Typical color liquid crystal displays (LCDs) utilize white light from a fluorescent source or white light emitting diodes (LEDs) to provide backlight. The backlight is manipulated by liquid crystal cells, color filters, and polarized filters to produce color images.
A new type of color display involves using multiple color LEDs as the light source. The color LEDs (e.g., red, green, and blue LEDs) are driven in a color-sequential manner to produce light of the desired color. For example, red, green, and blue light is generated in a sequence that is faster than the human eye can distinguish such that the sequentially generated colors blend together to produce the desired colors. Color displays that are driven in a color-sequential manner are referred to as field-sequential color displays. An advantage of LED-based field-sequential color displays over traditional color LCDs is that the field-sequential color displays do not require the color and polarized filters, which tend to absorb a significant quantity of the backlight. Because less light is absorbed, field-sequential displays can produce high intensity light with less power consumption. On the other hand, one drawback to LED-based field-sequential color displays is that the luminance and chrominance characteristics of color LEDs tend to vary with factors such as, temperature, age, drive current, and manufacturing inconsistencies.
Therefore, what is needed is an LED-based field-sequential color display that can reliably produce light with the desired luminance and chrominance characteristics.
A field-sequential color light system has a light source that includes multiple color LEDs and a spectral feedback control system that is configured to drive the color LEDs to produce light that is used for backlighting, to detect the light from the color LEDs, and to adjust color-sequential drive signals in response to the light detection. Detecting the emitted light and adjusting the color-sequential drive signals in response to the light detection allows luminance and chrominance characteristics of the emitted light from the field-sequential color light system to be maintained at desired levels as the performance of the LEDs change over time.
In one embodiment of the light system, the spectral feedback control system includes a color sensor configured to provide color-specific feedback signals, a controller configured to generate color-specific control signals in response to the color-specific feedback signals, and a driver configured to generate color-specific drive signals in response to the color-specific control signals.
A method for operating a field-sequential color light system in accordance with the invention involves providing drive signals to a light source that includes multiple color LEDs, detecting light that is generated in response to the drive signals, generating feedback signals in response to the detected light, and adjusting color-sequential drive signals that are provided to the light source in response to the feedback signals. In an embodiment, color-specific feedback signals are generated in response to the detected light. The color-specific feedback signals are used to adjust the color-sequential drive signals for the color LEDs on a per-color basis to maintain desired luminance and chrominance characteristics of the emitted light.
Other aspects and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrated by way of example of the principles of the invention.
Throughout the description similar reference numbers may be used to identify similar elements.
The light source 102 is configured to generate light in response to applied drive signals. The light source is oriented with respect to the light mixing medium 104 such that light emitted from the light source passes through the light mixing medium. The light source depicted in
The light mixing medium 104 mixes the colored light that is emitted from the color LEDs 110. The light mixing medium helps to evenly distribute the different colors that are emitted from the LEDs.
The spectral feedback control system 106 includes a color sensor 120, a controller 122, and a driver 124. The color sensor is oriented with respect to the LCD panel 114, the light mixing medium 104, and the light source 102 to detect light that passes through the light mixing medium and the LCD panel after being emitted from the light source. In the embodiment of
The controller 122 controls the luminance and chrominance characteristics of the light that is generated from the light source 102. The controller uses color-specific control signals to generate light having the desired luminance and chrominance characteristics. When the light system is operated in a feedback control mode, the controller receives color-specific feedback signals from the color sensor 120 and generates color-specific control signals in response to the color-specific feedback signals.
The driver 124 translates the color-specific control signals received from the controller into color-specific drive signals that drive the light source 102 in a color-sequential manner. For example, the driver produces color-specific drive signals (e.g., red LED drive signals, green LED drive signals, and blue LED drive signals) that control the color LEDs 110 on a per-color basis. The driver includes color-sequential logic 126 that is configured to drive the LEDs in a color-sequential manner. Driving the LEDs in a color-sequential manner involves driving LEDs of the same color simultaneously one color at a time. For example, the red LEDs are driven first, the green LEDs are driven second, and the blue LEDs are driven third. Using known FSC techniques, the different color LEDs are driven at a rate that is faster than the human eye can distinguish so that the colors appear to the human eye to be blended together. For example, each group of different color LEDs is driven separately during a 60 Hz frame. In one embodiment, each of the three different groups of color LEDs (red, green, and blue) is sequentially activated during a 1/180th of a second subframe during each 1/60th (i.e., 60 Hz) of a second frame. By driving each group of different color LEDs separately in a color-sequential manner, light with the desired luminance and chrominance characteristics can be produced.
