The field of the present disclosure relates to ruggedized electronic displays and display systems, and to displays and display systems for outdoor use.
Electronic displays, such as liquid crystal displays, have become less expensive, fueling increased demand for using electronic displays in place of static displays such as sign boards, light boards, and posters, for both indoor and outdoor applications. Capabilities and options available through electronic displays that can be programmed to show images, including text and video, are increasingly in demand for outdoor applications. However, many current electronic displays, including liquid crystal displays, are not suitable for outdoor use.
The present inventors have recognized several challenges associated with adopting electronic displays, such as displays using active matrix liquid crystal display (“AMLCD”) panels, for outdoor use. They recognized that using electronics outdoors places the electronics in a more challenging environment compared to indoor use. Outdoor displays encounter water, particulate matter, insects, temperature variations (both high and low), and brighter ambient light conditions than displays used indoors. They have also recognized that polarizer layers used in liquid crystal displays turn brown when exposed to humidity, thus reducing the brightness of such displays. And, they have recognized that moisture adversely affects the electronics associated with liquid crystal displays. Another recognition is that the sun adversely impacts liquid crystal displays by overheating such displays and potentially causing such displays to clear by heating the liquid crystal to a point where it transitions from its operative nematic phase to an istropic phase that prevents the liquid crystal from properly operating.
The present inventors have recognized that cold cathode fluorescent lamps (“CCFL”), commonly used to backlight AMLCD displays, are typically rated for a 50,000 hour half-life, and that an outdoor display rated at 1000 nits (cd/m2) will likely only have 500 nits available in 5 years, thus making the display unreadable, especially in relatively high levels of ambient light. They have also recognized that films placed between an AMLCD panel and the backlights will yellow over time because of the ultra-violet radiation emitted from CCFLs, and that such yellowing reduces the reflectance of such films and reduces the overall brightness of the AMLCD. They have also recognized that the high voltage of CCFLs attracts dirt and dust into a backlight cavity, and that such dirt and dust becomes entrapped in the middle of the backlight films thus making the backlight cavity difficult to clean. Backlight cavities are commonly sealed to prevent dust from entering the cavity. The present inventors have recognized that such sealed backlight cavities make it difficult to remove heat that builds up in the backlight cavity.
The present inventors have also recognized the uncontrolled outdoor environment commonly leads to placing a display panel and its associated electronics in a “weather-proof” or sealed housing in an attempt to isolate the electronics from environmental conditions. They have recognized that the bright ambient light conditions commonly leads to a need for brighter displays that can be viewed in the bright ambient light, and that brighter AMLCD displays commonly use brighter lamps which often generate significant amounts of heat. They have recognized the combination of weather-proof housings and brighter lamps creates cooling difficulties because the heat from the lamps and from the environment becomes trapped in such weather-proof housings and it is difficult to circulate air through such housings because of their sealed or “weatherized” designs. They also recognized that such cooling problems commonly require heat sinks to be incorporated into a display, adding bulk, weight, and cost to the display.
The present inventors have also recognized that electronic displays used in outdoor environments are likely to be continuously used and therefore powered on for longer periods of time than similar displays used indoors. Because of the increased power on periods, lamps in outdoor displays are more likely to burn out and need to be replaced. They have recognized that weather-proof housings, as well as housings used for indoor applications, are difficult to open and even when open are commonly not designed for relatively easy lamp replacement. Another recognition is that because backlights on large format displays are not easily replaced in the field, such displays are commonly shipped back to a depot for repair, which increases maintenance costs, downtime, and risk of damage. The present inventors have also recognized that dirt and lamp aging will reduce contrast and make a display unreadable in relatively bright ambient light, which, while not a hard failure of any component, compels shipping a display back to a depot for cleaning and lamp replacement.
In light of the above problems recognized by the present inventors, they created a ruggedized, or weatherized, display panel for outdoor use that protects the display panel from environmental conditions. In one embodiment, an AMLCD panel is sealed between optically bonded optically transparent plates on the front and back of the AMLCD panel. Optically bonding optically transparent plates to the front and back of the AMLCD panel preferably protects the polarizers from the environment such that they resist browning.
