Field replaceable power supply cartridge

Information

  • Patent Grant
  • 9565782
  • Patent Number
    9,565,782
  • Date Filed
    Tuesday, February 11, 2014
    11 years ago
  • Date Issued
    Tuesday, February 7, 2017
    8 years ago
Abstract
A field replaceable power supply cartridge is provided for coupling with a socket. The cartridge has a latch mechanism that can be actuated by the user to couple the cartridge to the socket, such that latches of the cartridge releasably engage recessed portions in the socket. The cartridge has a key feature that corresponds to a key feature on the socket, allowing the cartridge to be coupled to the socket in only one orientation, thereby preventing the incorrect electrical connection between the cartridge and the socket. The cartridge can have a multi-pin electrical connector for coupling to a corresponding connector on the socket. The socket can be a relatively short socket, where the electrical wires are bottom fed, or can be a relatively tall socket, where the electrical wires are side fed via one or more openings in the body of the socket.
Description
BACKGROUND

Field


The invention is directed to a field replaceable power supply cartridge and more particularly to a field replaceable power supply cartridge for use within lighting fixture assemblies.


Description of the Related Art


There are many different electric lighting technologies, which all require a power supply, a transformer or a ballast (e.g., LED, HID, Compact Fluorescent, linear fluorescent, low-voltage halogen, etc.). All of the above mentioned lighting technologies can be used in many different form factors, such as recessed down lights, pendants, sconces, chandeliers, exterior lighting, high-bay warehouse fixtures, landscape lighting, cove lighting, linear lighting, under-cabinet lighting, ceiling mounted fixtures, track lighting, etc. One of the most common types of light fixtures which use an integrated power supply is recessed down lights.


Recessed down lights are a popular and elegant way to provide lighting to a space, with the recessed down lights mounted in a ceiling so that only a trim ring and the light bulb is open to view, while the rest of the components, including the power supply (e.g. LED driver, fluorescent ballast, HID ballast or step down transformer), are disposed on the other side of the ceiling and hidden from view. The power supply is typically housed in a sheet metal or plastic box. Power supplies fail over time, for example, due to the exposure of the electronics to heat generated by the lighting system.


One drawback with conventional power supplies is that they can be difficult and time consuming to replace because of the limited access space through the ceiling opening where the recessed down light is mounted. In a typical recessed down light, replacing the power supply includes reaching through the aperture in the ceiling and around the lighting assembly, removing wing nuts or thumb nuts (or other types of threaded fasteners) that attach the power supply to the lighting assembly, removing the power supply through the ceiling aperture along with the lead wires that wire the power supply to the lighting assembly, cutting and stripping the wires and attaching them to the new power supply, inserting the new power supply through the ceiling aperture, and coupling the new power supply to the lighting assembly with the thumb screws or thumb nuts. Because all of this is done through the limited space provided by the ceiling aperture for the recessed down light, a user has to perform all of these steps with a single hand, which makes the process take longer, particularly because of all the different parts and steps that are involved in replacing the power supply. And in most cases the user cannot see the power supply within the recessed down light, and therefore has to remove and replace the fasteners without a line of sight to the power supply assembly while performing these steps.


Accordingly, there is a need for an improved and simpler system and method for replacing a power supply within a light fixture assembly.


SUMMARY

In one embodiment, a field replaceable power supply cartridge is provided for coupling with a socket. The cartridge can have a latch mechanism that can be actuated by the user to couple the cartridge to the socket, such that the one or more latches of the cartridge releasably engage one or more recessed portions in the socket. The cartridge can have a key feature that corresponds to a key feature on the socket, allowing the cartridge to be coupled to the socket in only one orientation, thereby preventing the incorrect electrical connection between the cartridge and the socket. The cartridge can have a multi-pin electrical connector for coupling to a corresponding connector on the socket. The socket can be a relatively short socket, where the electrical wires are bottom fed (e.g., from an electrical box), or can be a relatively tall socket, where the electrical wires are side fed via one or more openings in the body of the socket. The socket can be made of a thermally conductive material (e.g., aluminum) for transferring heat from the cartridge to the socket when the two are coupled to each other, such that the socket can provide for a thermal connection as well as an electrical connection between the cartridge and the socket.


In one embodiment, the field replaceable power supply cartridge can be an LED driver, such as a replaceable LED driver cartridge for use with down lighting (e.g., recessed lighting) systems. In another embodiment, the field replaceable power supply cartridge can be a ballast, such as a ballast for a fluorescent lighting system, a ballast for a compact fluorescent lighting system, a ballast for an HID (high intensity discharge) lighting system, or used in connection with any other light source or lighting system that uses a power supply or ballast. In another embodiment, the field replaceable power supply cartridge can be an LED driver cartridge for use within an LED light fixture assembly. In still another embodiment, the field replaceable power supply cartridge can be a transformer.


In accordance with one aspect of the present invention, a field replaceable LED driver system is provided. The system comprises an LED driver cartridge having a cartridge body, the cartridge body having a key feature defined on a bottom side of the cartridge body. The system also comprises one or more gripping members spring loaded relative to a portion of the cartridge body, the one or more gripping members configured to actuate one or more latches and configured to be pushed by a user to move the one or more latches inward relative to the cartridge body. The system also comprises a printed circuit board coupled to the cartridge body and an electrical connector on the bottom side of the cartridge body electrically connected to the printed circuit board. The key feature facilitates installment of the LED driver in a single predetermined orientation.


In accordance with another aspect of the present invention, a field replaceable LED driver system is provided. The system comprises an LED driver cartridge body, the cartridge body having a key feature defined on a bottom side of the cartridge body. The system also comprises one or more gripping members spring loaded relative to a portion of the cartridge body, the one or more gripping members configured to actuate one or more latches and configured to be pushed by a user to move the one or more latches inward relative to the cartridge body. The system also comprises an electrical connector on the bottom side of the cartridge body. The system also comprises a socket having a socket body coupleable to an electrical box and configured to releasably couple to the cartridge body, the socket body comprising one or more recess portions configured to releasably engage the one or more latches, the socket body having a key portion defined on a top side thereof, the key portion having a shape corresponding to a shape of the key feature such that the LED driver cartridge body couples to the socket in the single predetermined orientation. The key feature of the cartridge body and the key portion of the socket facilitate coupling of the LED driver cartridge body to the socket body in a single predetermined orientation.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a top perspective view of one embodiment of a field replaceable power supply cartridge attached to one embodiment of a socket.



FIG. 2 is a bottom perspective view of the field replaceable power supply cartridge and socket of FIG. 1.



FIG. 3 is a top perspective view of another embodiment of a field replaceable power supply cartridge coupled to another embodiment of a socket.



FIG. 4 is a bottom perspective view of the field replaceable power supply cartridge and socket of FIG. 3.



FIG. 5 is a top perspective view of one embodiment of a socket installed on an electrical box.



FIG. 6 is a bottom perspective view of the socket of FIG. 5.



FIG. 7 is a top perspective view of another embodiment of a socket.



FIG. 8 is a bottom perspective view of the socket of FIG. 7.



FIG. 9 is a top perspective view of one embodiment of a field replaceable power supply cartridge.



FIG. 10 is a bottom perspective view of the field replaceable power supply cartridge of FIG. 9.



FIG. 11 is a cross-sectional side view of the field replaceable power supply cartridge of FIG. 9.



FIG. 12 is a perspective exploded top view of the field replaceable power supply cartridge of FIG. 9 and socket of FIGS. 5-6.



FIG. 13 is a perspective exploded bottom view of the field replaceable power supply cartridge of FIG. 9 and socket of FIGS. 5-6.





DETAILED DESCRIPTION

The embodiments disclosed below describe an improved system and method for a field replaceable power supply cartridge. In one embodiment, the field replaceable power supply cartridge can be an LED driver cartridge, such as a replaceable LED driver cartridge for use with down lighting (e.g., recessed lighting) systems. In another embodiment, the field replaceable power supply cartridge can be a ballast, such as a ballast for a fluorescent lighting system, a ballast for a compact fluorescent lighting system, a ballast for an HID (high intensity discharge) lighting system, or used in connection with any other light source or lighting system that uses a power supply or ballast. In another embodiment, the field replaceable power supply cartridge can be an LED driver cartridge for use within an LED light fixture assembly. In still another embodiment, the field replaceable power supply cartridge can be a transformer (e.g., step down transformer).


One of skill in the art will recognize that the embodiments disclosed herein for a field replaceable power supply cartridge can be used as part of many lighting technologies, such as those discussed above. Additionally, the field replaceable power supply cartridge can be used in many different form factors, such as recessed down lights, pendants, sconces, chandeliers, exterior lighting, high-bay warehouse fixtures, landscape lighting, cove lighting, linear lighting, under-cabinet lighting, ceiling mounted fixtures, track lighting, etc.



FIGS. 1-2 show one embodiment of a field replaceable power supply cartridge 100 (hereinafter “cartridge”) coupled to one embodiment of a socket 200. In the illustrated embodiment, the cartridge 100 can be generally rectangular in shape. However, in other embodiments, the cartridge 100 can have other suitable shapes, such as square, round, etc. The cartridge 100 can have one or more gripping members 10 allowing a user to grip the cartridge 100 (e.g., grip with the user's fingers). In the illustrated embodiment, the cartridge 100 has two gripping members 10 on opposite sides of the cartridge 100. However, in other embodiments, the cartridge 100 can have more or fewer gripping members 10.


As shown in FIGS. 1-2, the socket 200 can have generally the same shaped perimeter as the cartridge 100. In another embodiment, the socket 200 can have a larger or smaller perimeter than the cartridge 100. In the illustrated embodiment, the socket 200 is a relatively short socket with a height H1. The socket 200 can be attached to an electrical box 400, as shown in FIG. 5, which can house one or more wires that couple to a multi-pin connector 210 of the socket 200 for coupling with a multi-pin connector 110 of the cartridge 100. The multi-pin connectors 110, 210 allow the cartridge 100 to provide multiple functions to the lighting system. For example, some of the pins of the connectors 110, 210 can take in house power, some of the pins of the connectors 110, 210 can provide driving control for the lighting system, some of the pins of the connectors 110, 210 could be used for dimming of the lighting system, some of the pins can be used to supply power and control to an active cooling system (e.g., fan) to cool the driver 100, and some of the pins of the connectors 110, 210 can communicate control signals to and from the driver 100.


In one embodiment, the socket 200 can be made of a thermally conductive material, such as Aluminum. However, the socket 200 can be made of other suitable materials (e.g., other metals or plastics). Additionally, in some embodiments, a thermal interface member (e.g., thermal pad) can be disposed between the cartridge 100 and the socket 200 to facilitate heat transfer between the cartridge 100 and the socket 200. That is, in some embodiments, the connection between the cartridge 100 and the socket 200 can be a thermal connection as well as an electrical connection.


With continued references to FIG. 2, the socket 200 can have one or more apertures 220 that can receive a fastener (e.g., screw) 410 therethrough to couple the socket 200 to, for example, the electrical box 400 (see FIG. 5). Additionally, the socket 200 can have a key feature 230, further described below, that allows the cartridge 100 to couple to the socket 200 in only one orientation, thereby preventing the erroneous coupling of the cartridge 100 to the socket 200, which may result in an incorrect alignment between the male and female multi-pin connectors and improper electrical connection between the cartridge 100 and the socket 200.


With continued reference to FIGS. 2 and 5, the short socket 200 can be coupled to the electrical box 400, and the electrical wires housed in the electrical box 400. The wires can be bottom fed to the connector 210 of the socket 200 from the electrical box 400. The electrical box 400 can be made of metal. In an embodiment where the cartridge 100 is a power supply cartridge (e.g., LED driver cartridge for a down lighting system), the electrical box 400 can be mounted above the ceiling and out of view to the user. In another embodiment, the electrical box may take the form of a cavity created within the light fixture housing (e.g. an internal wall of the light fixture that the socket can be mounted to, with a hollow cavity behind the wall). In yet another embodiment, the socket can be mounted to a wall of the light fixture housing or any surface of the light fixture housing.



