The present invention relates to industrial process control and measurement. More specifically, the present invention relates to a handheld field maintenance tool for use in industrial process control and measurement installations.
Field maintenance tools are known. Such tools are highly useful in the process control and measurement industry to allow operators to conveniently communicate with and/or interrogate field devices in a given process installation. Examples of such process installations include petroleum, pharmaceutical, chemical, pulp and other processing installations. In such installations, the process control and measurement network may include tens or even hundreds of various field devices which periodically require maintenance to ensure that such devices are functioning properly and/or calibrated. Moreover, when one or more errors in the process control and measurement installation are detected, the use of an intrinsically safe handheld field maintenance tool allows technicians to quickly diagnose such errors in the field.
One such tool is sold under the trade designation Model 275 HART® Communicator available from Fisher-Rosemount Systems, Inc., of Eden Prairie, Minn. HART® is a registered trademark of the HART® Communication Foundation. The Model 275 provides a host of important functions and capabilities and generally allows highly effective field maintenance.
The Model 275 HART® Communicator can provide new functions and/or communication with new field devices by updating its software. When the software is updated, it is important to ensure that with each new update, that the new version of software will continue to function with all field devices with which the previous version was compatible. Testing the new software to ensure such compatibility is termed regression testing. One way in which this regression testing is performed, is by using scripts. Scripts allow behavior of the new software to be observed in response to artificial stimulus such as field device inputs and outputs and/or process communication inputs and outputs without the actual presence required of field devices or even a process communication loop. As used herein, “script” is intended to mean a data structure relative to one or more of tool inputs, tool outputs, process communication inputs, process communication outputs, or any combination thereof. It is known to use such scripts to verify new releases of the software that runs on the Model 275.
Scripts are currently generated on a simulator and played back via a customized tool (using custom hardware such as a tool interface coupled to a general purpose computer via a specialized peripheral card resident within the computer) to verify the software. This approach to regression testing has proved effective in the past. However, as handheld field maintenance tools evolve, more effective use of scripts can provide not only more effective software testing, but a valuable asset for a field maintenance technician.
Improved script generation and usage for handheld field maintenance tools is provided. In one aspect, the handheld field maintenance tool actually generates scripts for later playback. Preferably script generation and/or playback or features are provided to field maintenance technicians. Additionally, scripts can be played on the handheld field maintenance tool without modification to the tool itself.
The Model 275 HART® communicator currently uses scripts to some extent. These scripts are generally data structures or files related to one or more of tool inputs, tool outputs, process communication inputs, process communication outputs, and/or any combination thereof.
One example of an improved handheld field maintenance tool with which embodiments of the invention are particularly useful is a new tool that is operable with at least two industry standard device descriptions. In one specific embodiment, an improved handheld field maintenance tool implements both HART® and fieldbus Device Description Language (DDL). The improved handheld field maintenance tool is used to maintain both two-wire and four-wire (i.e. external power) field devices using these protocols. Preferably, both configuration and calibration are supported via DDL technology. DDL technology is known and additional reading regarding Device Description Language can be found in U.S. Pat. No. 5,960,214 to Sharp, Jr. et al. While embodiments of the invention would be described with respect to the improved intrinsically safe field maintenance tool, those skilled in the art will recognize that some embodiments of the present invention can in fact be practicable with the Model 275 HART® Communicator as well as other known commercially available communicators.
The improved handheld field maintenance tool facilitates a convenient display of diagnostic information from individual field devices (i.e. status bits) as well as providing advanced protocol-specific network troubleshooting features. Further details and benefits of aspects of the present invention in combination the improved handheld field maintenance tool will be appreciated after reading the description below.
In this illustration, process communication or process control loop 18 is a FOUNDATION™ Fieldbus process communication loop and is coupled to field devices 20, which are shown arranged in a multi-drop configuration. An alternative process communication loop (not shown) is an HART® process communication loop.
Handheld field maintenance tool 22 is coupled to loop 18 as illustrated in
Processor 36 is also coupled to keypad module 38 and display module 40. Keypad module 38 is coupled to the keypad on the housing of tool 22 in order to receive various keypad inputs from a user. Display module 40 is coupled to the display to provide data and/or a user interface.