A weatherized AMLCD panel is contained in a display housing that is easily opened. In one embodiment the AMLCD module is moved out of the way to permit relatively easy access to the internal components, such as the lamps, contained in the display housing. Alternately, the backlight module may be moved out of the way to permit relatively easy access to the internal components. Such access allows the backlight cavity to be cleaned, other components to be cleaned, and the lamps to be replaced in the field. The lamps are preferably hot cathode fluorescent lamps (“HCFL”), which are relatively inexpensive and easy to maintain compared to cold cathode fluorescent lamps. Serviceability ease, and access to internal components, is facilitated by creating a display device that contains a weatherized, or ruggedized, AMLCD panel in one module and the backlight in a separate module. The AMLCD display and display housing created by the present inventors address at least some of the above problems, and may address other problems, such as a need for active cooling from devices such as thermoelectric coolers or compressed fluid refrigeration units, associated with using an electronic display outdoors.
Additional aspects and advantages will be apparent from the following detailed description of preferred embodiments, which proceeds with reference to the accompanying drawings.
While the following discussion references a preferred embodiment having a specific housing structure and using an AMLCD panel, the invention is not limited to the particular details discussed. The invention is defined by the claims in this application.
In a particular embodiment illustrated in
The front optically transparent plate 75 lies between the AMLCD panel 90 and the outside environment. An infra-red (“IR”) reflecting and visible light transmissive material 80 is preferably included on the front optically transparent plate 75 to reduce the amount of IR radiation (principally greater than 700 nanometers (“nm”)) that reaches the AMLCD panel 90. Reducing the amount of IR radiation that reaches the AMLCD panel 90 helps prevent environmental heating of the AMLCD panel 90.
The AMLCD panel 90 is secured in a panel housing 10 (
The backlight is secured in a backlight housing 15 that is openably connected to the panel housing 10 to provide access to the lamps 225 when opened or detached from the panel housing 10. When the backlight housing 15 is connected to the panel housing 10, lamps 225 of the backlight are spaced apart from the diffuser 200 to create a second airspace 220, which preferably serves as an air flow path (
The lamps 225 of the backlight are preferably hot cathode fluorescent lamps (“HCFL”) which require a ballast 227 (
In a preferred embodiment, the panel housing 10 includes a right-side frame 20, left-side frame 25, top frame 30, and a bottom frame 35 that cooperatively grip a ruggedized display panel 40, which preferably includes a transmissive image display panel such as an AMLCD panel. Details of the ruggedized display panel 40 are described below. The right-side frame 20, left-side frame 25, top frame 30, and bottom frame 35 are preferably cut at 45-degree angles and fit together similar to a window frame. The right-side frame 20, left-side frame 25, top frame 30, and bottom frame 35 are preferably held together by mechanical fasteners (not illustrated) such as screws or other suitable fasteners, or may be glued, welded, or otherwise suitably bonded together. The right-side frame 20, left-side frame 25, top frame 30, and bottom frame 35 are preferably extruded aluminum, and include a protective coating, such as a powder coating or anodization, to help prevent the aluminum from breaking down due to exposure to outdoor elements.