FIGS. 3-4 show the cartridge 100 coupled to another embodiment of a socket 200′. The socket 200′ has a height H2 that is greater than the height H1 of the socket 200, so that the socket 200′ is a relatively tall socket. Like the socket 200, the socket 200′ can include a multi-pin connector 210′ and one or more apertures 220′ that can receive a fastener (e.g., screw) therethrough to couple the socket 200′ to another component (e.g., to mount the socket 200′ to a structural beam above the ceiling). The socket 200′ can also include one or more openings 202′ sized to receive one or more wires therethrough and into an inner space 240′ of the socket 200′ so the wires can be connected to the connector 210′. Unlike the socket 200, the one or more openings 202′ allow side feeding of the wires into the socket 200′. The socket 200′ can be made of a thermally conductive material, such as Aluminum. However, other suitable materials can be used (e.g., other metals, other thermally conductive plastic materials or other types of plastics).



FIG. 5 shows the key feature 230 of the socket 200. The socket 200 can have a recessed portion 240 defined at least in part by a first side wall 242, a second side wall 244, a third side wall 246 and a fourth side wall 248. In the illustrated embodiment, the first and second side walls 242, 244 can have the same length, but the third and fourth sidewalls 246, 248 can have different lengths, so that a corresponding key feature 130 (described further below in with respect to FIG. 10) of the cartridge 100 can only be coupled to the key feature 230 of the socket 200 in one orientation, such that the multi-pin electrical connector 210 of the socket 200 can only couple to the multi-pin electrical connector 110 of the cartridge 100 in one orientation, thereby preventing an incorrect electrical connection between the cartridge 100 and socket 200. However, the key feature 230 can have other suitable configurations and still result in allowing the cartridge 100 to couple to the socket 200 in only one orientation. For example, in one embodiment, three of the four side surfaces of the recessed portion 240 can have the same length and the fourth side surface can have a different length. Advantageously, the key feature 230 allows a user to easily determine whether the cartridge 100 is in the correct orientation relative to the socket 200, and to position the cartridge 100 in the correct orientation relative to the socket 200 during the installation process.


The socket 200 also has one or more recesses 250 in one or more of the walls 242, 244, 246, 248, the one or more recesses 250 sized to releasably receive a corresponding latch 150 (see FIG. 10) of the cartridge 100. In the illustrated embodiment, the socket 200 can have two recesses 250 on the third and fourth sidewalls 246, 248 for releasably receiving corresponding latches 150 of the cartridge 100. However, in other embodiments, the socket 200 can have more or fewer recesses 250. Additionally, the recessed portion 240 of the socket 200 can define a protruding portion 260 of the electrical connector 210, which extends from a bottom surface 262 of the recessed portion 240. In one embodiment, a thermal interface member (e.g., thermal pad) can be inserted into the recessed portion 240 so that is contacts the bottom surface 262, such that the thermal interface member is disposed between the bottom surface 262 of the socket 200 and a base surface 162 of the cartridge 100 (see FIG. 10) when the cartridge 100 is coupled to the socket 200, to thereby facilitate heat transfer between the cartridge 100 and the socket 200. In another embodiment, the thermal interface member can be excluded and the base surface 162 of the cartridge 100 can contact the bottom surface 262 of the recessed portion 240 directly to transfer heat from the cartridge 100 to the socket 200. Heat transfer between the cartridge 100 and the socket 200 is not a necessary function of the invention. It can be used to help keep the power supply cool, or in other embodiments the cartridge and the socket can be made of plastic and there would be no thermal connection between the cartridge 100 and the socket 200.



FIG. 7 shows the key feature 230′ of the socket 200′ (the tall socket). The socket 200′ can have a recessed portion 240′ defined at least in part by a first side wall 242′, a second side wall 244′, a third side wall 246′ and a fourth side wall 248′. In the illustrated embodiment, the first and second side walls 242′, 244′ can have the same length, but the third and fourth sidewalls 246′, 248′ can have different lengths, so that a corresponding key feature 130 (described further below in with respect to FIG. 10) of the cartridge 100 can only be coupled to the key feature 230′ of the socket 200′ in one orientation, such that the multi-pin electrical connector 210′ of the socket 200′ can only couple to the multi-pin electrical connector 110 of the cartridge 100 in one orientation, thereby preventing an incorrect electrical connection between the cartridge 100 and socket 200′. However, the key feature 230′ can have other suitable configurations and still result in allowing the cartridge 100 to couple to the socket 200′ in only one orientation. For example, in one embodiment, three of the four side surfaces of the recessed portion 240′ can have the same length and the fourth side surface can have a different length. Advantageously, the key feature 230′ allows a user to easily determine whether the cartridge 100 is in the correct orientation relative to the socket 200′, and to position the cartridge 100 in the correct orientation relative to the socket 200′ during the installation process.


The socket 200′ also has one or more recesses 250′ in one or more of the walls 242′, 244′, 246′, 248′, the one or more recesses 250′ sized to releasably receive the corresponding latch 150 (see FIG. 10) of the cartridge 100. In the illustrated embodiment, the socket 200′ can have two recesses 250′ on the third and fourth sidewalls 246′, 248′ for releasably receiving corresponding latches 150 of the cartridge 100. However, in other embodiments, the socket 200′ can have more or fewer recesses 250′ defined on one or more side surfaces of the recessed portion 240′. Additionally, the recessed portion 240′ of the socket 200′ can define a protruding portion 260′ of the electrical connector 210′, which extends from a bottom surface 262′ of the recessed portion 240′. In one embodiment, a thermal interface member (e.g., thermal pad) can be disposed in the recessed portion 240′ in contact with the bottom surface 262′, such that the thermal interface member is disposed between the bottom surface 262′ of the socket 200′ and the base surface 162 of the cartridge 100 (see FIG. 10) when the cartridge 100 is coupled to the socket 200′, to thereby facilitate heat transfer between the cartridge 100 and the socket 200′. In another embodiment, the thermal interface member can be excluded and the base surface 162 of the cartridge 100 can contact the bottom surface 262′ of the recessed portion directly to transfer heat from the cartridge 100 to the socket 200′. Heat transfer between the cartridge 100 and the socket 200′ is not a necessary function of the invention. It can be used to help keep the power supply cool, or in other embodiments the cartridge and the socket can be made of plastic and there would be no thermal connection between the cartridge 100 and the socket 200′.



FIGS. 9-11 show one embodiment of the cartridge 100. The cartridge 100 can have one or more gripping members 10 and one or more latches 150 that can be actuated by a user via the gripping members 10. The cartridge can have a top portion 20 attached to a bottom portion 30 with one or more fasteners 40 (e.g., screws). In another embodiment, the top 20 and bottom 30 portions can be attached using an adhesive or other suitable mechanisms (e.g., ultrasonic welding, etc.). The bottom portion 30 can define a key feature 130 and base surface 162. The key feature 130 can include a protruding portion 140 that protrudes from a surface 32 of the bottom portion 30 and defines a first side surface 142, a second side surface 144 opposite the first side surface 142, a third side surface 146 and a fourth side surface 148 opposite the third side surface 146. In the illustrated embodiment, the first and second side surfaces 142, 144 can have the same length and the third and fourth 146148 side surfaces can have different lengths. The key feature 130 can have the same profile as the key feature 230, 230′ of the socket 200, 200′ so that the cartridge 100 can be coupled to the socket 200, 200′ in only one orientation.


The protruding portion 140 can define a socket portion 160 sized to receive the protruding portion 260, 260′ of the socket 200, 200′, so that the connector 110 can electrically connect with the connector 210, 210′ on the socket 200, 200′. As shown in FIG. 11, the connector 110 can connect to a PCB 120, which can be mounted with one or more fasteners 122 to a socket wall 164 of the socket 160. The top portion 20 of the cartridge 100 can define a cavity 22 therein. As discussed above, the cartridge 100 can provide a plurality of functions, for example, to a lighting assembly with which it is used (e.g., provide a dimming function, power an active cooling system, etc.).


With continued reference to FIG. 11, the one or more gripping members 10 can be integrated with the latch 150 so that each gripping member 10 has a latch 150 and forms a single piece with the latch 150. The gripping member 10 can be spring loaded relative to the top portion 20 of the cartridge 100 by one or more resilient members 50 (e.g., leaf springs) that bias the gripping member 10 outward relative to the housing of the cartridge 100.


In operation, a user would grip the one or more gripping members 10 and pinch them together or squeeze them together or depress to bias the one or more latches 150 inward relative to the cartridge 100 housing (see arrow I in FIG. 11), allowing the one or more latches 150 to clear the one or more recesses 250, 250′ of the socket 200, 200′ when the cartridge 100 is coupled to the socket 200, 200′. Once the user had properly aligned the key features 130, 230, 230′ of the cartridge 100 and socket 200, 200′, and advanced the cartridge 100 relative to the socket 200, 200′ to provide the electrical connection between the connector 110 of the cartridge 100 and the connector 210, 210′ of the socket 200, 200′, the user could release the one or more gripping members 10, allowing the latches 150 to be biased outward relative to the cartridge 100 housing by the one or more resilient members 50 (see arrow O in FIG. 11). This outward movement of the one or more latches 150 causes the one or more latches 150 to engage the one or more recesses 250, 250′ of the socket 200, 200′ to substantially fixedly maintain the cartridge 100 coupled to the socket 200, 200′. To decouple the cartridge 100 from the socket 200, 200′, the user can again grip the one or more gripping members 10 on the cartridge 100 and pinch them together or squeeze them together or depress to bias the one or more latches 150 inward so that they can disengage the one or more recesses 250, 250′ in the socket 200, 200′, thereby allowing the user to remove the cartridge 100 from engagement with the socket 200, 200′.


In another embodiment, the user need not grip the one or more gripping members 10 to bias the one or more latches 150 inward, and can simply advance the cartridge 100 (in the correct orientation) relative to the socket 200, 200′, where the one or more latches 150 have an angled surface that allows the one or more latches 150 to be biased inward as the cartridge 100 is advanced relative to the socket 200, 200′ so that the one or more latches 150 clear the side walls 246, 246′ and 248, 248′ to engage the one or more recesses 250, 250′. In still another embodiment, the one or more resilient members 50 can be excluded, and the one or more gripping members 10 can be an integral part (e.g., one piece) with the top portion 20 of the cartridge 100. The cartridge 100 housing can be made of a material that allows some flexion, so that the user can apply a force to the one or more gripping members 10 to bias the one or more latches 150 inward, thereby allowing the one or more latches 150 to clear the side walls 246, 246′ and 248, 248′ of the socket 200, 200′ for engagement and disengagement with the recesses 250, 250′ during installation and removal of the cartridge 100.



FIGS. 12 and 13 show an exploded view of the cartridge 100 and socket 200, and the motion of the cartridge 100 relative to the socket 200 (see arrow M) to couple the cartridge 100 to the socket 200.


Advantageously, the cartridge 100 and socket 200, 200′ system disclosed herein elegantly simplifies the process of replacing a power supply cartridge, which can be done by a user without any tools, without the need to cut or strip electrical wires when replacing the cartridge, and without the need to keep track of fasteners that need to be removed or replaced to replace the power supply. Additionally, the cartridge 100 and socket 200, 200′ allow the user to easily replace the power supply (e.g., in a down lighting system) where space to the electrical components of the lighting system is very limited.


Of course, the foregoing description is that of certain features, aspects and advantages of the present invention, to which various changes and modifications can be made without departing from the spirit and scope of the present invention. Moreover, the field replaceable power supply cartridge need not feature all of the objects, advantages, features and aspects discussed above. Thus, for example, those skilled in the art will recognize that the invention can be embodied or carried out in a manner that achieves or optimizes one advantage or a group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein. In addition, while a number of variations of the invention have been shown and described in detail, other modifications and methods of use, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. For example, the embodiments of the field replaceable power supply cartridge discussed above can be used with many different types of lighting assemblies or form factors, such as recessed down lights, pendants, sconces, chandeliers, exterior lighting, high-bay warehouse fixtures, landscape lighting, cove lighting, linear lighting, under-cabinet lighting, ceiling mounted fixtures, track lighting, etc. It is contemplated that various combinations or subcombinations of the specific features and aspects between and among the different embodiments may be made and still fall within the scope of the invention. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the discussed field replaceable power supply cartridge.


Features, materials, characteristics, or groups described in conjunction with a particular aspect, embodiment, or example are to be understood to be applicable to any other aspect, embodiment or example described in this section or elsewhere in this specification unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The protection is not restricted to the details of any foregoing embodiments. The protection extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.


Furthermore, certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as a subcombination or variation of a sub combination.