Tool 22 can also include additional hardware enhancements that facilitate increased functionality. In one embodiment, tool 22 includes infrared data access port 42 which is coupled to processor 36 to allow tool 22 to transfer information to and from a separate device using infrared wireless communication. One advantageous use of port 42 is for transferring and/or updating scripts and/or Device Descriptions stored in one or more memories of tool 22. A Device Description (DD) is a software technology used to describe parameters in a field device in a computer-readable format. This DD contains all of the information necessary for a software application being executed on processor 36 to retrieve and use the parametric data. The separate device such as computer 12, can obtain a new scripts, Device Description, or any other suitable information from floppy disk, CD-ROM, or the internet and wirelessly transfer the new information to tool 22.
Removable memory module 44 is removably coupled to processor 36 via port/interface 46. Removable memory module 44 is adapted to store software applications that can be executed instead of primary applications on processor 36. For example, module 44 may contain applications that use the HART® or FOUNDATION™ fieldbus communication port, to provide a comprehensive diagnostic for a given process valve. Additionally, module 44 may store software applications that aid in the calibration or configuration of specific devices. Module 44 may also store a software image for a new or updated primary tool application that can subsequently be transferred into the non-volatile memory of processor 36 to enable execution of the updated application. Further still, module 44 provides removable memory storage for the configuration of multiple devices allowing a field maintenance technician to acquire a relatively substantial amount of device data, including scripts, and conveniently store or transfer such data by simply removing module 44.
Preferably, module 44 is adapted to be replaceable in hazardous areas in a process plant. Thus, it is preferred that module 44 comply with intrinsic safety requirements set forth in: APPROVAL STANDARD INTRINSICALLY SAFE APPARATUS AND ASSOCIATED APPARATUS FOR USE IN CLASS I, II AND III, DIVISION 1 HAZARDOUS (CLASSIFIED) LOCATIONS, CLASS NUMBER 3610, promulgated by Factory Mutual Research October, 1988. Adaptations to comply with additional industrial standards such as Canadian Standards Association (CSA) and the European CENELEC standards are also contemplated. Examples of specific structural adaptations for memory module 44 and/or interface 46 to facilitate compliance include energy limiting circuits such that the operating voltage level of memory module 44 is sufficiently low that stored energy within module 44 cannot generate a source of ignition. Additionally, module 44 may include current limiting circuitry to ensure that in the event that specific terminals on module 44 are shorted, that the discharge energy is sufficiently low that ignition is inhibited. Finally, interface 44 may include physical characteristics that are specifically designed to prevent exposure of electrical contacts on memory module 44 to an external environment while simultaneously allowing suitable interface contacts to make electrical contact with module 44. For example, module 44 may include an over-molding that can be pierced or otherwise displaced by coupling module 44 to interface 46.
Tool 22 also preferably includes expansion memory module 48 coupled to processor 36 via connector 50 which is preferably disposed on the main board of tool 22. Expansion memory module 48 may contain Device Descriptions and/or scripts relative to field devices of either of first and second industry standard protocols. Module 48 may also contain license code(s) that will determine the functionality of tool 22 with respect to the multiple protocols. For example, data residing within module 48 may indicate that tool 22 is only authorized to operate within a single process industry standard mode, such as the HART® protocol. Ultimately, a different setting of that data within module 48 may indicate that tool 22 is authorized to operate in accordance with two or more industry standard protocols. Module 48 is preferably inserted to a connector 50 on the main board and may in fact require partial disassembly of tool 22, such as removing the battery pack to access port 50.
Embodiments of the present invention provide significantly enhanced generation and utilization of scripts with a handheld field maintenance tool. Using embodiments of the present invention, each new release of software for the field maintenance tool can be verified in much the same manner as the regression test system that was used with the Model 275. However, significantly improved functions are provided in accordance with embodiments of the present invention. One specific improvement is the ability to play scripts on a standard, non-specialized, handheld field maintenance tool. Further, unlike prior handheld tools, the handheld field maintenance tool described herein is able to generate scripts. Such script generation provides a number of advantages for field maintenance technicians since problems in the field can be captured and effectively studied by field support personnel and/or software engineering personnel. Yet another improved function, in accordance with embodiments of the present invention is the generation and/or playback of FOUNDATION™ Fieldbus scripts.