In a similar manner, the backlight housing 15 preferably includes a right-side frame (not illustrated), left-side frame 50, top frame 55, and bottom frame (not illustrated) made from extruded aluminum and having a protective coating. Backlight housing 15 is preferably assembled similar to panel housing 10. The right-side frame and left-side frame 50 include air intake openings 65 and air outlet openings 70. Air intake openings 65 preferably include a filter material (not illustrated) such as a fine screen mesh or other suitable material for hindering particulate matter, such as dust, and insects from entering backlight housing 15 through air intake openings 65 but allowing air to pass therethrough. In alternate embodiments, air inlets may be solely through a fan system, such as fans 235 (
A cross-section of a preferred ruggedized display panel 40 according to one embodiment is illustrated in
A preferred ruggedized display panel 40 includes multiple layers which are described with reference to a front (facing a viewer of the display device 5) and a rear (facing backlight housing 15). A front optically transparent plate 75 permits visible light (generally in the range of 400 nm to 700 nm) to pass therethrough. Other wavelengths, such as IR (generally wavelengths above 700 nm to approximately 3,000 nm) and UV (generally wavelengths below 400 nm to approximately 10 nm) may also pass through front optically transparent plate 75. Front optically transparent plate 75 is preferably 2 to 10 millimeters (“mm”) thick and made from non-quartz glass, such as silica glass, but may be made from other suitable materials, including polymers, that permit visible light to pass therethrough. Front optically transparent plate 75 serves as a durable protective barrier between the outside environment and the operable components of ruggedized display panel 40. As discussed below, front optically transparent plate 75 cooperates with a gasket (175
When the front optically transparent plate 75 is made from non-quartz glass, the front optically transparent plate 75 blocks some ultra-violet (“UV”) radiation, principally with a wavelength of 320 nm and shorter, from reaching the operable portions of ruggedized display panel 40. Optionally, a UV reflecting layer (not illustrated) may be included on the front or rear surface of front optically transparent plate 75. For example, a UV reflecting layer on a non-quartz glass plate preferably reflects UV radiation with wavelengths between 400 nm and 320 nm to prevent them from reaching the operable portion of the ruggedized display panel 40.
The front surface of front optically transparent plate 75 is preferably not coated with an anti-reflective coating. The present inventors have realized that anti-reflective coatings tend to trap cleaning agents, such as solvents, commonly used to clean outdoor display devices, such as display device 5. When cleaning agents become trapped by the anti-reflective coating, smudges, smears, and other obstructions are commonly created that make viewing the display device difficult. Therefore, the present inventors prefer to micro-abrade, for example, by chemically etching the front surface of front optically transparent plate 75, so that the front surface scatters outside visible light to sufficiently break up or blur reflected images. Scattering reflected visible light helps prevent a reflected image from obscuring a projected image. Such scattering helps improve readability of the display device 5 under relatively high ambient light conditions or when a viewer is wearing white or other highly reflective clothing.
An IR reflective layer 80 is preferably included on the front optically transparent plate 75. IR reflective layer 80 is deposited onto the front or rear surface of the front optically transparent plate 75, preferably the rear. A suitable IR reflective layer 80 includes IR Blocker™ made by JDS Uniphase of Santa Rosa, Calif., vacuum deposited by e-beam evaporation on optically transparent plate 75 to a thickness of about 1 μm to about 5 μm. Other suitable materials may be used as well as other thin film deposition methods. Alternately, IR reflective layer 80 may be deposited on a substrate which is subsequently applied to front optically transparent plate 75.
IR reflective layer 80 is preferably included to help reduce heating of the display panel 90 by external radiation sources, such as the sun. Because IR radiation commonly comprises over half of the solar load, IR radiation can impose a significant solar load that heats outdoor devices such as display device 5. IR reflective layer 80 reflects some, or a majority, of the IR radiation before the IR radiation reaches the AMLCD panel 90 within the ruggedized display panel 40 to help prevent IR radiation from heating the AMLCD panel 90. Preferably, display device 5 operates in any full sun environment, including an environment including solar loads of approximately 1150 watts per square meter and ambient temperatures of approximately 50° C. With the addition of heaters (not illustrated), display device 5 preferably operates in ambient temperatures in a range of approximately −20° C. to 50° C.
Preferably, IR reflective layer 80 is terminated with an interface layer having an index of refraction to optically match, or substantially match, the index of refraction of an optical adhesive layer 85 that is placed over IR reflective layer 80. By matching, or substantially matching, the index of refraction of IR reflective layer 80 to the index of refraction of optical adhesive layer 85, reflection of visible light occurring at the boundary between IR reflective layer 80 and optical adhesive layer 85 is reduced. Optical adhesive layer 85 is preferably made from a two-part optically clear silicone and elastomer, such as commercially available optical adhesives manufactured by General Electric Company of Fairfield, Conn. Preferably, the optical adhesive 85 is relatively soft, for example with a Durometer hardness in the range of approximately 25 Shore A to approximately 40 Shore A. Other suitable optical adhesive materials having a similar or a different hardness, including thermally activated urethane or epoxy, light activated silicone and elastomer, urethane, or epoxy, may be used. When a two-part clear silicone and elastomer optical adhesive is used, the IR reflective layer 80 preferably terminates with an index of refraction in the range of 1.44 to 1.5.