Moreover, while operations may be depicted in the drawings or described in the specification in a particular order, such operations need not be performed in the particular order shown or in sequential order, or that all operations be performed, to achieve desirable results. Other operations that are not depicted or described can be incorporated in the example methods and processes. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the described operations. Further, the operations may be rearranged or reordered in other implementations. Those skilled in the art will appreciate that in some embodiments, the actual steps taken in the processes illustrated and/or disclosed may differ from those shown in the figures. Depending on the embodiment, certain of the steps described above may be removed, others may be added. Furthermore, the features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure. Also, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described components and systems can generally be integrated together in a single product or packaged into multiple products.


For purposes of this disclosure, certain aspects, advantages, and novel features are described herein. Not necessarily all such advantages may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the disclosure may be embodied or carried out in a manner that achieves one advantage or a group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.


Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, and/or steps are included or are to be performed in any particular embodiment.


Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.


Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally,” and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount. As another example, in certain embodiments, the terms “generally parallel” and “substantially parallel” refer to a value, amount, or characteristic that departs from exactly parallel by less than or equal to 15 degrees, 10 degrees, 5 degrees, 3 degrees, 1 degree, 0.1 degree, or otherwise.


The scope of the present disclosure is not intended to be limited by the specific disclosures of preferred embodiments in this section or elsewhere in this specification, and may be defined by claims as presented in this section or elsewhere in this specification or as presented in the future. The language of the claims is to be interpreted broadly based on the language employed in the claims and not limited to the examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive.

Claims
  • 1. A field replaceable LED driver system, comprising: an LED driver cartridge body, the cartridge body having a key feature defined on a bottom side of the cartridge body;one or more gripping members spring loaded relative to a portion of the cartridge body, the one or more ripping members configured to actuate one or more latches and configured to be pushed by a user to move the one or more latches inward relative to the cartridge body;an electrical connector on the bottom side of the cartridge body;a socket having a socket body coupleable to an electrical box and configured to releasably couple to the cartridge body, the socket body comprising one or more recess portions configured to releasably engage the one or more latches, the socket body having a key portion defined on a top side thereof, the key portion having a shape corresponding to a shape of the key feature such that the LED driver cartridge body couples to the socket in a single predetermined orientation,wherein the key feature of the cartridge body and the key portion of the socket facilitate coupling of the LED driver cartridge body to the socket body in the single predetermined orientation.
  • 2. The system of claim 1, further comprising a printed circuit board coupled to the cartridge body, the printed circuit board connected to the electrical connector.
  • 3. The system of claim 2, wherein the key feature comprises a protruding portion that protrudes from a bottom surface of the cartridge body and the key portion comprises a recessed portion on the top side of the socket body.
  • 4. The system of claim 3, wherein the protruding portion defines a socket opening into which the electrical connector at least partially extends.
  • 5. The system of claim 4, wherein the electrical connector comprises a multi-pin electrical connector.
  • 6. The system of claim 1, wherein the socket comprises another electrical connector on said top side of the socket body, the another electrical connector configured to connect to the electrical connector of the cartridge body when the LED driver cartridge body is coupled to the socket body.
  • 7. The system of claim 6, wherein the socket comprises an opening on a side surface of the socket body configured to receive one or more electrical wires therethrough into an inner space of the socket body, said one or more electrical wires connectable to said another electrical connector of the socket.
  • 8. The system of claim 1, wherein a surface of the LED driver cartridge body is configured to contact a surface of the socket body when the cartridge body is coupled to the socket body to thereby transfer heat from the LED driver cartridge to the socket.
  • 9. The system of claim 1, wherein the key feature comprises a first side surface, a second side surface opposite the first side surface, a third side surface and a fourth side surface opposite the third side surface, wherein the first and second side surfaces have the same length and the third and fourth side surfaces have different lengths.
  • 10. The system of claim 1, wherein the key portion is defined by a first side wall, a second side wall opposite the first side wall, a third side wall and a fourth side wall opposite the third side wall, wherein the first and second side walls have the same length and the third and fourth side walls have different lengths.
  • 11. A field replaceable LED driver system, comprising: an LED driver cartridge body, the cartridge body having a key feature defined on a bottom side of the cartridge body;one or more gripping members being flexible relative to a portion of the cartridge body, the one or more gripping members configured to actuate one or more latches and configured to be pushed by a user to move the one or more latches inward relative to the cartridge body;an electrical connector on the bottom side of the cartridge body;a socket having a socket body coupleable to electrical wires and configured to releasably couple to the cartridge body, the socket body comprising one or more recess portions configured to releasably engage the one or more latches, the socket body having a key portion defined on a top side thereof, the key portion having a shape corresponding to a shape of the key feature such that the LED driver cartridge body couples to the socket in a single predetermined orientation,wherein the key feature of the cartridge body and the key portion of the socket facilitate coupling of the LED driver cartridge body to the socket body in the single predetermined orientation.
  • 12. The system of claim 11, wherein the one or more gripping members are spring loaded relative to the portion of the cartridge body.
  • 13. The system of claim 11, wherein the socket body is coupleable to an electrical box, and wherein the electrical wires are bottom fed into the socket.
  • 14. The system of claim 11, further comprising a printed circuit board coupled to the cartridge body, the printed circuit board connected to the electrical connector.
  • 15. The system of claim 11, wherein the key feature comprises a protruding portion that protrudes from a bottom surface of the cartridge body and the key portion comprises a recessed portion on the top side of the socket body.
  • 16. The system of claim 15, wherein the protruding portion defines a socket opening into which the electrical connector at least partially extends.
  • 17. The system of claim 11, wherein the socket comprises another electrical connector on said top side of the socket body, the another electrical connector configured to connect to the electrical connector of the cartridge body when the LED driver cartridge body is coupled to the socket body.
  • 18. The system of claim 17, wherein the socket comprises an opening on a side surface of the socket body configured to receive one or more electrical wires therethrough into an inner space of the socket body, said one or more electrical wires connectable to said another electrical connector of the socket.
  • 19. The system of claim 11, wherein a surface of the LED driver cartridge body is configured to contact a surface of the socket body when the cartridge body is coupled to the socket body to thereby transfer heat from the LED driver cartridge to the socket.
  • 20. The system of claim 11, wherein the key feature comprises a first side surface, a second side surface opposite the first side surface, a third side surface and a fourth side surface opposite the third side surface, wherein the first and second side surfaces have the same length and the third and fourth side surfaces have different lengths.
  • 21. The system of claim 11, wherein the key portion is defined by a first side wall, a second side wall opposite the first side wall, a third side wall and a fourth side wall opposite the third side wall, wherein the first and second side walls have the same length and the third and fourth side walls have different lengths.
  • 22. A field replaceable LED driver system, comprising: an LED driver cartridge body including a bottom side having an electrical connector, the cartridge body also including one or more gripping members being flexible relative to a portion of the cartridge body, the cartridge body further including one or more latches;a key feature being defined on the bottom side of the cartridge body, the key feature having a shape being in correspondence with another shape of a key portion defined on a top side of a socket body being coupleable to electrical wires, the correspondence of the shape and the another shape facilitating releasable coupling of the cartridge body to such a socket body in a single predetermined orientation;the one or more gripping members of the cartridge body being configured to be pushed by a user to actuate the one or more latches by moving the latches inward relative to the cartridge body, the one or more latches being configured to releasably engage one or more recess portions of such a socket body.
  • 23. The system of claim 22, wherein the key feature includes a protruding portion that protrudes from a bottom surface of the cartridge body.
  • 24. The system of claim 23, wherein the protruding portion is in correspondence with a recessed portion of the key portion of such a socket body.
  • 25. The system of claim 23, wherein the protruding portion defines a socket opening into which the electrical connector at least partially extends.
  • 26. The system of claim 25, wherein the key feature includes a first side surface, a second side surface opposite the first side surface, a third side surface and a fourth side surface opposite the third side surface, wherein the first and second side surfaces have the same length and the third and fourth side surfaces have different lengths.
  • 27. The system of claim 26, wherein the one or more gripping members are spring loaded relative to the portion of the cartridge body.
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

Any and all applications for which a foreign or domestic priority claim is identified in the application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57. This application claims the benefit of U.S. Provisional Application No. 61/765,257, filed Feb. 15, 2013 and titled FIELD REPLACEABLE POWER SUPPLY CARTRIDGE, the entirety of which is incorporated by reference and should be considered a part of this specification.

