The present invention relates generally to the field of semiconductors and integrated circuit design, and particularly to a field programmable platform array (FPPA).
Integrated circuits have become a necessary part of everyday modem society. From wireless phones and information handling systems, to household appliances and data storage systems, a wide range of integrated circuits are utilized to provide a broad range of functionality. To provide this functionality, integrated circuits may need to be specialized to have the functions necessary to achieve the desired results, such as through the provision of an application specific integrated circuit (ASIC). An ASIC is typically optimized for a given function set, thereby enabling the circuit to perform the functions in an optimized manner. However, there may be a wide variety of end-users desiring such targeted functionality, with each user desiring different functionality for different uses.
Additionally, more and more functions are being included within each integrated circuit. While providing a semiconductor device that includes a greater range of functions supported by the device, inclusion of this range further complicates the design and increases the complexity of the manufacturing process. Further, such targeted functionality may render the device suitable for a narrow range of consumers, thereby at least partially removing an “economy of scale” effect that may be realized by selling greater quantities of the device.
Thus, the application specific integrated circuit business is confronted by the contradiction that the costs of design and manufacture dictate high volumes of complex designs. Because of this, the number of companies fielding such custom designs is dwindling in the face of those rapidly escalating costs.
Time-to-market, cost of masks and performance are the main concerns in ASIC products. Although FPGA (field programmable gate array) provides the fastest time to market, FPGA may suffer from high NRE (nonrecurring engineering) cost. Platform-based integrated circuit design such as RapidChip™ developed by LSI Logic Corp., and the like, fills the gap between FPGA and ASIC. In a platform, cores are interconnected by a transistor array fabric, which may be configured by BEOL (back end of line) masks for metal (or late-metal) layers. Although most of the FEOL (front end of line) fabrication process and core design of a platform are completed for a slice, the BEOL masks still need be custom designed for the platform. A slice is a pre-manufactured chip in which all silicon layers have been built, leaving the top metal layers to be completed with the customer's unique IP (intellectual property). Moreover, sometimes the cost sharing advantage of a platform may not be realized because different capabilities are usually desired (e.g., trading speed with memory) within the platform. This means that different sizes of slices within a platform need be provided.
Therefore, it would be desirable to provide a field programmable platform array (FPPA). The FPPA may be pre-designed and pre-manufactured, in which all silicon layers and metal layers have been built. The FPPA may be composed arbitrarily and its filed programmable nature may decrease complexity in management and lead time.
Accordingly, the present invention is directed to a FPPA. In a first exemplary aspect of the present invention, a method for providing field programmable platform array units may include the following steps. First, N by M array of platform array units may be cut from a field programmable platform array wafer according to a customer's order, where N and M are positive integers. The field programmable platform array wafer is a wafer with all silicon layers and metal layers already built and includes a plurality of platform array units. The platform array units may be field programmable by a customer, and each platform array unit may include at least one core and at least one processor. Interconnect between any two of the platform array units may be pre-routed on chip. Next, the N by M array of platform array units may be packaged and tested. After the N by M array of platform array units are delivered to the customer, the N by M array of platform array units may be field programmed by the customer.
In an additional exemplary aspect of the present invention, a semiconductor device may include two or more platform array units. Each of the platform array units may include at least one core and at least one processor. The platform array units may be field programmable by a customer. Interconnect between any two of the platform array units may be pre-routed on chip.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed. The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate an embodiment of the invention and together with the general description, serve to explain the principles of the invention.
The numerous advantages of the present invention may be better understood by those skilled in the art by reference to the accompanying figures in which:
Reference will now be made in detail to the presently preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings.
Time-to-market, cost of masks and performance are the main concerns in ASIC products. Although FPGA (field programmable gate array) provides the fastest time to market, FPGA may suffer from high NRE (nonrecurring engineering) cost. Platform-based integrated circuit design such as RapidChip™ developed by LSI Logic Corp., and the like, fills the gap between FPGA and ASIC. In a platform, cores are interconnected by a transistor array fabric, which may be configured by BEOL (back end of line) masks for metal (or late-metal) layers. Although most of the FEOL (front end of line) fabrication process and core design of a platform are completed for a slice, the BEOL masks still need be custom designed for the platform. A slice is a pre-manufactured chip in which all silicon layers have been built, leaving the top metal layers to be completed with the customer's unique IP (intellectual property). Moreover, sometimes the cost sharing advantage of a platform may not be realized because different capabilities are usually desired (e.g., trading speed with memory) within the platform. This means that a platform needs to offer different sizes of slices within the platform market, and cost of masks and performance are the main concerns in ASIC products. Thus, it would be desirable to provide a field programmable platform array (FPPA). The FPPA is pre-designed and pre-manufactured, in which all silicon layers and metal layers have been built. The FPPA may be composed arbitrarily and its filed programmable nature may decrease complexity in management and lead time.
The present invention may leverage and extend the platform strategy (e.g., LSI Logic Corp.'s RapidChip™, and the like) to reduce time-to-market and cost of products even further more while maintaining comparable performance.
Referring now to
It is understood that instead of cutting, bump metal may be put down for the N by M array of PAUs. In this case the PAUs may be pre-tested. Moreover, this is a more flexible approach since the bump interconnect may be designed and customized. However, this is not a field programmable approach.
According to the present invention, the FPPA has the following features. First, a FPPA die may include N by M array of PAUs to enable capability scaling to match different system requirements within a platform. In addition, the die complexity and capability are proportional to N*M (i.e., N times M). Thus, the present FPPA offers an enabling hardware method based on a subtracting wafer cutting technique. Moreover, the present PAUs may be configured by external software programming.
The present invention may have the following advantages. First, the present FPPA may leverage and extend the platform strategy (e.g., LSI Logic Corp.'s RapidChip™, and the like) to reduce time-to-market and cost of products even further. Additionally, the present FPPA may increase design and manufacturing cost sharing by matching capability with the die area. Moreover, the present FPPA may eliminate made-to-order lead time. Furthermore, the present FPPA may eliminate process options (e.g. need only LSI Logic Corp.'s Gflx 6+1+2R, and the like). In additional, the present FPPA may utilize green power management techniques (green power is a term used by some environmentalists to describe what they deem to be environmentally friendly sources of
It is understood that the specific order or hierarchy of steps in the processes disclosed is an example of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the processes may be rearranged while remaining within the scope of the present invention. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
It is believed that the present invention and many of its attendant advantages will be understood by the foregoing description. It is also believed that it will be apparent that various changes may be made in the form, construction and arrangement of the components thereof without departing from the scope and spirit of the invention or without sacrificing all of its material advantages. The form herein before described being merely an explanatory embodiment thereof, it is the intention of the following claims to encompass and include such changes.
The present application herein incorporates U.S. patent application Ser. No. 10/626,825, entitled “Architecture for a Sea of Platforms”, filed Jul. 23, 2003, now pending, and U.S. patent application Ser. No. 10/044,781, entitled “Architecture for a Sea of Platforms”, filed Jan. 10, 2002, now U.S. Pat. No. 6,640,333 by reference in their entirety.