In a preferred method for bonding front optically transparent plate 75 to the AMLCD panel 90, front optically transparent plate 75 is placed in a mold (not illustrated). Optical adhesive layer 85 is preferably poured over front optically transparent plate 75 and IR reflective layer 80, and is retained in place by the mold. AMLCD panel 90 is pressed into optical adhesive layer 85, preferably to remove all, or substantially all, air bubbles or other trapped air. Optical adhesive layer 85 is then thermally cured, for example at 45° C. for two hours. Alternately, AMLCD panel 90 may be placed in a mold and optical adhesive layer 85 poured over the AMLCD panel 90. Front optically transparent plate 75 is then pressed into the optical adhesive layer 85 before thermal curing. Optical adhesive layer 85 is preferably in the range of about 1,500 μm to 2,500 μm thick when cured.
When front optically transparent plate 75 and the AMLCD panel 90 are pressed together with the optical adhesive layer 85 in between, optical adhesive material extends beyond the boundary of the AMLCD panel 90. Preferably, the optical adhesive layer 85 is thermally cured, and the cured optical adhesive material that extends beyond the border of the AMLCD 90 is trimmed away. Alternately, the cured optical adhesive material that extends beyond the border of the AMLCD 90 may be left in place, especially if the bonding material 155 used to encase electronics associated with the AMLCD panel 90, as described below, has an index of refraction that substantially matches the index of refraction of the cured optical adhesive layer 85.
A display panel may include several components. In a preferred embodiment, display panel is an AMLCD panel 90 that includes a front polarizer 95, a front glass substrate 100, a rear glass substrate 105, and a rear polarizer 110. A liquid crystal is contained between the front glass substrate 100 and rear glass substrate 105. Thus, in a preferred embodiment, front optically transparent plate 75 is preferably bonded to front polarizer 95 of display panel 90 such that the optical adhesive layer 85 protects front polarizer 95 from the outside environment.
A dual brightness enhancing film 115 is preferably placed adjacent the rear polarizer 110. Dual brightness enhancing film 115 is preferably made of Vikuiti,™ manufactured by 3M of St. Paul, Minn., and may be laminated to rear polarizer 110, or simply placed next to rear polarizer 110 without any adhesive in between.
A rear optically transparent plate 120 is bonded to rear glass substrate 105 using an optical adhesive layer 125 that is preferably the same as, or similar to, optical adhesive layer 85. The front and rear optically transparent plates 75 and 120 and bonding adhesives thus preferably cover polarizers 95 and 110 to provide protection from humidity and other environmental conditions that can adversely affect the polarizers 95 and 110. Rear optically transparent plate 120 is preferably thinner than front optically transparent plate 75, for example, within a range of 1 to 5 mm thick. Preferably, optically transparent plates 120 and 75 are made from the same material.
Rear optically transparent plate 120 preferably has a slightly lesser width, that is the distance extending between the right-side frame 20 and the left-side frame 25 (
As illustrated in
Two common TFT control elements associated with the AMLCD panel 90 are the column drivers 130 and row drivers 135 which are commonly attached to a flexible circuit 140. Each flexible circuit 140 attaches to hundreds, or thousands, of conductive leads extending from the TFTs in the active matrix. The column drivers 130 and row drivers 135 receive electrical control signals from control driver electronics connected to the flex circuits 140, and in response, send electric currents over the conductive leads connected to each individual TFT to drive TFTs to activate or deactivate depending on where, and which color, light should shine through AMLCD panel 90. The column drivers 130 and row drivers 135 are essentially complex, intelligent on/off switches for the TFTs.
The flexible circuits 140 are commonly attached to other electronics associated with the AMLCD panel 90 such as a column driver board 145 or a row driver board 150. Column driver boards 145 and row driver boards 150 provide more complex logic circuits that receive video or image signals from a processor and route or create on/off commands for various TFTs to multiple column drivers 130 and row drivers 135. In other words, column driver boards 145 and row driver boards 150 receive video or image signals, and based on such signals decide which particular column driver 130 or row driver 135 should switch on or off which particular TFTs.