US Referenced Citations (850)
Number Name Date Kind
2430472 Evy Nov 1947 A
D149124 Hewitt Mar 1948 S
D152113 Mehr Dec 1948 S
2458967 Wiedenhoeft Jan 1949 A
2678380 Westby May 1954 A
2702378 Talty Feb 1955 A
D191734 Daher Nov 1961 S
3040170 Chwan Jun 1962 A
3078366 Winkler Feb 1963 A
3120929 Henning Feb 1964 A
3220471 Coe Nov 1965 A
3247368 McHugh Apr 1966 A
3435891 Parrish Apr 1969 A
D214582 Routh Jul 1969 S
D217096 Birns Apr 1970 S
3538321 Longenecker Nov 1970 A
3639751 Pichel Feb 1972 A
3643038 Sato Feb 1972 A
D231559 Darling et al. Apr 1974 S
D234712 Kennedy et al. Apr 1975 S
3989976 Tabor Nov 1976 A
4090210 Wehling et al. May 1978 A
4091444 Mori May 1978 A
4138716 Muhlethaler et al. Feb 1979 A
D251500 Aigner Apr 1979 S
4258413 Mausser Mar 1981 A
4345306 Summey Aug 1982 A
4414489 Young Nov 1983 A
4420207 Nishikawa Dec 1983 A
4423471 Gordin et al. Dec 1983 A
4445164 Giles, III Apr 1984 A
4453203 Pate Jun 1984 A
4467403 May Aug 1984 A
4473873 Quiogue Sep 1984 A
4564888 Lewin Jan 1986 A
4578742 Klein Mar 1986 A
4580859 Frano Apr 1986 A
4609979 Kristofek Sep 1986 A
4674015 Smith Jun 1987 A
4727648 Savage Mar 1988 A
4733335 Serizawa Mar 1988 A
D296717 Kane et al. Jul 1988 S
4755918 Pristash Jul 1988 A
4757431 Cross Jul 1988 A
4761721 Willing Aug 1988 A
D300876 Sakai Apr 1989 S
4833579 Skegin May 1989 A
4837927 Savage Jun 1989 A
4870327 Jorgensen Sep 1989 A
4872097 Miller Oct 1989 A
4882667 Skegin Nov 1989 A
4918497 Edmond Apr 1990 A
D308114 Shemitz May 1990 S
D308260 Shemitz May 1990 S
4966862 Edmond Oct 1990 A
D315030 Jacobs et al. Feb 1991 S
D316303 Layne Apr 1991 S
D316306 Shemitz Apr 1991 S
5027168 Edmond Jun 1991 A
D319512 Lettenmayer Aug 1991 S
D322862 Miller Dec 1991 S
5087212 Hanami Feb 1992 A
D325645 Grange Apr 1992 S
5140507 Harwood Aug 1992 A
D330944 Wereley Nov 1992 S
5174649 Alston Dec 1992 A
5177404 Cohen et al. Jan 1993 A
5210051 Carter, Jr. May 1993 A
D336536 Shaanan et al. Jun 1993 S
5235470 Cheng Aug 1993 A
D340514 Liao Oct 1993 S
5253152 Yang et al. Oct 1993 A
5282364 Cech Feb 1994 A
5303124 Wrobel Apr 1994 A
5324213 Frantz Jun 1994 A
5325281 Harwood Jun 1994 A
D348744 Johnson et al. Jul 1994 S
5335159 Chen et al. Aug 1994 A
5337225 Brookman Aug 1994 A
5338944 Edmond et al. Aug 1994 A
5359345 Hunter Oct 1994 A
5367229 Yang Nov 1994 A
5381323 Osteen et al. Jan 1995 A
5387901 Hardt Feb 1995 A
5393993 Edmond et al. Feb 1995 A
5410462 Wolfe Apr 1995 A
5416342 Edmond et al. May 1995 A
5436809 Brassier Jul 1995 A
5440466 Belisle Aug 1995 A
5450303 Markiewicz et al. Sep 1995 A
5490048 Brassier Feb 1996 A
5504665 Osteen et al. Apr 1996 A
5515253 Sjobom May 1996 A
5516390 Tomita et al. May 1996 A
5523589 Edmond et al. Jun 1996 A
D373437 Kira Sep 1996 S
5584574 Haddad Dec 1996 A
5599091 Kira Feb 1997 A
5604135 Edmond et al. Feb 1997 A
5628557 Huang May 1997 A
5631190 Negley May 1997 A
5632551 Roney May 1997 A
5634822 Gunell Jun 1997 A
5655832 Pelka Aug 1997 A
5658066 Hirsch Aug 1997 A
D383236 Krogman Sep 1997 S
D384336 Gerber et al. Sep 1997 S
5676453 Parkyn, Jr. Oct 1997 A
D390992 Shemitz Feb 1998 S
5713662 Kira Feb 1998 A
5739554 Edmond et al. Apr 1998 A
5757144 Nilssen May 1998 A
5788533 Alvarado-Rodriguez Aug 1998 A
5794685 Dean Aug 1998 A
5800050 Leadford Sep 1998 A
5806955 Parkyn, Jr. Sep 1998 A
D408823 Kirby Apr 1999 S
5890793 Stephens Apr 1999 A
5894196 McDermott Apr 1999 A
5898267 McDermott Apr 1999 A
5909955 Roorda Jun 1999 A
5912477 Negley Jun 1999 A
5938316 Yan Aug 1999 A
6022130 Donato Feb 2000 A
6051940 Arun Apr 2000 A
6072160 Bahl Jun 2000 A
6079851 Altman Jun 2000 A
6083021 Lau Jul 2000 A
6104536 Eckhardt Aug 2000 A
6120600 Edmond et al. Sep 2000 A
6124673 Bishop Sep 2000 A
6149112 Thieltges Nov 2000 A
6149288 Huang Nov 2000 A
6176594 Yarconi Jan 2001 B1
D437449 Soller Feb 2001 S
D437652 Uhler Feb 2001 S
6187606 Edmond et al. Feb 2001 B1
6198233 McConaughy Mar 2001 B1
6201262 Edmond et al. Mar 2001 B1
D443710 Chiu Jun 2001 S
6244877 Asao Jun 2001 B1
6249375 Silhengst Jun 2001 B1
D445936 Mier-Langner et al. Jul 2001 S
6260981 Fiene Jul 2001 B1
D446592 Leen Aug 2001 S
6273588 Arakelian Aug 2001 B1
D448508 Benghozi Sep 2001 S
6312787 Hayashi et al. Nov 2001 B1
6318883 Sugiyama et al. Nov 2001 B1
D452843 Henrici Jan 2002 S
6341523 Lynam Jan 2002 B2
D457673 Martinson May 2002 S
6386723 Eberlein et al. May 2002 B1
6390646 Yan May 2002 B1
6392360 McConaughy May 2002 B2
6426704 Hutchison Jul 2002 B1
6435693 Fiene Aug 2002 B1
6439736 Fiene Aug 2002 B1
6439743 Hutchison Aug 2002 B1
6439749 Miller et al. Aug 2002 B1
6441943 Roberts Aug 2002 B1
D462801 Huang Sep 2002 S
6450662 Hutchison Sep 2002 B1
6450664 Kelly Sep 2002 B1
D464455 Fong Oct 2002 S
D464939 Chuang Oct 2002 S
D465046 Layne Oct 2002 S
6473002 Hutchison Oct 2002 B1
6474839 Hutchison Nov 2002 B1
6478453 Lammers Nov 2002 B2
6488386 Yan Dec 2002 B1
6508567 Fiene Jan 2003 B1
D470962 Chen Feb 2003 S
6525939 Liang Feb 2003 B2
D472339 Russello et al. Mar 2003 S
6527422 Hutchison Mar 2003 B1
6530674 Grierson et al. Mar 2003 B2
D473529 Feinbloom Apr 2003 S
6540382 Simon Apr 2003 B1
6561690 Balestriero et al. May 2003 B2
D476439 O'Rourke Jun 2003 S
6600175 Baretz et al. Jul 2003 B1
6601970 Ueda Aug 2003 B2
6618231 McConaughy Sep 2003 B2
6632006 Rippel Oct 2003 B1
6636003 Rahm et al. Oct 2003 B2
D482476 Kwong Nov 2003 S
6641284 Stopa et al. Nov 2003 B2
6662211 Weller Dec 2003 B1
6682211 English Jan 2004 B2
6683419 Kriparos Jan 2004 B2
6691768 Hsieh Feb 2004 B2
6703640 Hembree Mar 2004 B1
6733164 Smith, Jr. May 2004 B1
D491306 Zucker Jun 2004 S
6744693 Brockmann Jun 2004 B2
6752645 Nakamura Jun 2004 B2
6773138 Coushaine Aug 2004 B2
6787999 Stimac Sep 2004 B2
6788510 McConaughy Sep 2004 B2
6791119 Slater, Jr. et al. Sep 2004 B2
6814462 Fiene Nov 2004 B1
6824296 Souza Nov 2004 B2
6824390 Brown Nov 2004 B2
6827469 Coushaine Dec 2004 B2
6853010 Slater, Jr. et al. Feb 2005 B2
6860617 Fiene Mar 2005 B2
6863424 Smith Mar 2005 B2
6864513 Lin Mar 2005 B2
6869206 Zimmerman Mar 2005 B2
6871993 Hecht Mar 2005 B2
D504967 Kung May 2005 S
6893144 Fan May 2005 B2
D506065 Sugino et al. Jun 2005 S
6902200 Beadle Jun 2005 B1
6902291 Rizkin Jun 2005 B2
6903380 Barnett Jun 2005 B2
6905232 Lin Jun 2005 B2
6946806 Choi Sep 2005 B1
6958497 Emerson et al. Oct 2005 B2
6966677 Galli Nov 2005 B2
6979097 Elam et al. Dec 2005 B2
D516020 Wong et al. Feb 2006 S
D516229 Tang Feb 2006 S
6998650 Wu Feb 2006 B1
7040774 Beeson et al. May 2006 B2
7063130 Huang Jun 2006 B2
7063440 Mohacsi et al. Jun 2006 B2
7066617 Mandy et al. Jun 2006 B2
D524975 Oas Jul 2006 S
7070301 Magarill Jul 2006 B2
7077546 Yamauchi Jul 2006 B2
D527119 Maxik Aug 2006 S
D527131 McCarthy, III Aug 2006 S
7093958 Coushaine Aug 2006 B2
7095056 Vitta et al. Aug 2006 B2
7097332 Vamberi Aug 2006 B2
7098397 Lange Aug 2006 B2
7111963 Zhang Sep 2006 B2
7111971 Coushaine Sep 2006 B2
7112916 Goh Sep 2006 B2
D530683 Rivas Oct 2006 S
7131749 Wimberly Nov 2006 B2
7132804 Lys Nov 2006 B2
7138667 Barnett Nov 2006 B2
7149089 Blasko Dec 2006 B2
7150553 English Dec 2006 B2
D535774 Weston et al. Jan 2007 S
7159997 Reo et al. Jan 2007 B2
7160004 Peck Jan 2007 B2
7172319 Holder et al. Feb 2007 B2
D538951 Maxik Mar 2007 S
D539459 Benghozi Mar 2007 S
7198386 Zampini Apr 2007 B2
7207696 Lin Apr 2007 B1
D541957 Wang May 2007 S
7210957 Mrakovich et al. May 2007 B2
7213940 Van De Ven et al. May 2007 B1
7221374 Dixon May 2007 B2
D544110 Hooker Jun 2007 S
D545457 Chen Jun 2007 S
7234950 Wickett Jun 2007 B1
7237930 Onishi et al. Jul 2007 B2
D548691 Krieger et al. Aug 2007 S
7273299 Parkyn et al. Sep 2007 B2
D552779 Starck Oct 2007 S
7282840 Chih Oct 2007 B2
7286296 Chaves Oct 2007 B2
7288902 Melanson Oct 2007 B1
7293908 Beeson et al. Nov 2007 B2
7303301 Koren Dec 2007 B2
D561924 Yiu Feb 2008 S
D563013 Levine Feb 2008 S
7329907 Pang et al. Feb 2008 B2
D564119 Metlen Mar 2008 S
7344279 Mueller Mar 2008 B2
7344296 Matsui Mar 2008 B2
7357534 Snyder Apr 2008 B2
7358657 Koelger Apr 2008 B2
7358679 Lys et al. Apr 2008 B2
7360925 Coushaine Apr 2008 B2
D568829 Yamashita May 2008 S
7369386 Rasmussen May 2008 B2
D570505 Maxik Jun 2008 S
7381942 Chin et al. Jun 2008 B2
D574095 Hill Jul 2008 S
7396139 Savage Jul 2008 B2
7396146 Wang Jul 2008 B2
7413326 Tain Aug 2008 B2
D576545 Mandel et al. Sep 2008 S
D576964 Shaner Sep 2008 S
D577453 Metlen Sep 2008 S
D577836 Engebrigtsen Sep 2008 S
7422347 Miyairi et al. Sep 2008 B2
D579421 Chu Oct 2008 S
D581080 Mier-Langner Nov 2008 S
D581554 To Nov 2008 S
D581583 Peng Nov 2008 S
7452115 Alcelik Nov 2008 B2
7456499 Loh et al. Nov 2008 B2
D583975 Kushinskaya et al. Dec 2008 S
7458820 Ohta Dec 2008 B2
7467888 Fiene Dec 2008 B2
D585588 Alexander Jan 2009 S
D585589 Alexander Jan 2009 S
7481552 Mayfield, III et al. Jan 2009 B2
D586498 Wu Feb 2009 S
D587389 Benensohn Feb 2009 S
7494248 Li Feb 2009 B2
7497581 Beeson et al. Mar 2009 B2
7513675 Mier-Langner et al. Apr 2009 B2
D591894 Flank May 2009 S
D592799 Scott May 2009 S
7532324 Liu et al. May 2009 B2
7537464 Brandenburg May 2009 B2
7539028 Baurle et al. May 2009 B2
D593512 Lin Jun 2009 S
7540761 Weber Jun 2009 B2
7549786 Higley Jun 2009 B2
D597246 Meyer, IV Jul 2009 S
D597247 Meyer, IV Jul 2009 S
7559784 Hsiao Jul 2009 B2
7564180 Brandes Jul 2009 B2
D597704 Peng Aug 2009 S
D599040 Alexander Aug 2009 S
7575332 Cok Aug 2009 B2
7575338 Verfuerth Aug 2009 B1
7580192 Chu Aug 2009 B1
D601276 Grajcar Sep 2009 S
