the base member, the lid having an elastic pad to engage and secure the at least four optical fibers between the base member and the lid, a stacker block having a slot to receive the at least four optical fibers disposed in the base member adjacent the ends thereof, the slot having a width to align the at least four optical fibers adjacent to one another.
  • 11. The method according to claim 9, wherein the holding of the plurality of at least four optical fibers further comprises: disposing the at least four optical fibers in a groove in a base member; inserting ends of the at least four optical fibers in a slot in a stacker block; positioning the ends of the at least four the optical fibers adjacent to one another in the stacker block; and securing a lid to the base member, the lid having an elastic member to bias the at least four optical fibers against the base member.
  • 12. The method according to claim 9, further comprising the steps of: stripping a covering off of the at least four optical fibers; andcleaving the stripped at least four optical fibers at a predetermined location for insertion into an optical ferrule.
  • 13. A clip for aligning at least four coated optical fibers for insertion into an fiber optic ferrule after removing the optical coating comprising: a base member to receive the at least four coated optical fibers;a lid connectable to the base member, the lid having an elastic pad to engage and secure the at least four coated optical fibers between the base member and the lid; anda stacker block having a slot to receive the at least four coated optical fibers disposed in the base member adjacent ends thereof, the slot having a width to align the at least four coated optical fibers adjacent to one another.
  • 14. The clip according to claim 13, wherein the base member has a groove to received at least a portion of the optical fibers.
  • 15. The clip according to claim 13, wherein the lid is rotatably connected to the base member.
  • 16. The clip according to claim 13, wherein the lid rotates about an axis parallel to the optical fibers.
  • 17. The clip according to claim 13, wherein the lid rotates about an axis orthogonal to the optical fibers.
  • 18. The clip according to claim 13, wherein the lid has a groove extending along at least a portion of its length to engage at least a portion of the optical fibers, the groove in the lid and the elastic pad being at different locations along the length of the lid.
  • 19. The clip according to claim 13, wherein the stacker block is removably connected to the base member.
REFERENCE TO RELATED CASE

This application claims priority under 35 U.S.C. §119 (e) to provisional application No. 61/139,535, filed on Dec. 19, 2008, which is hereby incorporated by reference in its entirety.

US Referenced Citations (41)
Number Name Date Kind
3772119 Peck Nov 1973 A
4096010 Parham et al. Jun 1978 A
4265514 Wellington et al. May 1981 A
4629284 Malavieille Dec 1986 A
4720165 Tokuda et al. Jan 1988 A
4980007 Ferguson Dec 1990 A
5013345 Itoh et al. May 1991 A
5046813 Itoh et al. Sep 1991 A
5076881 Ferguson Dec 1991 A
5170456 Itoh et al. Dec 1992 A
5216741 Blijleven et al. Jun 1993 A
5323481 Tokumaru et al. Jun 1994 A
5446815 Ota et al. Aug 1995 A
5586211 Dumitrou et al. Dec 1996 A
5600747 Yamakawa et al. Feb 1997 A
5695540 Suganuma et al. Dec 1997 A
5810968 Dannoux Sep 1998 A
5812726 Jinnai et al. Sep 1998 A
6004042 Million et al. Dec 1999 A
6033124 Lesueur et al. Mar 2000 A
6072932 Bennett et al. Jun 2000 A
6089759 Kawamura et al. Jul 2000 A
6161278 Easter et al. Dec 2000 A
6305850 Luther et al. Oct 2001 B1
6421493 Burek et al. Jul 2002 B1
6553173 Goto Apr 2003 B1
6655433 Hirayama et al. Dec 2003 B1
6744955 Nechitailo et al. Jun 2004 B2
6944379 Olbricht et al. Sep 2005 B2
6971803 Mudd et al. Dec 2005 B2
6973242 Yang et al. Dec 2005 B2
7407333 Horino et al. Aug 2008 B2
20020129623 Nonomura et al. Sep 2002 A1
20030012518 Tomaru et al. Jan 2003 A1
20040170362 Engstrand Sep 2004 A1
20040175091 Nonomura et al. Sep 2004 A1
20050135754 Chiang Jun 2005 A1
20050135755 Kiani et al. Jun 2005 A1
20080101751 Luther et al. May 2008 A1
20090238522 Kachmar Sep 2009 A1
20100111478 Fujiyama May 2010 A1
Foreign Referenced Citations (4)
Number Date Country
05257037 Oct 1993 JP
09159871 Jun 1997 JP
10020126 Jan 1998 JP
2003307650 Oct 2003 JP
Related Publications (1)
Number Date Country
20100202735 A1 Aug 2010 US
Provisional Applications (1)
Number Date Country
61139535 Dec 2008 US