Servo motors include a motor coupled to an encoder that outputs feedback signals to enable precise speed and position control of the motor. Typically, a servo motor drive system includes a servo motor (e.g., a 3 phase permanent magnet AC motor and position encoder) wired to a servo drive (sometime referred to simply as a “drive”), wherein the drive provides a controllable source of AC power in response to a feedback signal output by the encoder using, e.g., a PID motor control algorithm. The drive may be installed in an equipment cabinet and connected to an input source of AC power. The AC power is provided from the drive to the motor through power conductors, and a separate shielded signal conductor returns the encoder feedback signals to the drive. A need has been identified for an improved arrangement for connecting a servo drive to an associated servo motor to provide for simplified and reduced cost installation and maintenance, while providing good overall performance.
In accordance with a first aspect of the present development, a field installable cable connector backshell includes a metallic shell comprising a base and a cover connected to the base. The base includes a recess and the shell defines an envelope around and enclosing the recess when the cover is operably connected to the base. The shell further comprises a first end including a connector opening that opens through the shell into a first portion of the recess and a mouth that opens through the shell into a second portion of the recess. The mouth allows passage of an associated cable terminal end into the recess. The shell further comprises first and second flanges located adjacent the first end and projecting laterally outward in opposite first and second directions, respectively. The first and second flanges comprise respective first and second captured fasteners adapted for releasably engaging an associated connector socket. The first portion of the recess is located adjacent the connector opening and includes a connector seat that comprises a portion of a floor of the shell base. The connector seat is located on the floor between first and second spaced-apart side walls of the base that project outwardly on opposite sides of the floor, the connector seat adapted to receive and support an associated plug connector located on the associated cable terminal end such that a projecting plug portion of the associated plug connector projects through the connector opening outside the shell. A portion of the cover of the shell is adapted to contact the associated plug connector located on the seat when the cover is connected to the base. The shell further comprises an electrical shield contact structure located in the recess and adapted for contacting the electrical shield surrounding the associated cable terminal end located in the recess and electrically connecting the electrical shield of the associated cable to the shell such that the shell defines an electromagnetic interference shield around the associated cable terminal end located in the recess.
In accordance with a second aspect of the present development, a servo motor drive system includes a servo motor drive comprising a drive connector socket and a shielded control signal cable including a backshell connector engaged with the drive connector socket. The shielded control signal cable includes an electrical shield surrounding control signal conductors. The backshell connector establishes an electromagnetic interference shield envelope around the control signal conductors, and the backshell connector and drive connector socket cooperate to provide a low impedance electrical connection path from the electrical shield of the control signal cable to a ground path of the servo motor drive. The drive connector socket includes a plastic connector header including connector pin sockets located in a front face, and includes a metal shroud that provides an electromagnetic interference shield for the plastic connector header. The metal shroud includes first and second spaced-apart side walls that cover left and right sides of the plastic connector header, a rear wall that covers a rear surface of the plastic connector header, a top wall that covers a top surface of the plastic connector header, and a front wall that covers part of the front face of the plastic connector header. The front wall of the metal shroud includes a window that provides access to the connector pin sockets in the front face of the plastic connector header. The metal shroud includes at least one ground connection to a ground path associated with the servo motor drive. The backshell connector of the control signal cable includes a metallic shell including a base and a cover connected to the base. The base includes a recess and the shell defines an envelope around and enclosing the recess when the cover is operably connected to the base. The shell further includes a first end including a connector opening that opens through the shell into a first portion of the recess and includes a mouth that opens through the shell into a second portion of the recess. A terminal end of the control signal cable extends through the mouth into the recess. A plug connector is operably engaged with first and second control signal conductors of the control signal cable. The plug connector is located in the recess with a plug portion thereof projecting out of the shell through the connector opening and is operably mated with the pin sockets of the drive connector socket. The first end of the shell is abutted with the front wall of the metal shroud of the connection socket to complete a low impedance ground path between the shell and the metal shroud. The shell further includes an electrical shield contact structure located in the recess and adapted for contacting an electrical shield surrounding the cable terminal end located in the recess, the electrical shield contact structure electrically connecting the electrical shield of the cable to the shell such that the shell defines an electromagnetic interference shield around the cable terminal end located in the recess, and such that the electrical shield of the cable is grounded through the shell to the metal shroud of the drive connector socket.
In accordance with another aspect of the present development, a connector assembly for coupling a control cable to an industrial automation device is provided. The control cable includes at least two control data lines and a ground shield surrounding the data lines. The assembly comprises a polymeric connector mechanically secured to the cable in electrical communication with respective data lines. A polymeric connector header is mounted to a printed circuit board of the industrial automation device and includes a plurality of connection sockets. A metallic backshell surrounds the polymeric connector and is in electrical communication with the ground shield of the cable. A metallic shroud encompasses the connector header and includes a first surface interposed between the polymeric connector header and the metallic backshell when the polymeric connector mated with the polymeric connector header to establish electrical continuity between the metallic backshell and the metallic shroud. The metallic backshell and the metallic shroud cooperate to provide a continuous electrical grounding envelope from the cable ground shield around the polymeric connector and polymeric connector header to a ground path.