7591572 Levine Sep 2009 B1
7594738 Lin et al. Sep 2009 B1
D602868 Vogt Oct 2009 S
7604365 Chang Oct 2009 B2
7607802 Kang Oct 2009 B2
7621770 Finizio Nov 2009 B1
7626345 Young Dec 2009 B2
7628506 Verfuerth et al. Dec 2009 B2
7637635 Xiao Dec 2009 B2
D608043 Ko Jan 2010 S
D610543 Coushaine Feb 2010 S
D610723 Grajcar Feb 2010 S
D610729 Kushinskaya et al. Feb 2010 S
7665862 Villard Feb 2010 B2
7674018 Holder et al. Mar 2010 B2
7679281 Kim et al. Mar 2010 B2
7686481 Condon et al. Mar 2010 B1
7690810 Saitoh et al. Apr 2010 B2
7703951 Piepgras Apr 2010 B2
7722227 Zhang May 2010 B2
7727009 Goto Jun 2010 B2
7731395 Parkyn et al. Jun 2010 B2
7731396 Fay Jun 2010 B2
7736029 Chen et al. Jun 2010 B2
7737634 Leng et al. Jun 2010 B2
7740380 Thrailkill Jun 2010 B2
7744259 Walczak Jun 2010 B2
7744266 Higley Jun 2010 B2
7748870 Chang Jul 2010 B2
7759881 Melanson Jul 2010 B1
7766508 Villard et al. Aug 2010 B2
7766518 Piepgras Aug 2010 B2
7784966 Verfuerth et al. Aug 2010 B2
7785124 Lin Aug 2010 B2
D625870 Feigenbaum Oct 2010 S
D626094 Alexander Oct 2010 S
7806562 Behr Oct 2010 B2
7810951 Lee et al. Oct 2010 B1
7810955 Stimac et al. Oct 2010 B2
7810995 Fadler et al. Oct 2010 B2
7813111 Anderson Oct 2010 B2
7819549 Narendran et al. Oct 2010 B2
D627507 Lai Nov 2010 S
D627727 Alexander Nov 2010 S
D628156 Alexander Nov 2010 S
7828576 Lin Nov 2010 B2
7837348 Narendran et al. Nov 2010 B2
7841753 Liu Nov 2010 B2
D629365 Garcia De Vicuna Dec 2010 S
7845393 Kao Dec 2010 B2
7857482 Reo et al. Dec 2010 B2
7857498 Smith Dec 2010 B2
7866850 Alexander Jan 2011 B2
7874700 Patrick Jan 2011 B2
D633244 Kramer et al. Feb 2011 S
D633248 Alexander Feb 2011 S
7889421 Narendran Feb 2011 B2
7896517 Mandy et al. Mar 2011 B2
7901108 Kabuki et al. Mar 2011 B2
7914162 Huang Mar 2011 B1
7914198 Mier-Langner et al. Mar 2011 B2
7918581 Van De Ven Apr 2011 B2
7918589 Mayfield, III et al. Apr 2011 B2
7922364 Tessnow Apr 2011 B2
7923907 Tessnow Apr 2011 B2
7942559 Holder et al. May 2011 B2
7952114 Gingrich, III May 2011 B2
7965494 Morris et al. Jun 2011 B1
7972038 Albright Jul 2011 B2
7972054 Alexander Jul 2011 B2
7976194 Wilcox et al. Jul 2011 B2
7985005 Alexander Jul 2011 B2
7988336 Harbers Aug 2011 B1
7993031 Grajcar Aug 2011 B2
8002438 Ko Aug 2011 B2
8007131 Liu et al. Aug 2011 B2
D645007 Alexander Sep 2011 S
D645594 Grawe Sep 2011 S
8021008 Ramer Sep 2011 B2
8029157 Li et al. Oct 2011 B2
8033680 Sharrah Oct 2011 B2
8052310 Gingrich, III Nov 2011 B2
8066403 Sanfilippo et al. Nov 2011 B2
D650504 Kim et al. Dec 2011 S
D650935 Beghelli Dec 2011 S
8080819 Mueller et al. Dec 2011 B2
8083364 Allen Dec 2011 B2
8096668 Abu-Ageel Jan 2012 B2
8100560 Ahland, III et al. Jan 2012 B2
8100564 Ono Jan 2012 B2
8102167 Irissou et al. Jan 2012 B2
8102683 Gaknoki et al. Jan 2012 B2
D654607 Kim et al. Feb 2012 S
8118450 Villard Feb 2012 B2
8118454 Rains, Jr. et al. Feb 2012 B2
8123376 Van De Ven et al. Feb 2012 B2
8125776 Alexander Feb 2012 B2
D655432 Beghelli Mar 2012 S
D655840 Heaton et al. Mar 2012 S
D655842 Sabernig Mar 2012 S
8129669 Chen et al. Mar 2012 B2
8136958 Verfuerth et al. Mar 2012 B2
8138690 Chemel et al. Mar 2012 B2
8142047 Acampora et al. Mar 2012 B2
8143803 Beij et al. Mar 2012 B2
8152336 Alexander Apr 2012 B2
8154864 Nearman Apr 2012 B1
8162498 Ramer et al. Apr 2012 B2
D659871 Lee et al. May 2012 S
D660229 Tseng May 2012 S
8172425 Wen et al. May 2012 B2
8172436 Coleman May 2012 B2
8177395 Alexander May 2012 B2
8182122 Chiu May 2012 B2
8191613 Yuan Jun 2012 B2
8193738 Chu et al. Jun 2012 B2
8201965 Yamada et al. Jun 2012 B2
8205998 Ramer et al. Jun 2012 B2
8210722 Holder et al. Jul 2012 B2
8212469 Rains, Jr. et al. Jul 2012 B2
8215798 Rains, Jr. et al. Jul 2012 B2
8232745 Chemel et al. Jul 2012 B2
D665340 Obata Aug 2012 S
8242766 Gaknoki et al. Aug 2012 B2
8292482 Harbers Oct 2012 B2
8297788 Bishop Oct 2012 B2
8297792 Wang Oct 2012 B1
8297808 Yuan Oct 2012 B2
8319437 Carlin et al. Nov 2012 B2
8324838 Shah et al. Dec 2012 B2
8330378 Maehara et al. Dec 2012 B2
8337043 Verfuerth et al. Dec 2012 B2
8344602 Lai Jan 2013 B2
8360609 Lee et al. Jan 2013 B2
8360621 Avila et al. Jan 2013 B2
8385071 Lin Feb 2013 B2
8403541 Rashidi Mar 2013 B1
8410716 Yao et al. Apr 2013 B2
8414178 Alexander Apr 2013 B2
8434898 Sanfilippo et al. May 2013 B2
8436556 Eisele et al. May 2013 B2
8454193 Simon et al. Jun 2013 B2
8459841 Huang Jun 2013 B2
8462523 Gaknoki et al. Jun 2013 B2
8469542 Zampini, II et al. Jun 2013 B2
8503083 Seo Aug 2013 B2
8529102 Pickard et al. Sep 2013 B2
8531134 Chemel et al. Sep 2013 B2
8536802 Chemel et al. Sep 2013 B2
8536805 Shah et al. Sep 2013 B2
8543249 Chemel et al. Sep 2013 B2
D690859 Mollaghaffari Oct 2013 S
8545045 Tress Oct 2013 B2
8545049 Davis et al. Oct 2013 B2
8547034 Melanson et al. Oct 2013 B2
8552664 Chemel et al. Oct 2013 B2
8556469 Pickard Oct 2013 B2
8558518 Irissou et al. Oct 2013 B2
8562180 Alexander Oct 2013 B2
8569972 Melanson Oct 2013 B2
8573807 Borkar et al. Nov 2013 B2
8573816 Negley et al. Nov 2013 B2
8575858 Policy et al. Nov 2013 B2
8579467 Szeto Nov 2013 B1
8581504 Kost et al. Nov 2013 B2
8581521 Welten et al. Nov 2013 B2
8585245 Black et al. Nov 2013 B2
8587211 Melanson Nov 2013 B2
8593074 Hatley et al. Nov 2013 B2
8593129 Gaknoki et al. Nov 2013 B2
8593814 Ji Nov 2013 B2
D694925 Fukasawa Dec 2013 S
8598809 Negley et al. Dec 2013 B2
8602591 Lee Dec 2013 B2
8610364 Melanson et al. Dec 2013 B2
8610365 King et al. Dec 2013 B2
8611106 Fang Dec 2013 B2
8616724 Pickard Dec 2013 B2
8624505 Huang Jan 2014 B2
D699179 Alexander Feb 2014 S
8643038 Collins Feb 2014 B2
8646944 Villard Feb 2014 B2
8646949 Brunt, Jr. et al. Feb 2014 B2
8652357 Ryu Feb 2014 B2
8653750 Deurenberg et al. Feb 2014 B2
D700728 Fukasawa Mar 2014 S
8684556 Negley et al. Apr 2014 B2
8684569 Pickard et al. Apr 2014 B2
8690383 Zampini, II et al. Apr 2014 B2
8698421 Ludorf Apr 2014 B2
D704369 Lindsley et al. May 2014 S
8723427 Collins et al. May 2014 B2
8740444 Reynolds et al. Jun 2014 B2
8742684 Melanson Jun 2014 B2
8749131 Rains, Jr. et al. Jun 2014 B2
8749173 Melanson et al. Jun 2014 B1
8757840 Pickard et al. Jun 2014 B2
8760073 Ko Jun 2014 B2
8760080 Yu Jun 2014 B2
8764225 Narendran et al. Jul 2014 B2
8777455 Pickard et al. Jul 2014 B2
8783938 Alexander Jul 2014 B2
8786201 Hamamoto et al. Jul 2014 B2
8786210 Delucia Jul 2014 B2
8786211 Gilliom Jul 2014 B2
8786212 Terazawa Jul 2014 B2
8786213 Yang et al. Jul 2014 B2
8791642 Van De Ven Jul 2014 B2
8794792 Moghal Aug 2014 B1
8796948 Weaver Aug 2014 B2
8810227 Flaibani et al. Aug 2014 B2
8814385 Onaka et al. Aug 2014 B2
8816593 Lys et al. Aug 2014 B2
8820964 Gould Sep 2014 B2
8836226 Mercier et al. Sep 2014 B2
8840278 Pickard Sep 2014 B2
8847515 King et al. Sep 2014 B2
8853958 Athalye et al. Oct 2014 B2
8858028 Kim Oct 2014 B2
8876322 Alexander Nov 2014 B2
8888315 Edwards et al. Nov 2014 B2
8888506 Nishimura Nov 2014 B2
8901838 Akiyama et al. Dec 2014 B2
8944647 Bueeler Feb 2015 B2
D724773 Ryu Mar 2015 S
8970101 Sutardja Mar 2015 B2
9010967 Jensen Apr 2015 B2
9052100 Blackstone Jun 2015 B2
9307588 Li Apr 2016 B2
20010006463 Fischer Jul 2001 A1
20010053628 Hayakawa Dec 2001 A1
20020046826 Kao Apr 2002 A1
20020067613 Grove Jun 2002 A1
20020106925 Yamagishi Aug 2002 A1
20020117692 Lin Aug 2002 A1
20030058658 Lee Mar 2003 A1
20030072156 Pohlert Apr 2003 A1
20030128543 Rekow Jul 2003 A1
20030174517 Kiraly et al. Sep 2003 A1
20030185005 Sommers Oct 2003 A1
20030209963 Altgilbers Nov 2003 A1
20040005800 Hou Jan 2004 A1
20040090781 Yeoh May 2004 A1
20040090784 Ward May 2004 A1
20040212991 Galli Oct 2004 A1
20040218372 Hamasaki Nov 2004 A1
20050032402 Takanashi Feb 2005 A1
20050047170 Hilburger Mar 2005 A1
20050083698 Zampini Apr 2005 A1
20050122713 Hutchins Jun 2005 A1
20050130336 Collins, III Jun 2005 A1
20050146884 Scheithauer Jul 2005 A1
20050174780 Park Aug 2005 A1
20050205878 Kan Sep 2005 A1
20050242362 Shimizu Nov 2005 A1
20050269060 Ku Dec 2005 A1
20050270775 Harbers Dec 2005 A1
20050286265 Zampini et al. Dec 2005 A1
20060001381 Robinson Jan 2006 A1
20060039156 Chen Feb 2006 A1
20060062019 Young Mar 2006 A1
20060076672 Petroski Apr 2006 A1
20060141851 Matsui Jun 2006 A1
20060146422 Koike Jul 2006 A1
20060146531 Reo et al. Jul 2006 A1
20060152140 Brandes Jul 2006 A1
20060221272 Negley et al. Oct 2006 A1
20060262544 Piepgras Nov 2006 A1
20060262545 Piepgras Nov 2006 A1
20070025103 Chan Feb 2007 A1
20070064428 Beauchamp Mar 2007 A1
20070096057 Hampden-Smith May 2007 A1
20070109795 Gabrius May 2007 A1
20070139923 Negley et al. Jun 2007 A1
20070153521 Konuma Jul 2007 A1
20070158668 Tarsa et al. Jul 2007 A1
20070170447 Negley et al. Jul 2007 A1
20070223219 Medendorp, Jr. Sep 2007 A1
20070238327 Hsu Oct 2007 A1
20070242461 Reisenauer Oct 2007 A1
20070253201 Blincoe Nov 2007 A1
20070253202 Wu Nov 2007 A1
20070253209 Loh et al. Nov 2007 A1
20070268698 Chen et al. Nov 2007 A1
20070269915 Leong et al. Nov 2007 A1
20070275576 Yang Nov 2007 A1
20070285028 Tsinker et al. Dec 2007 A1
20070295969 Chew et al. Dec 2007 A1
20070297177 Wang Dec 2007 A1
20080012036 Loh et al. Jan 2008 A1
20080013316 Chiang Jan 2008 A1
20080043470 Wimberly Feb 2008 A1
20080076272 Hsu Mar 2008 A1
20080080190 Walczak Apr 2008 A1
20080084700 Van De Ven Apr 2008 A1
20080106907 Trott May 2008 A1
20080112121 Cheng May 2008 A1
20080117500 Narendran et al. May 2008 A1
20080121921 Loh et al. May 2008 A1