The present inventors have recognized that one drawback to using flex circuits 140 bearing column drivers 130 and row drivers 135 to connect between TFT leads and column driver boards 145 and row driver boards 150 is that the connections are fragile and need to be protected from environmental elements such as particles and water and against mechanical stresses, such as those induced during manufacture or transport, that could cause any of the electronic elements to become unattached. For indoor electronic displays, such protection is commonly provided by securing the flex circuits 140, column drivers 130, row drivers 135, column driver boards 145 and row driver boards 150 to the backlight 125 (
The present inventors have recognized that protective measures adequate for indoor environments are not adequate for outdoor environments. Hence, the AMLCD panel 90 is preferably contained between a front optically transparent plate 75 and a rear optically transparent plate 120 as described above.
The present inventors have also recognized that electronic components associated with an electronic display panel such as flex circuits 140, column drivers 130, row drivers 135, and, in some instances, column driver boards 145 and row driver boards 150, can be protected by encasing them in a resin or other suitable material between the same front optically transparent plate 75 and rear optically transparent plate 120 that provide environmental protection for the AMLCD panel 90. Preferably, flex circuits 140, column driver boards 145, and row driver boards 150 are arranged to extend substantially in the same plane as the rear glass substrate 105 and between the front optically transparent plate 75 and the rear optically transparent plate 120 as illustrated in
The flex circuits 140, column drivers 130, row drivers 135, column driver boards 145 and row driver boards 150 are preferably potted to the display panel 90 by filling, or substantially filling, the space between the front optically transparent plate 75 and the rear optically transparent plate 120 with a bonding material 155, such as the same thermally cured two-part silicone and elastomeric material that is used to bond the front optically transparent plate 75 to the AMLCD panel 90. Alternately, the bonding material 155 may include a resin, sealant, other optical adhesive, or other suitable material.
In one embodiment, sufficient bonding material 155 is used to encapsulate the flex circuits 140, column drivers 130, and row drivers 135, but not the column driver boards 145 or row driver boards 150. In another embodiment, sufficient bonding material 155 is used to encapsulate the flex circuits 140, column drivers 130, row drivers 135, column driver boards 145 and row driver boards 150, leaving the ribbon cables 160 (
By bonding the flex circuits 140, column drivers 130, row drivers 135, column driver boards 145 and row driver boards 150 to the front optically transparent plate 75 and, in some instances, between the front optically transparent plate 75 and the rear optically transparent plate 120, protection against mechanical shocks and stresses is provided to resist separation of the electronic components. Thus, in some embodiments bonding the front optically transparent plate 75 and the rear optically transparent plate 120 to the AMLCD panel 90 and potting the electronic components associated with the AMLCD panel 90 between the front optically transparent plate 75 and the rear optically transparent plate 120 provides environmental and mechanical protection independent of any housing. Potting the flex circuits 140, column drivers 130, row drivers 135, column driver boards 145 and row driver boards 150 to or between the front optically transparent plate 75 and the rear optically transparent plate 120 also eliminates the need to use a backlight structure, such as backlight 125 (
Advantageously, using a relatively soft bonding material 155 and a relatively soft optical adhesive layer 85 provides shock absorbing and distribution capabilities such that the magnitude of mechanical shocks and stresses imparted to components of the display device 5, including components of the ruggedized display panel 40, are lessened before reaching the AMLCD panel 90.
Ruggedized display panel 40 is retained in panel housing 10. In the preferred embodiment, each of the right-side frame 20, left-side frame 25, top frame 30, and bottom frame 35 include a channel 170 sized to receive and retain a gasket 175 and the front optically transparent plate 75 as illustrated in
In each of the right-side frame 20, left-side frame 25, top frame 30, and bottom frame 35 an extruded portion 180 includes a wall 185 that is spaced a sufficient distance from channel 170 to provide a rest for rear optically transparent plate 120. Preferably, a gasket 190 (
A second wall 195 provides a rest for diffuser 200 and keeps diffuser 200 spaced apart from ruggedized display panel 40. Diffuser 200 is preferably a material such as a sheet of acrylic plastic or other suitable light spreading or translucent polymer. However, any suitable diffuser material may be used.