During a calibration process, the spectral feedback control system 106 of
The color-specific control signals that are generated by the controller 122 are provided to the driver 124. The driver translates the color-specific control signals into color-specific drive signals. The color-specific drive signals are then applied to the color LEDs 110 of the light source 102 in a color-sequential manner to produce light that is used for backlighting the LCD panel. The calibration process can be repeated until the emitted light exhibits the desired luminance and chrominance characteristics. Measuring the actual luminance and chrominance characteristics of the emitted light and adjusting the LED drive signals in response to the actual measurements allows the desired luminance and chrominance characteristics to be maintained as the light emitted by the individual color LEDs changes.
In an embodiment, the calibration process is used selectively to adjust the luminance and chrominance characteristics of the output light. For example, the calibration process may be implemented for discrete periods of time at pre-established time intervals (e.g., once an hour, day, week, month etc.) or at fixed events (e.g., upon system start-up). In one embodiment, the calibration process is performed during power up of the light system. In another embodiment, the feedback control process is implemented while the power source (e.g., the battery of a mobile device) is being charged. The frequency with which the feedback control process is performed and the length of time required to achieve the desired luminance and chrominance characteristics is a function of various factors, such as the magnitude of light drift, the level of control desired, resource consumption concerns, etc.
In embodiments where the calibration process is used selectively to adjust the luminance and chrominance characteristics of the emitted light, the feedback control process is not implemented during normal operations. Not implementing the feedback control process during normal operations can save resources (e.g., battery power and processing cycles) that are consumed by the feedback control process. Alternatively, the calibration process can be implemented on a continuous basis during normal operation (e.g., while the color LEDs are driven in a color-sequential manner) to provide a high level of control over the luminance and chrominance characteristics of the emitted light. In an embodiment of the calibration process where the RGB LEDs are activated simultaneously, the calibration process is preferably run while the LCD panel is blanked to avoid the display of any unwanted images that may negatively impact the calibration process.
For the purposes of example, the system 100 depicted in
The relative spectral power distribution, Pλ, is the spectral power per constant-interval wavelength throughout the spectrum relative to a fixed reference value. The CIE color matching functions, xλ, yλ, and zλ, are the functions x(λ), y(λ), and z(λ) in the CIE 1931 standard calorimetric system or the functions x10(λ), y10 (λ), and z10 (λ) in the CIE 1964 supplementary standard colorimetric system. The CIE 1931 standard calorimetric observer is an ideal observer whose color matching properties correspond to the CIE color matching functions between 1° and 4° fields, and the CIE 1964 standard calorimetric observer is an ideal observer whose color matching properties correspond to the CIE color matching functions for field sizes larger than 4°. The reflectance, Rλ, is the ratio of the radiant flux reflected in a given cone, whose apex is on the surface considered, to that reflected in the same direction by the perfect reflecting diffuser being irradiated. Radiant flux is power emitted, transferred, or received in the form of radiation. The unit of radiant flux is the watt (W). A perfect reflecting diffuser is an ideal isotropic diffuser with a reflectance (or transmittance) equal to unity. The weighting functions, Wxλ, Wyλ, and Wzλ, are the products of relative spectral power distribution, Pλ, and a particular set of CIE color matching functions, xλ, yλ, and zλ.
The controller 122 depicted in
The alternate controller of
The FSC light system 100 described above with reference to FIGS. 13B can also be oriented such that the color sensor is configured to detect light after it is mixed but before it passes through the LCD panel 114.
In the embodiment of the calibration process in which the color LEDs are driven in a color-sequential manner, the color sensor can be configured to sum the individual color-specific measurements to produce a complete color measurement. For example, the color sensor will measure red light during the time that the red LEDs are driven, green light during the time that the green LEDs are driven, and blue light during the time that the blue LEDs are driven. The color-specific measurements are then summed (e.g., according to Grassman's laws) to characterize the overall luminance and chrominance characteristics of the light.
Although the color-sequential logic is disclosed as being located within the driver, color-sequential logic may be located in the controller, the driver, or any combination thereof.
Although the light systems 100 and 200 are described as a backlight for an LCD panel, the LED-based FSC light systems can be used in any other light application and are in no way limited to the above-described applications.
Other embodiments of the spectral feedback control system 106 that provide feedback signals and adjust the color LEDs on a per-color basis in response to the feedback signals are possible.
Although specific embodiments of the invention have been described and illustrated, the invention is not to be limited to the specific forms or arrangements of parts so described and illustrated. The scope of the invention is to be defined by the claims appended hereto and their equivalents.