20080130275 Higley Jun 2008 A1
20080142194 Zhou Jun 2008 A1
20080157112 He Jul 2008 A1
20080158881 Liu Jul 2008 A1
20080158887 Zhu Jul 2008 A1
20080165530 Hendrikus Jul 2008 A1
20080173884 Chitnis et al. Jul 2008 A1
20080179611 Chitnis et al. Jul 2008 A1
20080192478 Chen Aug 2008 A1
20080198112 Roberts Aug 2008 A1
20080219002 Sommers et al. Sep 2008 A1
20080219303 Chen et al. Sep 2008 A1
20080224598 Baretz Sep 2008 A1
20080224631 Melanson Sep 2008 A1
20080274641 Weber Nov 2008 A1
20080308825 Chakraborty et al. Dec 2008 A1
20090021936 Stimac et al. Jan 2009 A1
20090026913 Mrakovich Jan 2009 A1
20090034283 Albright Feb 2009 A1
20090046464 Liu Feb 2009 A1
20090050907 Yuan et al. Feb 2009 A1
20090050908 Yuan et al. Feb 2009 A1
20090052158 Bierhuizen Feb 2009 A1
20090080185 McMillan Mar 2009 A1
20090086474 Chou Apr 2009 A1
20090091935 Tsai Apr 2009 A1
20090103299 Boyer et al. Apr 2009 A1
20090129084 Tsao May 2009 A1
20090141500 Peng Jun 2009 A1
20090154166 Zhang Jun 2009 A1
20090167203 Dahlman et al. Jul 2009 A1
20090180276 Benitez Jul 2009 A1
20090184616 Van De Ven et al. Jul 2009 A1
20090195168 Greenfeld Aug 2009 A1
20090225551 Chang et al. Sep 2009 A1
20090236997 Liu Sep 2009 A1
20090294114 Yang Dec 2009 A1
20090296388 Wu et al. Dec 2009 A1
20090310354 Zampini, II et al. Dec 2009 A1
20090317988 Lin Dec 2009 A1
20100015821 Hsu Jan 2010 A1
20100019697 Korsunsky Jan 2010 A1
20100026158 Wu Feb 2010 A1
20100027258 Maxik Feb 2010 A1
20100060202 Melanson et al. Mar 2010 A1
20100072505 Gingrich, III Mar 2010 A1
20100073783 Sun Mar 2010 A1
20100073884 Peloza Mar 2010 A1
20100091487 Shin Apr 2010 A1
20100091497 Chen Apr 2010 A1
20100102696 Sun Apr 2010 A1
20100110684 Abdelsamed et al. May 2010 A1
20100110728 Dubrow et al. May 2010 A1
20100128484 Peng May 2010 A1
20100132918 Lin Jun 2010 A1
20100141173 Negrete Jun 2010 A1
20100142189 Hong Jun 2010 A1
20100149818 Ruffin Jun 2010 A1
20100157605 Chang Jun 2010 A1
20100174345 Ashdown Jul 2010 A1
20100195323 Schaefer et al. Aug 2010 A1
20100230709 Kanno Sep 2010 A1
20100238630 Xu Sep 2010 A1
20100243219 Yang Sep 2010 A1
20100246179 Long Sep 2010 A1
20100260945 Kites Oct 2010 A1
20100284181 O'Brien et al. Nov 2010 A1
20100296289 Villard et al. Nov 2010 A1
20100301360 Van De Ven Dec 2010 A1
20100301774 Chemel et al. Dec 2010 A1
20100308742 Melanson Dec 2010 A1
20100319953 Yochum et al. Dec 2010 A1
20110013397 Catone et al. Jan 2011 A1
20110043129 Koolen Feb 2011 A1
20110044046 Abu-Ageel Feb 2011 A1
20110049749 Bailey Mar 2011 A1
20110050100 Bailey Mar 2011 A1
20110050101 Bailey Mar 2011 A1
20110050124 Bailey Mar 2011 A1
20110051407 St. Ives et al. Mar 2011 A1
20110051414 Bailey Mar 2011 A1
20110090684 Logan et al. Apr 2011 A1
20110097921 Hsu Apr 2011 A1
20110103070 Zhang et al. May 2011 A1
20110115381 Carlin May 2011 A1
20110122643 Spork May 2011 A1
20110134634 Gingrich, III Jun 2011 A1
20110136374 Mostoller Jun 2011 A1
20110140620 Lin et al. Jun 2011 A1
20110180841 Chang Jul 2011 A1
20110193490 Kumar Aug 2011 A1
20110210360 Negley Sep 2011 A1
20110222270 Porciatti Sep 2011 A1
20110222277 Negley Sep 2011 A1
20110253358 Huang Oct 2011 A1
20110255287 Li Oct 2011 A1
20110273079 Pickard Nov 2011 A1
20110279015 Negley Nov 2011 A1
20110285308 Crystal Nov 2011 A1
20110285314 Carney et al. Nov 2011 A1
20110292483 Pakhchyan et al. Dec 2011 A1
20110306219 Swanger Dec 2011 A1
20110309773 Beers Dec 2011 A1
20110316441 Huynh Dec 2011 A1
20110316446 Kang et al. Dec 2011 A1
20120002417 Li Jan 2012 A1
20120014115 Park et al. Jan 2012 A1
20120018754 Lowes Jan 2012 A1
20120019127 Hirosaki Jan 2012 A1
20120021623 Gorman Jan 2012 A1
20120025729 Melanson Feb 2012 A1
20120038280 Zoorob et al. Feb 2012 A1
20120038291 Hasnain Feb 2012 A1
20120051048 Smit Mar 2012 A1
20120051056 Derks Mar 2012 A1
20120051068 Pelton Mar 2012 A1
20120092860 Blackstone Apr 2012 A1
20120106152 Zheng May 2012 A1
20120112661 Van De Ven May 2012 A1
20120119658 McDaniel May 2012 A1
20120140468 Chang Jun 2012 A1
20120140474 Jurik Jun 2012 A1
20120146519 Briggs Jun 2012 A1
20120169242 Olson Jul 2012 A1
20120175653 Weber Jul 2012 A1
20120187830 Shum Jul 2012 A1
20120223657 Van De Ven Sep 2012 A1
20120224177 Harbers et al. Sep 2012 A1
20120236553 Cash Sep 2012 A1
20120250309 Handsaker Oct 2012 A1
20120268894 Alexander Oct 2012 A1
20120286304 Letoquin Nov 2012 A1
20120286319 Lee Nov 2012 A1
20120287642 Zeng Nov 2012 A1
20120292660 Kanno Nov 2012 A1
20120307487 Eckel Dec 2012 A1
20120307494 Zlotnikov et al. Dec 2012 A1
20120313124 Clatterbuck Dec 2012 A1
20130002167 Van De Ven Jan 2013 A1
20130003370 Watanabe Jan 2013 A1
20130003388 Jensen Jan 2013 A1
20130026942 Ryan Jan 2013 A1
20130042510 Nall et al. Feb 2013 A1
20130049602 Raj Feb 2013 A1
20130049603 Bradford Feb 2013 A1
20130049627 Roberts et al. Feb 2013 A1
20130069561 Melanson et al. Mar 2013 A1
20130070441 Moon Mar 2013 A1
20130070442 Negley Mar 2013 A1
20130082612 Kim Apr 2013 A1
20130083510 Park Apr 2013 A1
20130094225 Leichner Apr 2013 A1
20130095673 Brandon Apr 2013 A1
20130140490 Fujinaga Jun 2013 A1
20130162140 Shamoto et al. Jun 2013 A1
20130170220 Bueeler Jul 2013 A1
20130170221 Isogai et al. Jul 2013 A1
20130176728 Bizzotto et al. Jul 2013 A1
20130193869 Hong et al. Aug 2013 A1
20130221489 Cao et al. Aug 2013 A1
20130229114 Eisele et al. Sep 2013 A1
20130229804 Holder et al. Sep 2013 A1
20130235555 Tanaka Sep 2013 A1
20130235579 Smith Sep 2013 A1
20130235580 Smith Sep 2013 A1
20130241392 Pickard et al. Sep 2013 A1
20130241440 Gaknoki et al. Sep 2013 A1
20130249434 Medendorp Sep 2013 A1
20130250573 Taskar et al. Sep 2013 A1
20130250581 Tang et al. Sep 2013 A1
20130258636 Rettke Oct 2013 A1
20130265777 Zollers et al. Oct 2013 A1
20130300303 Liu Nov 2013 A1
20130301252 Hussell et al. Nov 2013 A1
20130322072 Pu et al. Dec 2013 A1
20140015419 Shah et al. Jan 2014 A1
20140016318 Pokrajac Jan 2014 A1
20140036510 Preston et al. Feb 2014 A1
20140043813 Dubé et al. Feb 2014 A1
20140048743 Le-Mercier Feb 2014 A1
20140049241 Gaknoki et al. Feb 2014 A1
20140049962 Holder et al. Feb 2014 A1
20140055038 Cappitelli et al. Feb 2014 A1
20140055054 Borkar et al. Feb 2014 A1
20140062330 Neundorfer Mar 2014 A1
20140063779 Bradford Mar 2014 A1
20140071685 Black et al. Mar 2014 A1
20140071696 Park, II et al. Mar 2014 A1
20140078715 Pickard et al. Mar 2014 A1
20140078722 Caldwell et al. Mar 2014 A1
20140078746 Caldwell et al. Mar 2014 A1
20140103796 Jansen Apr 2014 A1
20140126205 Davis et al. May 2014 A1
20140126224 Brunt, Jr. et al. May 2014 A1
20140134880 Yeh May 2014 A1
20140140052 Villard May 2014 A1
20140159077 Kuenzler Jun 2014 A1
20140159600 Sutardja Jun 2014 A1
20140167601 Harry Jun 2014 A1
20140167646 Zukauskas et al. Jun 2014 A1
20140176016 Li Jun 2014 A1
20140198531 Iwasaki Jul 2014 A1
20140217433 Tudorica Aug 2014 A1
20140217907 Harris Aug 2014 A1
20140218909 Tetsuo et al. Aug 2014 A1
20140225511 Pickard et al. Aug 2014 A1
20140225532 Groeneveld Aug 2014 A1
20140268631 Pickard Sep 2014 A1
20140268724 Yanping Sep 2014 A1
20140268737 Athalye et al. Sep 2014 A1
20140286016 Montagne Sep 2014 A1
20140286018 Zhang et al. Sep 2014 A1
20140361701 Siessegger et al. Dec 2014 A1
20140367633 Bibl Dec 2014 A1
20150002034 Van De Ven Jan 2015 A1
20150029717 Shen et al. Jan 2015 A1
20150036339 Ashdown et al. Feb 2015 A1
20150043218 Hu Feb 2015 A1
20150060922 Wilcox Mar 2015 A1
20150236225 David Aug 2015 A1
20150295144 Weiler Oct 2015 A1
20160174319 Li Jun 2016 A1
Foreign Referenced Citations (53)
Number Date Country
2623604 Aug 2009 CA
1536686 Oct 2004 CN
201739849 Feb 2011 CN
202040752 Nov 2011 CN
102269351 Dec 2011 CN
2457016 Aug 2009 GB
61-070306 May 1986 JP
2003-092022 Mar 2003 JP
2004-179048 Jun 2004 JP
2004-265626 Sep 2004 JP
2005-017554 Jan 2005 JP
2005-071818 Mar 2005 JP
2005-235778 Sep 2005 JP
2005-267964 Sep 2005 JP
2006-236796 Sep 2006 JP
2006-253274 Sep 2006 JP
2006-310138 Nov 2006 JP
D1307268 Aug 2007 JP
D1307434 Aug 2007 JP
2007-273205 Oct 2007 JP
2007-273209 Oct 2007 JP
2011-508406 Mar 2011 JP
2011-204495 Oct 2011 JP
2011-204658 Oct 2011 JP
1020070039683 Apr 2007 KR
1020090013704 Feb 2009 KR
100974942 Aug 2010 KR
1020120050280 May 2012 KR
2004-25542 Nov 2004 TW
290967 May 2006 TW
296481 Aug 2006 TW
1273858 Feb 2007 TW
1318461 Dec 2009 TW
DM057383 Sep 2001 WO
0212788 Feb 2002 WO
0215281 Feb 2002 WO
2004071143 Aug 2004 WO
2005093862 Oct 2005 WO
2006066531 Jun 2006 WO
2006066531 Jun 2006 WO
2007128070 Nov 2007 WO
2008108832 Sep 2008 WO
2009044330 Apr 2009 WO
2009108799 Sep 2009 WO
2009120555 Oct 2009 WO
2010016002 Feb 2010 WO
2010059647 May 2010 WO
2011019945 Feb 2011 WO
2013059298 Apr 2013 WO
2013192014 Dec 2013 WO
2013192014 Dec 2013 WO
2014099681 Jun 2014 WO
2014099681 Dec 2014 WO
Non-Patent Literature Citations (146)
Entry
Acuity Brands, “Acuity Brands Introduces Luminaire for Tunable White Technology,” downloaded from http://news.acuitybrands.com/US/acuity-brands-introduces-luminaires-with-tunable-white-technology/s/54ae242f-1222-4b8b-be0d-36637bde8cd2 on May 28, 2014, 2pp.
Acuity Brands Lighting Inc. Product Catalog, downloaded from www.acuitybrands.com, dated Apr. 2013, 90pp.
Acuity Brands, “A Guided Tour of Area Light Sources—Past, Present and Future,” downloaded from www.acuitybrands.com, version dated Jun. 20, 2013, 72pp.
Alanod GmbH, “WhiteOptics,” downloaded from www.alanod.com, dated Apr. 2014, 12pp.