At a first (motor) end of the cable 104 connected to the motor 22, the cable 104 includes a factory installed connector 102 to make all required power and data connection with the motor. The connector 102 is not suitable for use at the opposite drive end of the cable 104 and is not able to be installed on the cable by a field technician, i.e., it is not field installable on the cable 104 or cable portion 104a. At the drive end of the cable 104 connected to the drive 12, the cable is split or bifurcated, with the conductors 106,108 forming a first branch and being operably connected to power connectors on the drive 12, e.g., to terminal blocks 116 of the drive 12 as shown in FIG. 1A. The signal conductors 110 are operably connected to a drive connector socket 120 of the drive 12 by way of a field installable cable connector 118 that is fixedly secured to and operably connected with the signal conductors 110 according to the present development.
The shell 130 comprises a first or inner end 130a adapted to be located adjacent and abut the drive connector socket 120 and comprises a second or outer end 130b spaced from the inner end 130a and comprising a mouth opening or mouth 130c adapted to receive the terminal end 104t of the control signal cable portion 104a of the hybrid cable 104, i.e., the signal conductors 110, their shield 112, and the surrounding insulation sleeve 114. In particular, as described in further detail below, the shell 130 is adapted to make an electrically conductive termination connection with contact around the circumference of the electrical shield 112 of the control cable 104a, preferably with 360 degrees of contact but at least enough to provide a low impedance connection to the electrical shield so that the shell 130 provides an effective EMI envelope or EMI shield to prevent electrical interference from reaching the signal conductors 110 located inside the shell 130 and to provide a low impedance path to shunt noise currents introduced on the control cable shield 112 to ground.
The shell base 132 is substantially L-shaped such that the recess R comprises a first portion R1, a second portion R2 that extends transversely relative to the first portion R1, and an elbow portion R3 that defines at least a 90 degree turn that connects the first and second recess portions R1,R2. The first recess portion R1 extends transversely outward away from the flange F and the second recess portion R2 extends transversely relative to the first recess portion R1 such that the first side wall S1 defines an internal angle of 90 degrees or less between a first portion thereof in the region of the first recess portion R1 and a second portion thereof in the region of the second recess portion R2. This L-shaped structure of the base 132 reduces the space required adjacent the drive 12 for mating the cable connector 118 with the drive connector socket 120.
As noted, the signal conductor cable portion 104a feeds into the shell 130 through a mouth 130c. The mouth 130c is defined between a mouth recess 132m defined in the base 132 and a corresponding mouth recess 134m defined in the cover 134.
As shown in
As noted above, the shell comprises a cover 134 that is selectively releasably connected to the base 132 to define the overall shell 130. When the cover 134 is connected to the base 132, the shell defines an envelope surrounding the recess R for the terminal end 104t of the cable 104a located in the recess. Although the recess R is described as being defined in the base 132, when the cover 134 is connected to the base 132, the recess R is deemed to include the entire space enclosed by the shell 130. The cover 134 comprises a top wall 134a and first and second edges 134b,134c that depend or project from the top wall 134a on opposite lateral sides thereof. The top wall 134a and its edges 134b,134c are shaped and dimensioned to conform with the shape and dimensions of the base 132 such that the cover edges 134bc,134d engage the edges E of the base side walls S1,S2 with a close fit such that first and second uninterrupted closed seams M1,M2 (see also
The plastic plug connector 124 is electrically connected by a technician in the field to the signal conductors 110 of the signal cable 104a using suitable electrical connections that electrically connect each of the signal conductors 110 to one of the pin connectors 125a,125b of the plug connector 124. In one embodiment, the plastic plug connector 124 comprising insert-to-connect sockets 126a,126b that are respectively electrically connected to the pin connectors 125a,125b and that allow a bare wire portion of a signal conductor 110 to be inserted therein to make the required electrical connection, each of which can be released by pressing a corresponding release button.
The cover 134 further comprises a tongue 134t that projects from a first end 134a. To operably install the cover 134 on the base 132, this tongue 134t is inserted into a corresponding groove or notch G defined by the base 132 adjacent the connector opening O at the first end 132a of the base. As shown in
To install the cover 134 on the base 132, the tongue 134t is inserted into the groove G, and the remainder of the cover 134 is placed in covering relation with the recess R of the base, with the edges 134b,134c of the cover mated with the side wall edges E to define the seams M1,M2. In the illustrated embodiment, the base 132 comprises first and second bosses 142s in which the threaded bores 142 for the fasteners 140 are defined, with each boss 142s located adjacent one of the edges E. These bosses 142s are raised relative to the respectively adjacent edge E so that they project upward/outward there from. The mating edges 134b,134c of the cover include corresponding locating notches 134s that closely fit over the bosses 142s when the cover 134 is operably installed on the base 132. This mating engagement of the bosses 142s with the cover locating notches 134s ensures that the cover 134 is properly aligned with the base 132 when the cover is installed on the base.
