Embodiments of the present invention relate to the field of wireless communication, more specifically, to methods and apparatuses for field provisioning of mobile stations with subscriber identification and related information.
In certain types of wireless networks, such as Global System for Mobile Communications (GSM) networks, service providers of such networks use subscriber identity module (SIM) in the form of removable smart card also known as Universal integrated Circuit Card (UICC) in mobile devices to identify and authenticate a subscriber/user. As is well-known, a SIM will typically include various types of information including subscriber identification/credentials, billing relationship, roaming support, and so forth.
Typically, the SIMs are provided directly to the end users by the service providers, and the information endowed in the SIMs are factory programmed. A SIM that is provided to an end user or subscriber will include a subscriber identity known as IMSI (International Mobile Subscriber Module) and a unique 128-bit private security key (known as Ki), programmed into the SIM when the SIM is manufactured. IMSI is used to identify the subscriber to the service provider during initial call establishment. A copy of the pre-programmed Ki is also typically stored at a Home Location Register (HLR) in the service provider network. The Ki is used to calculate the response to the challenges made in the authentication phase, and is also used to create the 64-bit encryption key (Kc) for encryption of user traffic during a call/session.
As briefly described above, a unique Ki is programmed into a SIM card before the SIM card is distributed to a user/subscriber. Since a matching Ki also needs to be programmed in the operator's HLR, the SIM card distributed to the subscriber is operator specific. This creates a challenge in retail distribution model of mobile devices since the purchasers of such devices needs to also have an operator specific SIM in the device before being able to connect to the corresponding network. Ideally, the retail distribution model should allow a device be sold to the end user without any embedded service provider specific image (i.e., service provider programs or data). Further, once a user decides to subscribe to a particular service provider, the device should be able to be provisioned over-the-air with the operator specific image and user credentials.
Embodiments of the present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings. To facilitate this description, like reference numerals designate like structural elements. Embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof wherein like numerals designate like parts throughout, and in which is shown by way of illustration embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present invention. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of embodiments in accordance with the present invention is defined by the appended claims and their equivalents.
Various operations may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding embodiments of the present invention; however, the order of description should not be construed to imply that these operations are order dependent.
For the purposes of the instant description, the phrase “A/B” means A or B. For the purposes of the instant description, the phrase “A and/or B” means “(A), (B), or (A and B).” For the purposes of the instant description, the phrase “at least one of A, B and C” means “(A), (B), (C), (A and B), (A and C), (B and C) or (A, B and C).” For the purposes of the instant description, the phrase “(A)B” means “(B) or (AB),” that is, A is an optional element.
The description may use the phrases “in various embodiments,” or “in some embodiments,” which may each refer to one or more of the same or different embodiments. Furthermore, the terms “comprising,” “including,” “having,” and the like, as used with respect to embodiments of the present invention, are synonymous.
According to various embodiment of the present invention, apparatuses and methods are provided that enable a mobile station (MS) of a wireless network, in cooperation or collaboration with a provisioning server (or simply “server”), to field program the MS with at least an IMSI and an associated private key (Ki). For the embodiments, once the IMSI is field programmed into the MS, the IMSI may be used by the MS to identify a subscriber to a wireless service provider whenever the MS attempts to connect to the wireless service provider for wireless service. The Ki that is field programmed into the MS, in contrast, may be for use by the MS to authenticate the subscriber to the wireless service provider when the MS is attempting to establish a connection with the wireless service provider as well as for use by the MS to generate an encryption key (Kc) needed to encrypt communication to be sent from the MS to the wireless service provider after a connection has been established with the wireless network. A mobile station may be any one of a number of mobile devices capable of communicating wirelessly such as a desktop computer, a laptop computer, a handheld computer, a tablet computer, a cellular telephone, a pager, an audio and/or video player (e.g., an MP3 player or a DVD player), a gaming device, a video camera, a digital camera, a navigation device (e.g., a GPS device), a wireless peripheral (e.g., a printer, a scanner, a headset, a keyboard, a mouse, etc.), a medical device (e.g., a heart rate monitor, a blood pressure monitor, etc.), and so forth.