In a preferred embodiment, the distance from the rear surface of rear optically transparent plate 120 to the front surface of diffuser 200 is 49 mm, but other distances may be used. The space between ruggedized display panel 40 and diffuser 200 creates a first airspace 205 (
Diffuser 200 is preferably removeably held in place and is not bonded to second wall 195. In a preferred embodiment, U-blocks 210 support diffuser 200 in place and pivoting tabs (211,
As illustrated in
Many current AMLCD electronic displays use CCFLs for a backlight because CCFLs generate relatively little heat compared to HCFLs, thus permitting a relatively thin electronic display by placing the backlight proximate the display panel without excessively heating the display panel. The present inventors have recognized that CCFLs are more expensive and delicate than HCFLs, CCFLs tend to burn out sooner, and that CCFLs require protection from particulate matter because CCFLs generate electric fields that attract particulate matter. If CCFLs are not housed in a relatively sealed housing, CCFLs, and potentially the entire backlight cavity, become coated with particulate matter. The present inventors have also recognized that HCFLs, while generating more heat than CCFLs, do not attract relatively large quantities of particulate matter. By making panel housing 10 easily openable with respect to backlight housing 15, for example, by unlatching a mechanical latch and swinging panel housing 10 away from backlight housing 15 on hinge 17, detaching panel housing 10 from backlight housing 15, or other suitable arrangement, the interior of the panel housing 10 and backlight housing 15 may easily be cleaned, thus reducing the need to seal the interiors of the housings 10 and 15 from the outside environment.
One advantage of embodiments including easily opening housings is that the backlight, diffuser, and display panel are preferably readily cleaned. Thus, air passages, described in detail below, preferably communicate with air outside the housing to provide cooling air for the display panel, backlight, and other electronics contained in the housing without worrying that too much dust or dirt will become trapped in the housing.
An exemplary embodiment that may readily be cleaned is illustrated in
In a preferred embodiment, spacing the lamps 225 away from ruggedized display panel 40, and interposing the first and second airspaces 205 and 220 between lamps 225 and ruggedized display panel 40, preferably thermally separates the lamps 225 from ruggedized display panel 40. Providing one or more airspaces helps thermally separate, or isolate, lamps 225 from ruggedized display panel 40 by changing the mode of heat transfer from primarily conduction (as when a backlight is proximate a display) to primarily convection. Convection is a less efficient mode of heat transfer, and thus helps thermally separate, or isolate, lamps 225 from ruggedized display 40. Additionally, air flowing through the first and second airspaces 205 and 220 moves heat from the lamps 225, for example, to the top of backlight housing 15 and out through air outlet openings 70 as described below.
In other embodiments, a single airspace, such as airspace 220, is provided between a backlight, such as lamps 225, and a diffuser, such as diffuser 200. Air is preferably moved through the single airspace, for example, as described below, to remove heat from the backlight without such heat significantly reaching a display panel, such as display panel 90. Alternate embodiments include only an airspace between the diffuser and the display panel, and air is preferably moved through the airspace between the diffuser and the display panel. In yet other embodiments a first airspace between the display panel and the diffuser and a second airspace between the diffuser and the backlight are included. Air may be moved through either or both of the first and second airspaces.
Fans 235 operate to draw air from outside backlight housing 15 through the fans 235 and through the air intake openings 65 (
Backlight housing 15 preferably includes an outer lip 245 sized to mate with a display casing (not illustrated). For example, backlight housing 15 and outer lip 245 may be sized to fit within a typical casing for a Quick Service Restaurant (“QSR”) light box and mate with a supporting structure within the QSR light box to hold the display device 5 in place. A display casing thus provides at least some protection from environmental elements for fans 235 and other components mounted at the rear of backlight housing 15. Alternately, backlight housing 15 may cover fans 235 and the display device 5 may be mounted on a post or by the panel housing 10.
