Field layer speaker for consumer products

Information

  • Patent Grant
  • 6570994
  • Patent Number
    6,570,994
  • Date Filed
    Thursday, March 25, 1999
    25 years ago
  • Date Issued
    Tuesday, May 27, 2003
    21 years ago
Abstract
A technique and apparatus for integrating a speaker with button (or keyboard) components such as a tactile membrane and/or PCB. The tactile membrane conventionally used between buttons and switch mechanisms to provide tactile feedback to a user upon depression of the button is extended to form a vibrating portion of a speaker. The vibrating portion is doped with or otherwise includes an activating material (e.g., copper) which will be physically affected by a magnetic field. The activating material may be adhered to the upper and/or lower side of the vibrating portion, or doped therein. A coil for the speaker is formed with a coil tracing pattern formed on one or more layers of a PCB. One or more amplifier circuits may be included to drive one or more coil patterns, to cause a fluctuating magnetic field in the direction perpendicular to the vibrating portion of the tactile membrane. The vibrating portion of the tactile membrane responds to the fluctuations in the magnetic field, causing audible sounds to be output.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates generally to speakers in consumer products. More particularly, it relates to the integration of a speaker with a keypad using a common membrane and/or printed circuit board.




2. Background of Related Art




Speakers and keypads are found in many consumer products, particularly in telecommunications related devices. For instance, telephone answer devices typically include a twelve (12) key alphanumeric keypad for dialing telephone numbers, and a speaker for playing back recorded voice messages. Similarly, speakerphones include an alphanumeric keypad for dialing telephone numbers, and a speaker for outputting received voice signals from a telephone line. Facsimile machines include an alphanumeric keypad for dialing telephone numbers and a speaker to provide audible monitoring of an outgoing telephone call.




Other devices other than telecommunications related devices include buttons and speakers. For instance, small, inexpensive radios include buttons for tuning, power control, etc., and a speaker for outputting the received audible radio signal. Telecommunications related or not, the types of devices including at least one PCB mounted button and speaker are endless.




In higher end consumer devices, quality speakers are used. However, in lower end consumer devices, and in higher end consumer devices which rarely or insignificantly output audible sounds through their speaker, a quality speaker may be overkill and wasteful of costs.




In many conventional devices, the buttons are mounted on a printed circuit board (PCB), which provides an efficient and inexpensive method of wiring the buttons to a processor or other device. In smaller devices, the processor may be mounted on the same PCB as the buttons, and in larger devices the processor may be mounted on a separate PCB but in wired communication with the button PCB. In any event, the speaker is typically mounted in a common chassis with the button PCB.




The conventional speaker is electrically connected to the button PCB or other PCB with two wires extending from the coil of the speaker to corresponding solder pads or through holes on the button PCB or other PCB. Unfortunately, it is manually intensive not only to separately mount both the speaker and button PCB, but also to solder the two wires between the coil of the speaker and a corresponding PCB. Moreover, if the speaker is not mounted in close proximity to the PCB, the wires may require strapping to secure them against breakage and to allow easy access to components surrounding the speaker.




For instance,

FIG. 6

shows a conventional device


650


including both a speaker


600


and a plurality of buttons


190


mounted on a printed circuit board (PCB)


160


.




In particular, a conventional speaker


600


is mounted in close proximity to the buttons


190


, with two speaker wires


604


,


606


providing electrical connection between the coil of the speaker


600


and the wiring on the PCB


160


.




Conventional buttons


190


come in many shapes and sizes. For instance, the buttons


190


shown in

FIG. 6

include button caps


191


, a tactile layer


170


including a respective plurality of tactile portions


190




a


corresponding to each button cap


191


. The buttons


190


also include an electrical switch


192


. The electrical switch


192


may be, e.g., as simple as conductive rubber causing conduction between two exposed wire traces on the PCB


160


, or may be comprised of a more rugged mechanical switching mechanism.




Although not shown, PCB mount speakers are available. However, PCB mount speakers are typically costly, and often capable of outputting audible signals at a quality much higher than that required by the particular application. Thus, in low end devices or in high end devices making minimal quality use of the speaker, a PCB mount speaker is nevertheless overkill and wasteful of costs.




There is a need for a more cost effective speaker solution for consumer devices including buttons together with the speaker.




SUMMARY OF THE INVENTION




In accordance with the principles of the present invention, a speaker comprises a tactile member for a button including an active region responsive to fluctuations in a magnetic field. A coil, formed on a printed circuit board, is adapted to create a fluctuating magnetic field at the active region of the tactile member.