Altman Lighting, “Spectra Cube,” downloaded from http://altmanstagelighting.com/altman-led-green-lighting/led-spectra-cube/Altman-Spectra-Cube-Data-Sheet-v3.pdf on May 28, 2014, 1p.
Bega Lighting, “In-ground luminaire RGBW IP 67 Product data sheet,” downloaded from http://www.bega.com/download/datenblaetter/en/7926.pdf on May 28, 2014, 1p.
CORM 2011 Conference, Gaithersburg, MD, “Calculation of CCT and Duv and Practical Conversion Formulae,” dated May 3-5, 2011, National Institute of Standards and Technology, 28pp.
Lumitronix, “Carclo lens for side emitting 360 degrees,” downloaded from http://www.leds.de/en/High-Power-LEDs/Lenses-and-optics/Carclo-lens-for-side-emitting-360.html on May 28, 2014, 2pp.
“Introduction to Catmull-Rom Splines,” downloaded on Aug. 7, 2015 from www.mvps.org/directx/articles/catmull/, 2pp.
Wikipedia, “CIE 1931 color space,” version dated Apr. 23, 2014, downloaded from www.wikipedia.org, 12pp.
Osram Sylvania, “ColorCalculator User Guide”, downloaded on Jun. 3, 2014 from www.sylvania.com, 44pp.
Osram Sylvania, “ColorCalculator User Guide”, downloaded on Oct. 19, 2015 from www.sylvania.com, 50pp.
Kenneth Kelly, “Color Designations for Lights,” U.S. Department of Commerce, National Bureau of Standards, Research Paper RP1565, Journal of Research of the National Bureau of Standards, vol. 31, Nov. 1943, pp. 271-278.
Philips Color Kinetics, “LED Cove Lighting,” downloaded on May 28, 2014 from http://www.colorkinetics.com/ls/guides-brochures/pck-led-cove-lighting.pdf 32pp.
Philips Color Kinetics, “IntelliWhite LED Lighting Systems,” downloaded on May 28, 2014 from http://www.colorkinetics.com/ls/intelliwhite/, 2pp.
Philips Color Kinetics, “Color-Changing LED Lighting Systems,” downloaded on May 27, 2014 from http://www.colorkinetics.com/ls/rgb/, 2pp.
Wikipedia, “Color temperature,” version dated May 21, 2014, downloaded on Jun. 3, 2014 from www.wikipedia.org, 17pp.
Cree, “Led Color Mixing: Basics and Background,” downloaded on Sep. 24, 2014 from www.cree.com, 24pp.
Cree, “Cree(r) LMH2 LED Modules,” Product Family Data Sheet, downloaded on May 27, 2014 from http://www.cree.com/˜/media/Files/Cree/LED%20Components%20and%20Modules/Modules/Data%20Sheets/LEDModules.LMH2.pdf, 18pp.
“Dialight ES Series RGB LED Luminaire,” downloaded on May 28, 2014 from http://www.dialight.com/Assets/Brochures—And—Catalogs/Illumination/MDEXESTEMORGB—A.pdf 2pp.
Naomi Miller, “Color Spaces and Planckian Loci: Understanding all those Crazy Color Metrics,” U.S Department of Energy, Pacific Northwest National Laboratory, Portland, Oregon, downloaded on May 30, 2014, 49pp.
Kahen, Keith, “High-Efficiency Colloidal Quantum Dot Phosphors,” University at Buffalo, SUNY, DOE SSL R&D Workshop, Long Beach, California, Jan. 29-31, 2013, 12pp.
Bush, Steve, “Chip gives dim-to-warm LED lighting without MCU,” dated Apr. 1, 2014, downloaded from http://www.electronicsweekly.com/news/components/led-lighting/chip-gives-dim-warm-led-lighting-without-mcu-2014-04/, 6pp.
“Ecosense to reveal new TROV LED Linear Platform at 2015 Lightfair International in New York City,” May 4, 2015, blog downloaded from www.ecosense.com, 3pp.
“Ecosense to reveal new TROV LED Linear Platform at 2015 Lightfair International in New York City,” May 4, 2015, press release downloaded from www.ecosense.com, 2pp.
Freyssinier, Jean P. et al., “Class A Color Designation for Light Sources Used in General Illumination,” J. Light & Vis. Env., vol. 37, Nos. 2-3, Nov. 7, 2013, pp. 10-14.
Freyssinier, Jean P. et al., “White Lighting: A Provisional Model for Predicting Perceived Tint in ‘White’ Illumination,” Color Res. & App'n, vol. 39, No. 5, Oct. 2014, pp. 466-479.
Freyssinier, Jean P. et al., “The Class A Color Designation for Light Sources,” Rensselaer Polytechnic Institute, 2013 DOE Solid-State Lighting R&D Workshop, Hilton Long Beach, California, Jan. 29-31, 2013, 26pp.
Freyssinier, Jean P. et al., “Class A Lighting,” Rensselaer Polytechnic Institute, Strategies in Light 2012, 27 pp.
Freyssinier, Jean P. et al., “White Lighting,” Color Res. & App'n, (vol. unknown), Sep. 3, 2011, downloaded from http://www.Irc.rpi.edu/programs/solidstate/assist/pdf/SIL-2012—FreyssinierRea—WhiteLighting.pdf, 12pp.
Rea et al., “White lighting for residential applications,” Lighting Res. Technol., Mar. 27, 2012, downloaded from www.sagepublications.com at http://Irt.sagepub.com/content/early/2012/03/27/1477153512442936, 15pp.
Oh, Jeong et al., “Full down-conversion of amber-emitting phosphor-converted light-emitting diodes with powder phosphors and a long-wave pass filter,” Optics Express, vol. 18, No. 11, May 24, 2010, pp. 11063-11072.
“Microcellular Reflective Sheet MCPET,” downloaded on Feb. 3, 2015 from www.furukawa.co.jp/foam/, 6pp.
“Aculux—Black Body Dimming and Tunable White Responsive Technologies,” downloaded on May 28, 2014 from http://www.junolightinggroup.com/literature/LIT-AX-LED-BBD-TW.pdf , 28pp.
“Khatod—Symmetric & Asymmetric STRIP LENS,” downloaded on May 5, 2015 from www.khatod.com, 3pp.
“KKDC Catalog 2.0,” downloaded on May 28, 2014 from http://www.kkdc.co.uk/media/kkdc-catalogue.pdf, 134pp.
“KKDC UK—Linear LED Lighting,” downloaded from www.kkdc.co.uk/application/interior.php on Oct. 22, 2015, 5pp.
Overton, Gail, “LEDS: White LED comprises blue LED and inexpensive dye,” LaserFocusWorld, Feb. 12, 2013, downloaded from http://www.laserfocusworld.com/articles/print/volume-49/issue-02/world-news/leds--white-led-comprises-blue-led-and-inexpensive-dye.html, 5pp.
“LEDIL TIR Lens Guide,” downloaded from www.ledil.com on Jan. 22, 2015, 8pp.
“LED Linear—linear lighting solutions, product overview,” downloaded on May 28, 2014 from http://www.led-linear.com/en/product-overview/system-catalogue/, 3pp.
“LEDnovation—BR30 Warm Dimming,” downloaded on May 28, 2014 from www.lednovation.com/products/BR30—LED.asp, 2pp.
Wikipedia, “Lenticular lens,” downloaded on Feb. 18, 2015 from www.wikipedia.org, 5pp.
“Lenticular Sheets,” downloaded on Feb. 24, 2015 from www.lenticular-sheets.lpceurope.eu/, 2pp.
Unzner, Norbert, “Light Analysis in lighting technology,” B&S Electronische Geralte GmbH, 2001, 14pp.
“Lightolier—Solid-State Lighting,” downloaded on May 28, 2014 from http://www.lightolier.com/prospots/leds—solidstate.jsp, 1p.
Wikipedia, “Line of purples,” downloaded on Oct. 20, 2015 from www.wikipedia.org, 2pp.
“Lumenbeam Catalog,” downloaded on May 27, 2014 from 11—160—en—lumenpulse—lumenbeam—rgb—lbl—rgb—brochure.zip, 63pp.
“Lumenetix—Araya Technology,” downloaded on May 28, 2014 from www.lumenetix.com/araya-technology, 3pp.
“Lumenpulse—Lumenbeam Large Color Changing,”, downloaded on May 27, 2014 from www.lumenpulse.com/en/product/11/lumenbeam-large-color-changing, 4pp.
“Lumenpulse—Lumencove Family,” downloaded on May 28, 2014 from http://www.lumenpulse.com/en/products#!3/0/0/0/0/0, 2pp.
Knight, Colette, “XICATO—Investigations on the use of LED modules for optimized color appearance in retail applications,” downloaded on May 28, 2014 from http://www.xicato.com/sites/default/files/documents/Summary—investigations—on—the—use—of—LED—modules—for—optimized—color—appearance—in—retail—applications.pdf, 5pp.
“Zumtobel—IYON Tunable White,”, downloaded on Oct. 19, 2015 from http://www.zumtobel.com/tunablewhite/en/index.html#topic—04, 1p.
“ZUMTOBEL—IYON LED Spotlight Catalog,” downloaded on Oct. 19, 2015 from http://www.zumtobel.com/PDB/Ressource/teaser/en/com/Iyon.pdf, 40pp.
“Lumenpulse—Lumenbeam Large Pendant Dynamic White,” downloaded on May 28, 2014 from http://www.lumenpulse.com/en/product/72/lumenbeam-large-pendant-dynamic-white, 1p.
“Lumileds Application Brief AB08—Optical Testing for SuperFlux, SnapLED and Luxeon Emitters,” downloaded on Sep. 24, 2014 from www.lumileds.com, 15pp.
“CandlePowerForums—SOLD: Luxeon III side-emitter white LED,” downloaded on May 28, 2014 from http://www.candlepowerforums.com/vb/showthread.php?140276-SOLD-Luxeon-III-side-emitter-white-LED, 4pp.
“Lumileds LUXEON Z,”, downloaded on May 2, 2015 from www.lumileds.com, 2pp.
“Alanod MIRO Catalog,” downloaded on Jan. 30, 2015 from www.alanod.com, 8pp.
“Nanoco Group—Cadmium Free Quantum Dots,” downloaded on May 30, 2014 from www.nanocotechnologies.com/what-we-do/products/cadmium-free-quantum-dots, 3pp.
“Nanosys—Quantum Dots,” downloaded on May 30, 2014 from www.nanosysinc.com/what-we-do/quantum-dots/, 3pp.
“Ocean NanoTech—Products,” downloaded on May 30, 2014 from www.oceannanotech.com/Products.php, 1p.
“NNCrystal—blog post—May 17, 2010,” downloaded from http://led-lights-led.blogspot.com/2010/05/nncrystal-us-corporation-to-supply.html, 4pp.
“A Warmer, Cozier White Light: NXP Transforms LED Color Quality,” dated Jan. 9, 2013, downloaded from http://www.nxp.com/news/press-releases/2013/01/a-warmer-cozier-white-light-nxp-transforms-led-color-quality.html, 2pp.
“Lighting Global Technical Notes, Optical Control Techniques for Off-grid Lighting Products,” Jul. 2011 and May 2012, 6pp.
“Pacific Light Technologies—Quantum Dots in Solid State Lighting,” downloaded on Oct. 23, 2015 from www.pacificlighttech.com/quantum-dots-in-ssl/, 2pp.
“Philips Lighting—Dim Tone,”, downloaded on May 27, 2014 from www.usa.lighting.philips.com/lightcommunity/trends/led/dimtone/, 1p.
“Philips—Dimmable to warm light for the perfect ambience,” downloaded on May 27, 2014 from www.usa.lighting.philips.com, 2pp.