Panel housing 10 preferably includes a circumferential gasket 250 (
First airspace 205A, second airspace 220A, and third airspace 230A preferably communicate with one another to permit outside air 11A to conduct heat away from various components of the display 5A. For example, outside air 11A preferably follows a serpentine path that sequentially contacts flowing outside air 11A with display panel 40A, lamps 225A, and electronic devices such as ballast 227A. Display panel 40A, lamps 225A, and electronic devices such as ballast 227A preferably either form a boundary or wall of an airspace 205A, 220A, or 230A or are located within an airspace 205A, 220A, or 230A.
In a preferred arrangement, outside air 11A is directed by fans 235A into first airspace 205A such that outside air 11A flows through first airspace 205A in an upward direction, in other words, in a direction opposite the force of gravity. First airspace 205A preferably communicates with second airspace 220A at an upper end or portion of first and second airspaces 205A and 220A. Outside air 11A is preferably redirected from first airspace 205A to second airspace 220A, for example, as illustrated at 12A. Preferably, outside air 11A moves past or over display panel 40A, thus removing heat from display panel 40A via conduction, convection, or both. After moving through the first airspace 205A, outside air 11A is preferably warmer than it was before entering the panel housing 10A and the backlight housing 15A because of heat transferred from the display panel 40A to the outside air 11A.
Outside air 11A is preferably directed from the first airspace 205A to the second airspace 220A to move through the second airspace 220A. Preferably, outside air 11A flows through the second airspace 220A in a downward direction, in other words, in the direction of the force of gravity. As the outside air 11A moves through the second airspace 220A, the outside air 11A preferably moves past or over the lamps 225A, thus removing heat from the lamps 225A via conduction, convection, or both, without such heat removed from the lamps 225A significantly reaching ruggedized display panel 40A. As discussed above, outside air 11A is warmed by removing heat from display panel 40A. Preferably, outside air 11A that has been warmed by display panel 40A causes less of a temperature gradient, or differential, along the length of lamps 225A when compared to a temperature gradient, or differential, caused by outside air, such as outside air introduced directly from outside a housing, such as panel housing 10 and backlight housing 15 (
Outside air 11A is preferably directed from the second airspace 220A to the third airspace 230A to move through the third airspace 230A, for example, as illustrated at 13A. Preferably, outside air 11A flows through the third airspace 230A in an upward direction, in other words, in the direction opposite the force of gravity. As air moves through the third airspace 230A, the air is heated primarily by ballast 227A and any other electric components, such as video driver 240A, contained within the third airspace 230A. Alternately, one or more of fans 235A may be arranged to direct outside air 11A directly from outside housing 10A, 15A into the third airspace 230A to co-mingle with air that previously moved through the first and second airspaces 205A and 220A. Thus, the moving air helps remove heat from electric components without such heat significantly reaching ruggedized display panel 40A. The heated air moving through the first, second, and third airspaces 205A, 220A, and 230A preferably exits panel housing 10A and backlight housing 15A via air exit 71A, for example, as illustrated at 14A. The positive pressure created by the air moving through panel housing 10A and backlight housing 15A preferably substantially prevents particulate matter, insects, liquids and other foreign matter from entering the panel housing 10A and backlight housing 15A through the air exit 71A.
Backlight housing 15A preferably includes a protective backing 246A that includes suitable structure to inhibit liquid, such as rain, from flowing into backlight housing 15A. For example, air inlet 66A and air exit 71A may include louvers as illustrated in
Panel housing 10A preferably includes a circumferential gasket, such as gasket 250 (
It will be obvious to those having skill in the art that many changes may be made to the details of the above-described embodiments without departing from the underlying principles of the invention. The scope of the present invention should, therefore, not be limited to the above specific examples.
This application claims priority under 35 U.S.C. §119(e) to U.S. Patent App. Nos. 61/228,155 titled “Field Serviceable Display Device” and filed on Jul. 23, 2009, and 61/357,927 titled “Field Serviceable Display Device” and filed on Jun. 23, 2010, which are both fully incorporated by reference herein
Number | Date | Country | |
---|---|---|---|
61228155 | Jul 2009 | US | |
61357927 | Jun 2010 | US |