In accordance with various embodiments of the present invention, the MS and the server may use particular equations in order to symmetrically calculate matching security keys (Ki) at the MS and at the provisioning server. The words “symmetrical” or “symmetrically” as used herein is in reference to the ability to identically generate or reproduce the same value at different network devices or locations. By employing such methods, man-in-the middle attacks (in which a third party may intercept a Ki being programmed over the air) may be advantageously avoided, and the MS may be safely and securely field programmed with a K. For example, in some embodiments of the present invention, the MS may calculate a Ki using the equation Ki=(GB mod P)A mod P, while the server may symmetrically calculate a copy of the Ki that matches the Ki calculated by the MS using the equation Ki=(GB mod P)A mod P. The variables A, B, G, and P will be described in greater detail below.
The server may then send or allocate to the MS, using the secured channel, a security identity and a very large prime number P using the secured channel at 14. The security identity, in some instances, may be an IMSI provided from an IMSI pool comprising of unused and available IMSIs, which the server may maintain or have access to. Alternatively, instead of the server providing the large prime number P, the prime number P may be preprovisioned in the MS, e.g., factory installed in the MS. In either case, the value for the large prime number P may be “known” by both the MS and the server.
The MS may then determine the numerical values for A and G at 16. The value for G may be preprovisioned in the MS or may be derived using the IMSI. Note that since the IMSI may be sent by the server and is, therefore, also available to the server, the server may also be able to identically generate the same value for G. For example, suppose both the MS and the server knows to use the same equation (e.g., G=(IMSI)3+5) to derive the value for G, then so long as both have IMSI, G may be symmetrically determinable at both ends. If the value for G is pre-provisioned in the MS (e.g., factory programmed), then the server may already know the value of G or at least have access to it. Thus, in either case, whether G is determined by the MS using the IMSI or in the case where G is preprovisioned into the MS, the value for G may be symmetrically determinable by both the MS and the server.
With respect to A, the MS may select a large numerical value for A that is greater than the numerical value of G. The MS may randomly select or generate using the digital certificate (X.509 key) a value for A. The MS may then calculate GA mod P based on the previously determined values for G, A, and P at 18. The MS may then send the results of the GA mod P calculation to the server using the secured channel to facilitate the server to symmetrically calculate a matching Ki at 20. Since the Ki symmetrically calculated at the server may be identical to the Ki calculated at the MS, the Ki calculated at the server may be referred to herein as a matching Ki or a copy of the K.
Referring now to the right side of the process 10, after the secured and encoded channel has been established at 12, the server may then determine the values for B and G at 22. The value for G may already be known to the server as previously indicated, when for example, the value of G is pre-provisioned in the MS. Alternatively, the value for G may be derived from the IMSI assigned to the MS, which the server may have provided to the MS. With respect to the value for B, the server may select a very large numerical value for B. The server may select a value for B that may be randomly selected or use the digital certificate (X.509) to derive a value for B.
After determining the values for G and B, the server may then calculate GB mod P (recall that the prime number P is known by the server) at 24. The server may then send to the MS the results of the GB mod P calculation. The results of the GB mod P calculation provided by the server (as indicated by the dashing arrow line originating from ref. 26) may then be used by the MS to calculate a value for a Ki using the equation Ki=(GB mod P)A mod P at 28. Correspondingly and symmetrically, the server may calculate, based on the results of the GA mod P calculations received from the MS (as indicated by the dashing arrow line originating from ref. 20) and using the equation Ki=(GA mod P)B mod P, a value for a local copy of the Ki that matches the value of the Ki generated by the MS at 32. The value or the Ki calculated by the MS may then be used and/or saved to a memory device at 30. Similarly, the copy of the Ki generated by the server may be written to HLR/HSS (Home Location Register/Home Subscription Server) at 34.
Referring to
To summarize the above, a value for Ki may be symmetrically determined at both the MS and the server by the following equation:
Ki=(GB mod P)A mod P=GA mod P)B mod P,
where
Thus, the numerical values for the variables A and B may be provided by the MS and server, respectively, while the numerical values for G and P may be symmetrically obtainable by both the MS and the server.