Referring to
As noted, the shell 130 is field installable on the control signal cable 104a. To install the shell 130, the cover 134 (if installed) is removed from the base 132 by removing/releasing the fasteners 140 and lifting the cover 134 away from the base 132 to open the recess R. The plastic plug connector 124 including the signal conductors 110 electrically connected thereto is inserted into the seat 138 of the recess R, with its pin connectors 125a,125b extending through the connector opening O (alternatively, the plastic plug connector 124 can be placed in the seat 138 before the signal conductors 110 are connected thereto). A sufficient portion of the external insulation sheath 114 is removed from the signal conductor cable 104a to expose the electrical shield 112 at the cable shield electrical contact portion 150 (cradle 152/saddle 154) of the shell 130, but the external insulation sheath 114 is left intact from a location inside the mouth 130c of the shell 130 and extending out of the mouth 130c of the shell 130 (an example of a suitably prepared cable 104a is shown in
Thus, with the cover 134 operably connected to the base 132, the cradle surface 152s and the saddle surface 154s together encircle and contact around the circumference of the electrical shield 112 of the sub-cable 104a to electrically connect the electrical shield 112 to the shell 130. When the connector 118 is operably engaged with the drive connector socket 120 of the drive 12, the pin connectors 125a,125b of the connector 118 are respectively mated with the header pin sockets 122a,122b of the connector socket, and the flanges F1,F2 of the shell 130 are abutted with and electrically connected to the front face 126c of the shroud 126 so that the connector 124 and its pins 125a and 125b are encircled preferably with 360 degrees of conductive shielding material to provide a low impedance connection of the cable shield to the shroud 126. The shroud 126 is grounded through its ground pins 126g to a ground connection of the circuit board B or another ground path of the drive 12. The threaded fasteners T captured to each flange F1,F2 are advanced into the connector securement apertures 122x,122y of the connector socket 120 to secure the connector 118 to the connector socket 120. The connector securement apertures 122x,122y include metal thread inserts that are not necessarily grounded through the circuit board B or otherwise, but they could be. However, any threaded metal inserts used in the connector securement apertures 122x,122y are grounded through fasteners T and the shell 130 when the connector 118 is mated with the connector socket 120 and the fasteners T are advanced into the securement apertures 122 of the connector socket 120.
It will be appreciated that the connector 118 provides a complete Faraday shield around the control signal conductors 110 and the plastic connector 124 between the control signal cable 104a and the connector socket 120 of the drive 12, along with mechanical termination of the control signal cable 104a. Importantly, the conductors of 110 are surrounded by electrical shielding material up to a 360 degrees around the signal conductors, is established between the metallic shell 130, which is grounded through the drive connection socket 120, and the electrical shield 112 of the control signal cable 104a as required to provide a low impedance connection of the shield to shunt electrical noise introduced on the cable shield, connector backshell and shroud to ground to resist electrical interference.
It should be noted that a main advantage of the present development is that the plastic socket header 122 by itself can be a known or standard part that can be used without any EMI shielding, but that is converted to a EMI shielded drive connector socket 120 by installing or including a metal shroud 126 according to the present development as shown in
This application is a continuation of U.S. application Ser. No. 13/447,185 filed Apr. 14, 2012, now assigned U.S. Pat. No. 8,523,602, which application claims priority from and benefit of the filing date of U.S. provisional application Ser. No. 61/476,076 filed Apr. 15, 2011, and the entire disclosure of each of said prior applications is hereby expressly incorporated by reference into the present specification.
Number | Name | Date | Kind |
---|---|---|---|
3904265 | Hollyday et al. | Sep 1975 | A |
4761145 | Goto et al. | Aug 1988 | A |
4822286 | Bianca | Apr 1989 | A |
4952168 | Schieferly et al. | Aug 1990 | A |
5315062 | Hoshino | May 1994 | A |
5718601 | Masters et al. | Feb 1998 | A |
5836774 | Tan et al. | Nov 1998 | A |
6354879 | Plehaty | Mar 2002 | B1 |
6705894 | Comerci et al. | Mar 2004 | B1 |
6757155 | Koike et al. | Jun 2004 | B2 |
6809265 | Gladd et al. | Oct 2004 | B1 |
6962504 | Fukui et al. | Nov 2005 | B2 |
7052323 | Ruff et al. | May 2006 | B1 |
7112086 | Wu | Sep 2006 | B1 |
7163408 | Chen et al. | Jan 2007 | B1 |
7485003 | Mandrusov et al. | Feb 2009 | B2 |
7494376 | Foltz | Feb 2009 | B1 |
7537478 | Foltz et al. | May 2009 | B2 |
7632126 | Farole et al. | Dec 2009 | B1 |
Entry |
---|
2009/2010 Phoenix Contact Catalog, pp. 708-709 (2009). |
Phoenix Contact Catalog, D-Sub Sleeve Housings, pp. 1-2, (Feb. 7, 2012). |
Connection Technology for Field Devices and Field Cabling, pp. 436, 437,440-443 (2011). |
Number | Date | Country | |
---|---|---|---|
20130344740 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
61476076 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13447185 | Apr 2012 | US |
Child | 14013660 | US |