“Philips—Turn up Ambience and Tone Down Energy Use with Philips BR30 DimTone,” downloaded on May 27, 2014 from www.usa.lighting.philips.com, 11pp.
Wikipedia, “Planckian locus,” downloaded on May 30, 2014 from www.wikipedia.org, 5pp.
Wikipedia, “Quantum dot,”, downloaded on May 30, 2014 from http://en.wikipedia.org/wiki/Quantum—dot, 15pp.
“Phosphortech—Flexible Phosphor Sheet—RadiantFlex Datasheet,” Aug. 2014, downloaded from www.phosphortech.com, 10pp.
Wikipedia, “Reflectivity,”, downloaded on Jan. 22, 2015 from www.wikipedia.org, 3pp.
“Refraction by lenses,” downloaded on Feb. 17, 2015 from www.physicsclassroom.com, 5pp.
“RTLED—White Paper: Binning and LED,” downloaded on Oct. 13, 2014 from www.rtled.com, 3pp.
Near, Al, “Seeing Beyond CRI,” LED Testing & Application, Nov. 2011, downloaded from www.ies.org/lda/hottopics/led/4.pdf, 2pp.
“Selux—Olivio luminaire,” press release dated Mar. 26, 2014, downloaded from http://www.selux.com/be/en/news/press/press-detail/article/evolutionary-progress-the-olivio-family-of-system-luminaires-now-with-premium-quality-white-and.html, 3pp.
“LEDIL—Strada-F Series,” downloaded on May 5, 2015 from www.ledil.com, 7pp.
“Sylvania—ULTRA SE(tm) LED Lamp Family,” downloaded on May 27, 2014 from www. sylvania.com, 3pp.
“Sylvania ULTRA SE(tm) LED Light Bulbs with Color Dimming Sunset Effects,” downloaded on May 27, 2014 from https://www.youtube.com/watch?v=oZEc-VfJ8EU, 2pp.
Wikipedia, “Transmittance,” downloaded on Jan. 22, 2015 from www.wikipedia.org, 4pp.
“United Lumen—A Volumetric Displaced Phosphor Light Engine which elegantly and efficiently distributes light in a pattern similar to an incandescent bulb,” downloaded on Jul. 9, 2014 from www.unitedlumen.com, 1p.
“United Lumen—Solid State Volumetric Technology,” downloaded on Jul. 9, 2014 from www.unitedlumen.com, 1p.
“United Lumen—High Brightness V-LED Technology,” downloaded on May 15, 2014 from www.unitedlumen.com, 1p.
“USAI Lighting Catalog,” downloaded on May 27, 2014 from http://www.usaillumination.com/pdf/Warm—Glow—Dimming.pdf, 50pp.
“Winona—Parata 700 Series Cove,” downloaded on May 28, 2014 from www.acuitybrands.com, 2pp.
“Winona Parata Catalog,” downloaded on May 28, 2014 from www.acuitybrands.com, 24pp.
Petluri et al., U.S. Appl. No. 14/526,504, filed Oct. 28, 2014, entitled “Lighting Systems Having Multiple Light Sources,” 92pp.
Petluri et al., U.S. Appl. No. 14/636,204, filed Mar. 3, 2015, entitled “Lighting Systems Including Lens Modules for Selectable Light Distribution,” 119pp.
Pickard et al., U.S. Appl. No. 14/617,849, filed Feb. 9, 2015, entitled “Lighting Systems Generating Controlled and Wavelength-Converted Light Emissions,” 83pp.
Rodgers et al., U.S. Appl. No. 14/702,800, filed May 4, 2015, entitled “Lighting Systems Including Asymmetric Lens Modules for Selectable Light Distribution,” 116pp.
Pickard et al., U.S. Appl. No. 14/636,205, filed Mar. 3, 2015, entitled “Low-Profile Lighting System Having Pivotable Lighting Enclosure,” 56pp.
Fletcher et al., U.S. Appl. No. 14/702,765, filed May 4, 2015, entitled “Lighting System Having a Sealing System,” 92pp.
Fletcher et al., U.S. Appl. No. 29/519,149, filed Mar. 3, 2015, entitled “LED Luminaire,” 8pp.
Fletcher et al., U.S. Appl. No. 29/519,153, filed Mar. 03, 2015, entitled “LED Luminaire,” 8pp.
Fletcher et al., U.S. Appl. No. 14/816,827, filed Aug. 3, 2015, entitled “Lighting System Having a Mounting Device,” 126pp.
Rodgers et al., U.S. Appl. No. 62/202,936, filed Aug. 10, 2015, entitled “Optical Devices and Systems Having a Converging Lens With Grooves,” 133pp.
Fletcher et al., U.S. Appl. No. 29/532,383, filed Jul. 6, 2015, entitled “LED Luminaire Having a Mounting System,” 10pp.
Fletcher et al., U.S. Appl. No. 29/533,635, filed Jul. 20, 2015, entitled “LED Luminaire Having a Mounting System,” 10pp.
Fletcher et al., U.S. Appl. No. 29/533,666, filed Jul. 20, 2015, entitled “LED Luminaire Having a Mounting System,” 10pp.
Fletcher et al., U.S. Appl. No. 29/533,667, filed Jul. 20, 2015, entitled “LED Luminaire Having a Mounting System,” 10pp.
PCT/US2007/023110, Journee Lighting Inc., International Preliminary Report on Patentability Dated Sep. 8, 2009.
PCT/US2009/035321, Journee Lighting Inc., International Preliminary Report on Patentability Dated Aug. 31, 2010.
PCT/US2009/064858, Journee Lighting Inc., International Preliminary Report on Patentability Dated May 24, 2011.
PCT/US2010/045361, Journee Lighting Inc., International Preliminary Report on Patentability Dated Feb. 14, 2012.
PCT/US2012/060588, Ecosense Lighting Inc., Filed on Oct. 17, 2012.
PCT/US2012/060588, Ecosense Lighting Inc., International Search Report and Opinion Dated Mar. 29, 2013.
PCT/US2012/060588, Ecosense Lighting Inc., International Preliminary Report on Patentability Dated Apr. 22, 2014.
PCT/US2013/045708, Journee Lighting Inc., International Search Report and Opinion Dated Nov. 27, 2013.
PCT/US2013/045708, Dated Journee Lighting Inc., International Preliminary Report on Patentability Dated May 12, 2015.
PCT/US2013/075172, Ecosense Lighting Inc., Filed on Dec. 13, 2013.
PCT/US2013/075172, Ecosense Lighting Inc., International Search Report and Opinion Dated Sep. 26, 2014.
PCT/US2013/075172, Ecosense Lighting Inc., International Preliminary Report on Patentability Dated Jun. 23, 2015.
PCT/US2016/020521, Ecosense Lighting Inc., Filed on Mar. 2, 2016.
PCT/US2016/020521, Ecosense Lighting Inc., International Search Report and Opinion Dated May 3, 2016.
PCT/US2016/016972, Ecosense Lighting Inc., Filed on Feb. 8, 2016.
PCT/US2016/016972, Ecosense Lighting Inc., International Search Report and Opinion Dated Apr. 11, 2016.
PCT/US2016/030613, Ecosense Lighting Inc., Filed on May 3, 2016.
PCT/US2016/020523, Ecosense Lighting Inc., Filed on Mar. 2, 2016.
PCT/US2016/020523, Ecosense Lighting Inc., International Search Report and Opinion Dated May 6, 2016.
PCT/US2016/015470, Ecosense Lighting Inc., Filed on Jan. 28, 2016, Entitled “Zoned Optical Cup.”
Petluri et al., U.S. Appl. No. 62/288,368, filed Jan. 28, 2016, entitled “Multizone Mixing Cup”.
PCT/US2016/015473, Ecosense Lighting Inc., Filed on Jan. 28, 2016, Entitled “Illuminating With a Multizone Mixing Cup.”
PCT/US2016/015473, Ecosense Lighting Inc., International Search Report and Opinion Mailed on Apr. 22, 2016.
Petluri et al., U.S. Appl. No. 15/170,806, filed Jun. 1, 2016, entitled “Illuminating With a Multizone Mixing Cup.”
PCT/US2016/015318, Ecosense Lighting Inc., Filed on Jan. 28, 2016, Entitled “Compositions for LED Light Conversions.”
PCT/US2016/015318, Ecosense Lighting Inc., International Search Report and Opinion, Mailed on Apr. 11, 2016.
PCT/US2016/015348, Ecosense Lighting Inc., Filed on Jan. 28, 2016, Entitled “Systems for Providing Tunable White Light With High Color Rendering.”
PCT/US2016/015348, Ecosense Lighting Inc., International Search Report and Opinion Mailed on Apr. 11, 2016.
PCT/US2016/015368, Ecosense Lighting Inc., Filed on Jan. 28, 2016, Entitled “Systems for Providing Tunable White Light With High Color Rendering.”
PCT/US2016/015368, Ecosense Lighting Inc., International Search Report and Opinion Mailed on Apr. 19, 2016.
Petluri et al., U.S. Appl. No. 15/173,538, filed Jun. 3, 2016, entitled “System for Providing Tunable White Light With High Color Rendering.”
Petluri et al., U.S. Appl. No. 15/173,554, filed Jun. 3, 2016, entitled “System for Providing Tunable White Light With High Color Rendering.”
PCT/US2016/015385, Ecosense Lighting Inc., Filed on Jan. 28, 2016, Entitled “Methods for Generating Tunable White Light With High Color Rendering.”
PCT/US2016/015402, Ecosense Lighting Inc., Filed on Jan. 28, 2016, Entitled “Methods for Generating Tunable White Light With High Color Rendering.”
PCT/US2016/015435, Ecosense Lighting Inc., Filed on Jan. 28, 2016, Entitled “Methods for Generating Melatonin-Response-Tuned White Light With Light Color Rendering.”
PCT/US2016/015437, Ecosense Lighting Inc., Filed on Jan. 28, 2016, Entitled “Methods for Generating Melatonin-Response-Tuned White Light With Light Color Rendering.”
PCT/US2016/015441, Ecosense Lighting Inc., Filed on Jan. 28, 2016, Entitled “Methods for Generating Melatonin-Response-Tuned White Light With Light Color Rendering.”
Petluri et al., U.S. Appl. No. 15/176,083, filed Jun. 7, 2016, entitled “Compositions for LED Light Conversions.”
PCT/US2016/030613, Ecosense Lighting Inc., International Search Report and Opinion Dated Aug. 5, 2016.
PCT/US2016/046245, Ecosense Lighting Inc., Filed on Aug. 10, 2016.
PCT/US2016/015470, Ecosense Lighting Inc., International Search Report and Opinion Dated Jul. 8, 2016.
PCT/US2016/015385, Ecosense Lighting Inc., International Search Report and Opinion Dated Apr. 8, 2016.
PCT/US2016/015402, Ecosense Lighting Inc., International Search Report and Opinion Dated Apr. 22, 2016.
PCT/US2016/015435, Ecosense Lighting Inc., International Search Report and Opinion Dated Mar. 31, 2016.
PCT/US2016/015437, Ecosense Lighting Inc., International Search Report and Opinion Dated Mar. 31, 2016.
PCT/US2016/015441, Ecosense Lighting Inc., International Search Report and Opinion Dated Mar. 31, 2016.
Related Publications (1)
Number Date Country
20140233193 A1 Aug 2014 US
Provisional Applications (1)
Number Date Country
61765257 Feb 2013 US