In the past, when a technician would encounter a problem in the field, the exact sequence of operations to repeat the problem would likely been forgotten by the time the technician contacted field support and/or software engineering. Therefore, the problem sometimes would not be reproducible by the technician, field support personnel, or software engineering personnel. Allowing a field maintenance technician to generate scripts with the handheld field maintenance tool allows the problems to be studied in precise detail and will generally increase problem reproducibility.
Field device manufacturers are the primary source of scripts used for regression testing. Scripts are generally created when field device developers are satisfied with the operational behavioral of handheld device 22 and their specific Device Description. A Device Description is essentially a device driver which instructs the software application on handheld tool 22 to communicate and interact with the specific field device. Scripts can also be generated by software engineering personnel for handheld tool 22.
As described briefly above, a powerful new use for scripts, in accordance with embodiments of the present invention, is allowing technicians to generate their own scripts using handheld tool 22. This feature precisely captures problems discovered in the field. Once such a problem is been captured, it can be reported to field support and/or software engineering personnel. Preferably, software within tool 22 records scripts each time tool 22 is energized. Thus, handheld tool 22 maintains a log of all interaction thereon and when a technician discovers that a problem has been encountered, the already logged interaction can be bracketed and flagged as a problem. In this manner, a technician need not be expecting to encounter a specific problem in order to accurately capture the problem, but may simply flag a series of frames within handheld tool 22 as indicative of the problem.
Playback mode is preferably also offered to field maintenance technicians. Scripts can be played on the handheld tool without requiring the technician to couple the tool to an external device. In this regard, the tool can be considered a stand-alone script playback device. Further, allowing technicians to record and playback scripts will facilitate field maintenance. For example, the technician may be able to see if a problem is reproducible or not. Reproducibility is sometimes key information in the analysis of the problem (for example if a problem cannot be recreated using precisely the same software stimulus, the problem may exist in another product in communication with handheld tool 22, or may be due to some other dynamic (multitasking event)).
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3955132 | Greenwood | May 1976 | A |
4337516 | Murphy et al. | Jun 1982 | A |
4630265 | Sexton | Dec 1986 | A |
4635214 | Kasai et al. | Jan 1987 | A |
4707796 | Calabro et al. | Nov 1987 | A |
4954923 | Hoeflich et al. | Sep 1990 | A |
4964125 | Kim | Oct 1990 | A |
4988990 | Warrior | Jan 1991 | A |
5005142 | Lipchak et al. | Apr 1991 | A |
5103409 | Shimizu et al. | Apr 1992 | A |
5113303 | Herres | May 1992 | A |
5148378 | Shibayama et al. | Sep 1992 | A |
5150289 | Badavas | Sep 1992 | A |
5197328 | Fitzgerald | Mar 1993 | A |
5426774 | Banerjee et al. | Jun 1995 | A |
5434774 | Seberger | Jul 1995 | A |
5442639 | Crowder et al. | Aug 1995 | A |
5469156 | Kogure | Nov 1995 | A |
5481200 | Voegele et al. | Jan 1996 | A |