In accordance with another aspect of the present invention, a method of forming a speaker for a consumer product comprises forming a vibrating portion of the speaker from an extension of a tactile member of a button. An active region is included in the vibrating portion, the active region being attracted and repelled by fluctuations in a magnetic field. A coil is formed adjacent to the active region to create the magnetic field.











BRIEF DESCRIPTION OF THE DRAWINGS




Features and advantages of the present invention will become apparent to those skilled in the art from the following description with reference to the drawings, in which:





FIG. 1

is a cross sectional view of an embodiment of a field layer speaker integrated with a button PCB, in accordance with the principles of the present invention.





FIG. 2

is a top view of an exemplary membrane layer between the button caps and their corresponding switches, extended to form a vibrating layer for a field layer speaker as shown in FIG.


1


.





FIG. 3

is a top view of a first embodiment of a printed circuit board shown in

FIG. 1

, extended to include a spiral coil using two layers of the printed circuit board, for creating a magnetic field to cause vibration of a corresponding vibrating layer of the field layer speaker, in accordance with the principles of the present invention.





FIG. 4

is a top view of another embodiment of the printed circuit board shown in

FIG. 1

, extended to include a square shaped coil, for creating a magnetic field to cause vibration of a corresponding vibrating layer of the field layer speaker, in accordance with the principles of the present invention.





FIG. 5

is a top view of a first embodiment of a printed circuit board shown in

FIG. 1

, extended to include a spiral shaped coil using one side of the printed circuit board, for creating a magnetic field to cause vibration of a corresponding vibrating layer of the field layer speaker, in accordance with the principles of the present invention.





FIG. 6

shows a conventional device including both a speaker and a plurality of buttons mounted on a printed circuit board.











DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS




The present invention provides a low cost technique and apparatus for integrating a speaker with button (or keyboard) components, preferably using elements used with respect to the buttons and corresponding switches, and eliminating the need to separately wire the speaker.




In accordance with the principles of the present invention, tactile membrane used between buttons and switch mechanisms to conventionally provide tactile feedback to a user upon depression of the button is extended to include a vibrating portion. The vibrating portion is doped with or otherwise includes a material (e.g., copper) which will be physically affected by a magnetic field. The button printed circuit board is also extended to include a tracing forming a coil of the speaker.




Appropriate circuitry may be included on the same or a different PCB to drive the coil and cause a fluctuating magnetic field in the direction toward the vibrating portion of the tactile membrane. The vibrating portion of the tactile membrane responds to the fluctuations in the magnetic field, causing audible sounds to be output.




A field layer speaker in accordance with the principles of the present invention may be used in devices having minimal requirements for audible sound quality.





FIG. 1

is a cross sectional view of an embodiment of a field layer speaker integrated with a button PCB, in accordance with the principles of the present invention.




In particular,

FIG. 1

shows a field layer speaker


100


formed from an extension of the tactile member


170


and PCB


160


used by the buttons


190


and corresponding switches


192


. In the disclosed embodiment, the tactile member


170


is preferably a poly material. However, other suitable and conventional materials used as tactile members can be used, e.g., a non-magnetic metallic layer.




The vibrating portion of the tactile member


170


is doped with a material affected by a magnetic field (e.g., copper) in an active region


180


.




The vibrating portion


112


is terminated in the disclosed embodiment with rubberized damping members


175


. The damping members


175


may also provide support and separation between the tactile member


170


and the PCB


160


.




The damping members


175


may form any appropriate pattern about the perimeter of the vibrating portion


112


. For instance, the damping members


175


may form a square vibrating portion


112


as shown in FIG.


2


. Alternatively, the damping members


175


may form a circular or oval shaped vibrating portion, a polygonal-shaped vibrating portion, or even a non-symmetrical vibrating portion.




While the damping members


175


are preferred to avoid affects of the vibration of the vibrating portion


112


on the operation of the buttons


190


and corresponding switches


192


, the damping members


175


may be eliminated in appropriate applications, e.g., if the vibrating portion


112


is formed of a member separate from the tactile member of the buttons


190


.




The PCB


160


includes a tracing pattern forming a coil


182


proximate to the active region


180


of the vibrating portion


112


. The tracing pattern is preferably formed in a flat plane and with a thickness corresponding to other portions of wiring on the PCB


160


. However, to provide thickness to the coil


182


, separate portions of the coil may be formed on separate layers of the PCB


160


. For instance, if a four layer PCB is used, the coil


182


may be formed by spiral portions formed on each of the four layers, to collectively form a magnetic field to appropriately attract and repel the active region


180


of the vibrating portion


112


in correspondence with a signal to be output from the speaker


100


. Alternatively, the multiple coil layer can be individually energized to provide a more intricate magnetic field with respect to the vibrating portion


112


.