The various components of the device 50 may be employed to execute the MS operations previously described in order to enable the device 50 to be field programmed with an IMSI and a K. For example, the transceiver 56 using the one or more omnidirectional or directional antennas 58 may be designed to transmit signals over, and receive signals from the wireless network. The storage medium 54, which may be a memory device such as a computer readable storage medium, may store programming instructions to be operated by the one or more processors 52 to enable the device 50 to cooperate with a server of the wireless network and allow the server to field program the device 50 with an IMSI and an associated private key (Ki) as described before. The programming instructions may be further adapted to be operated by the one or more processors 52 to perform the other previously described MS operations (as depicted, e.g., on the left side of
The programming instructions may be further adapted to enable the server 60 to perform the other previously described server operations including, for example, accepting a connection from an MS without a factory programmed SIM, sending the results of GB mod P calculation to the MS, and calculating (GA mod P)B mod P to symmetrically calculate a local copy of the Ki that matches the Ki field programmed into the MS as previously described.
Although certain embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a wide variety of alternate and/or equivalent embodiments or implementations calculated to achieve the same purposes may be substituted for the embodiments shown and described without departing from the scope of the present invention. Those with skill in the art will readily appreciate that embodiments in accordance with the present invention may be implemented in a very wide variety of ways. This application is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore, it is manifestly intended that embodiments in accordance with the present invention be limited only by the claims and the equivalents thereof.
The present application is a continuation of U.S. patent application Ser. No. 11/763,978 filed Jun. 15, 2007, entitled, “Field Programming Of A Mobile Station With Subscriber Identification And Related Information,” the entire specification of which is hereby incorporated by reference in its entirety for all purposes, except for those sections, if any, that are inconsistent with this specification.
Number | Name | Date | Kind |
---|---|---|---|
5557679 | Julin et al. | Sep 1996 | A |
6799155 | Lindemann et al. | Sep 2004 | B1 |
7353017 | Chen et al. | Apr 2008 | B2 |
7418596 | Carroll et al. | Aug 2008 | B1 |
8112118 | Shieh et al. | Feb 2012 | B2 |
8442507 | Duggal et al. | May 2013 | B2 |
20020118674 | Faccin et al. | Aug 2002 | A1 |
20030031151 | Sharma et al. | Feb 2003 | A1 |
20030172278 | Farnham et al. | Sep 2003 | A1 |
20030210789 | Farnham et al. | Nov 2003 | A1 |
20040117623 | Kalogridis et al. | Jun 2004 | A1 |
20040240671 | Hu et al. | Dec 2004 | A1 |
20050181793 | Netanel | Aug 2005 | A1 |
20060206710 | Gehrmann | Sep 2006 | A1 |
20070066292 | Benco et al. | Mar 2007 | A1 |
20070082655 | Link et al. | Apr 2007 | A1 |
20070083766 | Farnham et al. | Apr 2007 | A1 |
20080108321 | Taaghol et al. | May 2008 | A1 |
20080127320 | De Lutiis et al. | May 2008 | A1 |
20080171532 | Shieh et al. | Jul 2008 | A1 |
20090025070 | Netanel et al. | Jan 2009 | A1 |
20100009659 | Netanel et al. | Jan 2010 | A1 |
20100173609 | Netanel et al. | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
1444414 | Sep 2003 | CN |
1507720 | Jun 2004 | CN |
9816035 | Apr 1998 | WO |
Entry |
---|
Notice of Grant issued Apr. 3, 2013 from Chinese Patent Application No. 200880020010.4. |
Whitfield Diffe et al., “New Directions in Cryptography,” IEEE Transactions on Information Theory, vol. IT.22, No. 6, Nov. 1976, pp. 644-654. |
First Office Action issued Jan. 11, 2012 from Chinese Application No. 200880020010.4. |
Written Opinion mailed Dec. 29, 2008 from International Application No. PCT/US2008/066395. |
International Preliminary Report on Patentability mailed Dec. 30, 2009 from International Application No. PCT/US2008/066395. |
Number | Date | Country | |
---|---|---|---|
20130094651 A1 | Apr 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11763978 | Jun 2007 | US |
Child | 13675976 | US |