5570300 | Henry et al. | Oct 1996 | A |
5573032 | Lenz et al. | Nov 1996 | A |
5598521 | Kilgore et al. | Jan 1997 | A |
5623605 | Keshav et al. | Apr 1997 | A |
5665899 | Willcox | Sep 1997 | A |
5742845 | Wagner | Apr 1998 | A |
5752249 | Macon et al. | May 1998 | A |
5764891 | Warrior | Jun 1998 | A |
5793963 | Tapperson et al. | Aug 1998 | A |
5828567 | Eryurek et al. | Oct 1998 | A |
5838187 | Embree | Nov 1998 | A |
5909368 | Nixon et al. | Jun 1999 | A |
5923557 | Eidson | Jul 1999 | A |
5940290 | Dixon | Aug 1999 | A |
5956663 | Eryurek | Sep 1999 | A |
5960214 | Sharpe et al. | Sep 1999 | A |
5970430 | Burns et al. | Oct 1999 | A |
5980078 | Krivoshein et al. | Nov 1999 | A |
5995916 | Nixon et al. | Nov 1999 | A |
6017143 | Eryurek et al. | Jan 2000 | A |
6023399 | Kogure | Feb 2000 | A |
6026352 | Burns et al. | Feb 2000 | A |
6047222 | Burns et al. | Apr 2000 | A |
6052655 | Kobayashi et al. | Apr 2000 | A |
6091968 | Koohgoli et al. | Jul 2000 | A |
6094600 | Sharpe, Jr. et al. | Jul 2000 | A |
6111738 | McGoogan | Aug 2000 | A |
6119047 | Eryurek et al. | Sep 2000 | A |
6179964 | Begemann et al. | Jan 2001 | B1 |
6192281 | Brown et al. | Feb 2001 | B1 |
6195591 | Nixon et al. | Feb 2001 | B1 |
6211623 | Wilhelm et al. | Apr 2001 | B1 |
6236334 | Tapperson et al. | May 2001 | B1 |
6263487 | Stripf et al. | Jul 2001 | B1 |
6270920 | Nakanishi et al. | Aug 2001 | B1 |
6279124 | Brouwer et al. | Aug 2001 | B1 |
6298377 | Hartkainen et al. | Oct 2001 | B1 |
6304934 | Pimenta et al. | Oct 2001 | B1 |
6307483 | Westfield et al. | Oct 2001 | B1 |
6317701 | Pyotsia et al. | Nov 2001 | B1 |
6324607 | Korowitz et al. | Nov 2001 | B1 |
6356191 | Kirkpatrick et al. | Mar 2002 | B1 |
6370448 | Eryurek | Apr 2002 | B1 |
6377859 | Brown et al. | Apr 2002 | B1 |
6397114 | Eryurek et al. | May 2002 | B1 |
6434504 | Eryurek et al. | Aug 2002 | B1 |
6444350 | Toya et al. | Sep 2002 | B1 |
6449574 | Eryurek et al. | Sep 2002 | B1 |
6473710 | Eryurek | Oct 2002 | B1 |
6487462 | Reeves | Nov 2002 | B1 |
6505517 | Eryurek et al. | Jan 2003 | B1 |
6519546 | Eryurek et al. | Feb 2003 | B1 |
6532392 | Eryurek et al. | Mar 2003 | B1 |
6539267 | Eryurek et al. | Mar 2003 | B1 |
6594603 | Eryurek et al. | Jul 2003 | B1 |
6594621 | Meeker | Jul 2003 | B1 |
6598828 | Fiebick et al. | Jul 2003 | B1 |
6601005 | Eryurek et al. | Jul 2003 | B1 |
6611775 | Coursolle et al. | Aug 2003 | B1 |
6615149 | Wehrs | Sep 2003 | B1 |
6629059 | Borgeson et al. | Sep 2003 | B1 |
6654697 | Eryurek et al. | Nov 2003 | B1 |
6697681 | Stoddard et al. | Feb 2004 | B1 |
6714969 | Klein et al. | Mar 2004 | B1 |
6775271 | Johnson et al. | Aug 2004 | B1 |
20010053065 | Cudini et al. | Dec 2001 | A1 |
20020004370 | Stengele et al. | Jan 2002 | A1 |
20020065631 | Loechner | May 2002 | A1 |
20020077711 | Nixon et al. | Jun 2002 | A1 |
20020123864 | Eryurek et al. | Sep 2002 | A1 |
20030023408 | Wight et al. | Jan 2003 | A1 |
20030023795 | Packwood et al. | Jan 2003 | A1 |
20030033040 | Billings | Feb 2003 | A1 |
20030158795 | Markham et al. | Aug 2003 | A1 |
Number | Date | Country |
---|---|---|
29917651 | Dec 2000 | DE |
1993 0660 | Jan 2001 | DE |
100 32 774 | Jan 2002 | DE |
1022626 | Jul 2000 | EP |
2347232 | Aug 2000 | GB |
2753592 | Jan 1990 | JP |
WO9612993 | May 1996 | WO |
WO9721157 | Jun 1997 | WO |
WO9814855 | Oct 1997 | WO |
WO9839718 | Sep 1998 | WO |
WO0041050 | Jul 2000 | WO |
WO 0055700 | Sep 2000 | WO |
WO02027418 | Apr 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040230327 A1 | Nov 2004 | US |