FIG. 2

is a top view of an exemplary membrane layer between the button caps and their corresponding switches, extended to form a vibrating layer for a field layer speaker as shown in FIG.


1


.




In particular, the tactile member


170


is extended to form the vibrating portion


112


of the speaker


100


in a region surrounded by the damping members


175


. The active region


180


is shown as an appropriately sized doped copper material formed within the thickness of the tactile member


170


.




Alternatively, or additionally, the active region


180


may be formed by adhesion of an active material such as copper (or other suitable material which reacts to a generated field) on an upper and/or lower surface of the active region


180


.




The active material may be in granular form, or may be formed in a continuous, planar layer. For instance, an insulated spiral or other shaped coil of copper may be isolated in or on the active region


180


of the vibrating portion


112


.





FIG. 3

is a top view of a first embodiment of the printed circuit board


160


shown in

FIG. 1

, extended to include a spiral-shaped coil


182


using two layers of the printed circuit board


160


. The spiral-shaped coil


182


is driven by appropriate circuitry (such as a signal amplifier


378


) to create a fluctuating magnetic field to cause vibration of a corresponding vibrating layer of the field layer speaker, in accordance with the principles of the present invention.




In particular,

FIG. 3

shows a spiral-shaped coil


182


formed on an upper layer of the PCB


160


, and a return wire from the center of the coil


182


on a second layer of the PCB


160


, with appropriate via holes


361




a,




361




b


formed in the PCB


160


. Preferably, the symmetrical center of the coil


182


is arranged coaxial to the symmetrical center of the active region


180


of the approximate vibrating portion


112


of the tactile member


170


.




If the PCB


160


has more than two layers available, multiple spiral- or other-shaped coils


182


may be formed on the various layers of the PCB


160


to individually or collectively create the desired magnetic field for attracting and repelling the active region


180


of the vibrating portion


112


of the speaker


100


to create the desired audible output. When multiple coil patterns are used, the patterns are preferably arranged coaxial to one another. However, the multiple coils may be arranged such that each coil is intended to mostly affect a separate region of the active portion


180


.




Generally, the center


181


of the vibrating portion


112


travels the farthest toward and away from the coil


182


, and thus the magnetic field fluctuations should be the greatest at a point at the center of the active region


180


.





FIG. 3

also shows the use of damping members


202


around a perimeter of the tactile member to allow a larger area of the tactile member


170


(

FIGS. 1 and 2

) to vibrate.





FIG. 4

is a top view of another embodiment of the printed circuit board


160


shown in

FIG. 1

, extended to include a square shaped coil


182


. The square shaped coil


182


, when appropriately driven with an amplified signal, creates a magnetic field to cause vibration of a corresponding vibrating portion


112


of the speaker


100


, in accordance with the principles of the present invention.




As shown in

FIG. 4

, the square shaped coil


182


can be formed on a single wiring layer of the PCB


160


. Of course, the coil


182


can be formed on any number of layers of the PCB


160


in accordance with the principles of the present invention. Moreover, multiple coil patterns (and shapes) can be combined in various ways to create the desired fluctuating magnetic field to drive the active region


180


of the vibrating portion


112


. For instance, a first PCB layer may include a square shaped coil


182


as shown in

FIG. 4

, a second PCB layer may include another square shaped coil


182


as shown in

FIG. 4

, and third and fourth PCB layers may include a spiral shaped coil


182


as shown in FIG.


3


.




When multiple coil patterns are used, each coil may selectively be separately driven from a separate amplifier. The separate amplifiers are preferably tuned based on the corresponding coils' and/or vibrating portion's


112


characteristics, e.g., shape, distance from active region


180


, impedance, linearity, etc. Of course, all coil patterns may be driven by the same amplifier or signal, either in parallel or in series, in accordance with the principles of the present invention.





FIG. 5

is a top view of yet another embodiment of the printed circuit board


160


shown in

FIG. 1

, extended to include a spiral shaped coil using only one side of the printed circuit board


160


. The single-sided spiral shaped coil, when appropriately driven with a signal, creates a fluctuating magnetic field to cause vibration of the vibrating portion


112


, in accordance with the principles of the present invention.




In particular, the single-sided coil


182


formed on one side of the PCB


160


includes an outgoing wiring route


503




a


and an incoming wiring route


503




b


as it spirals toward its symmetrical center.




While the invention has been described with reference to the exemplary embodiments thereof, those skilled in the art will be able to make various modifications to the described embodiments of the invention without departing from the true spirit and scope of the invention.



Claims
  • 1. A speaker, comprising:a tactile member adapted to be attached to a button and including an active region responsive to fluctuations in a magnetic field; and a coil formed on a printed circuit board, said coil being adapted to create a fluctuating magnetic field at said active region of said tactile member to produce from said speaker an audible sound originally generated by a separate source.
  • 2. The speaker according to claim 1, wherein:said coil is spiral-shaped.
  • 3. The speaker according to claim 1, wherein:said coil is primarily polygonal-shaped.
  • 4. The speaker according to claim 1, wherein:said coil is formed on one layer of said printed circuit board.
  • 5. The speaker according to claim 1, wherein:said coil is formed on a plurality of layers of said printed circuit board.
  • 6. The speaker according to claim 1, wherein said coil comprises:a plurality of coil patterns formed on separate layers of said printed circuit board.
  • 7. The speaker according to claim 1, wherein:an amplifier circuit is used to drive said coil and cause said tactile member to vibrate in an area including said active region.
  • 8. The speaker according to claim 1, further comprising:at least one button and corresponding switch.
  • 9. A speaker, comprising:a tactile member adapted to be attached to a button and including an active region responsive to fluctuations in a magnetic field; a coil formed on a printed circuit board, said coil being adapted to create a fluctuating magnetic field at said active region of said tactile member to produce from said speaker an audible sound origianlly generated by a separate source; and a keypad formed from at least one of said tactile member and said printed circuit board.
  • 10. The speaker according to claim 9, wherein:said keypad is an alphanumeric keypad.
  • 11. The speaker according to claim 10, wherein:said keypad includes at least twelve buttons.
  • 12. A method of forming a speaker, said method comprising:forming a vibrating portion of said speaker from an extension of a tactile member adapted to be attached to a button to produce from said speaker an audible sound originally generated by a separate source; including an active region in said vibrating portion, said active region being attracted and repelled by fluctuations in a field; and forming a coil on a printed circuit board proximate to said active region to create said magnetic field.
  • 13. The method of forming a speaker according to claim 12, wherein:said coil is formed on at least one layer of a printed circuit board.
  • 14. A method of forming a speaker, said method comprising:forming a vibrating portion of said speaker from an extension of a tactile member adapted to be attached to a button; including an active region in said vibrating portion, said active region being attracted and repelled by fluctuations in a magnetic field; forming a coil on a printed circuit board proximate to said active region to create said magnetic field; and providing a button on said tactile member.
  • 15. A consumer product including a speaker comprising:vibrating portion means of said speaker formed from an extended tactile member adapted to be attached to a button for producing from said speaker an audible sound originally generated by a separate source; active region means, in said vibrating portion, for being attracted and repelled by fluctuations in a magnetic field; and coil means, proximate to said active region, for creating said magnetic field.
  • 16. The speaker according to claim 15, wherein:said coil means is formed on at least one layer of a printed circuit board.
  • 17. A consumer product including a speaker, comprising:vibrating portion means formed from an extended tactile member adapted to be attached to a button; active region means, in said vibrating portion, for being attracted and repelled by fluctuations in a magnetic field; coil means, proximate to said active region, for creating said magnetic field; and button means on said tactile member.
US Referenced Citations (19)
Number Name Date Kind
4194097 Bradam Mar 1980 A
4286129 Petit Aug 1981 A
4314112 Misson et al. Feb 1982 A
5175459 Danial et al. Dec 1992 A
5396264 Falcone et al. Mar 1995 A
5524061 Mooney et al. Jun 1996 A
5583474 Mizoguchi et al. Dec 1996 A
5801521 Mizoguchi et al. Sep 1998 A
5825297 Mooney et al. Oct 1998 A
5883612 Kreitzer Mar 1999 A
5914481 Danielson et al. Jun 1999 A
5956622 Lee Sep 1999 A
5959522 Andrews Sep 1999 A
5978231 Tohya et al. Nov 1999 A
6008714 Okuda et al. Dec 1999 A
6057753 Myers May 2000 A
6160489 Perry et al. Dec 2000 A
6324067 Nishiyama Nov 2001 B1
6404317 Mizoguchi et al. Jun 2002 B1