The present invention relates to a field winding support member for a salient pole rotor.
Hitherto, in salient-pole rotary electric machines, it has been publicly known to support field windings of a rotor of a salient-pole electric machine by a push-up device in order to prevent the occurrence of defects caused by shrinkage of an insulating material between respective layers of the field windings of the rotor due to change over the years (see, for example, the following Patent Publications 1 and 2, etc.).
Such push-up device has a structure that supports the field windings by disposing electrical insulation plates, such as high-strength phenol plates, bakelite plates, glass epoxy laminated plates, etc., on respective undersurfaces of the field windings and by pressing the field windings outwardly in radial direction via these electrical insulation plates.
Patent Publication 1: JP Utility Model Application Publication Heisei 3-77251.
Patent Publication 2: JP Utility Model Application Publication Show a 61-126757.
However, there has been a problem to cause a risk that, when electrical insulation plates are disposed on the undersurfaces of the field windings, this electrical insulation material acts as a heat insulation material to prevent cooling by ventilation cooling and cause heat generation of the coils.
Thus, it is considered that the electrical insulation plates are abolished, and a part of the push-up device to be in abutment with the rotor field windings is constructed by an electrical insulation material, thereby directly supporting the field windings by the push-up device.
On the other hand, in general, according to a standard such as IEC60664-1, etc., the rotor field windings are driven at an effective voltage of 630 V or lower that is equivalent to low-voltage rotary machines, and 10 mm is recommended as the minimum creepage distance, although its electrical insulation creepage distance also varies depending on the surface fouling degree of the material or the electrical insulation material. Therefore, as the creepage distance to the rotor field winding, an electrical insulation distance in consideration of safety factor in this minimum creepage distance is generally secured.
From such thing, it is an object of the present invention to provide a field winding support member for a salient pole rotor, which is capable of supporting the rotor field windings, while securing a desirable electrical insulation creepage distance, even if the electrical insulation plates on the undersurfaces of the rotor field windings have been abolished.
A field winding support member for a salient pole rotor according to a first invention for solving the above-mentioned task is a field winding support member for a salient pole rotor, the salient pole rotor being such that a rotary shaft is equipped with a rotor core comprising a rotor yoke, magnetic pole projection parts and magnetic pole head parts and that a field winding is disposed on a peripheral surface of each magnetic pole projection part, the field winding support member for the salient pole rotor pressing the field windings, which are adjacent to each other in a circumferential direction, outwardly in a radial direction, the field winding support member for the salient pole rotor being characterized by comprising:
a coil support body part that is made of an electrical insulation material and is provided with abutment surfaces respectively directly abutting radial inner surfaces of the adjacent field windings and with an insertion hole formed along a radial direction of the rotary shaft;
a bolt that has a base end part fixed to the rotor yoke and a tip end part projecting outwardly in a radial direction, the tip end part being inserted into the insertion hole of the coil support body part; and
an elastic body that is interposed between the rotor yoke and the coil support body part and presses the coil support body part toward the field windings,
wherein the coil support body part is formed, on an outside part of the insertion hole in a radial direction of the rotary shaft, with a spot-faced part having a larger diameter than the insertion hole.
Furthermore, a field winding support member for a salient pole rotor according to a second invention for solving the above-mentioned task is characterized in that the electrical insulation material is resin.
A field winding support member for a salient pole rotor according to the present invention is capable of supporting the rotor field windings, while securing a desirable electrical insulation creepage distance, even if the electrical insulation plates on the undersurfaces of the rotor field windings have been abolished.
In the following, a field winding support member for a salient pole rotor according to the present invention is explained by using the drawings.
By using
As shown in
A rotary shaft 21, a rotor yoke 22 and magnetic pole projection parts 23 of the salient pole rotor 20 are integrally formed. For example, they are formed by cutting out of a massive magnetic material. The rotary shaft 21 becomes a rotation center of the salient pole rotor 20 and is rotatably supported at its both end portions in the axial direction by bearings (not shown in the drawings). The rotor yoke 22 is integrally formed at a center part of the rotary shaft 21 in the axial direction in a manner to extend in the axial direction to cover the periphery of the rotary shaft 21. The magnetic pole projection parts 23 are integrally formed at positions of an outer peripheral part of the rotor yoke 22 that are 90 degrees apart in the circumferential direction. That is, the magnetic pole projection parts 23 project outwardly from the outer peripheral part of the rotor yoke 22 in the radial direction and are disposed at even intervals in the circumferential direction.
A field winding (field coil) 24 is disposed on a peripheral surface of the magnetic pole projection part 23 with an interposal of an electrical insulation plate (not shown in the drawings). The field winding 24 is constructed by alternately stacking platy conductors and platy insulation members in the radial direction.
A magnetic pole head part 25 is fixed onto a top surface (an outer end surface in the radial direction) of the magnetic pole projection part 23 by a plurality of bolts (not shown in the drawings). A gap (gap of several millimeters in the radial direction) is maintained between an outer peripheral surface of the magnetic pole head part 25 and an inner peripheral surface of the stator 10.
A magnetic pole core is formed by the magnetic pole projection parts 23 and the magnetic pole head parts 25. Furthermore, a rotor core is formed by the rotor yoke 22, the magnetic pole projection parts 23, and the magnetic pole head parts 25.
An electric insulation plate 27 is provided between a top surface (an outer end surface in the radial direction) of the field winding 24 and an inner peripheral surface (an inner end surface in the radial direction) of the magnetic pole head part 25.
Then, between the two adjacent field windings 24 in the circumferential direction in the present embodiment, a coil support (field winding support member) 28 is arranged that pushes up the field windings 24 by a direct abutment against their inner peripheral sides (inner end surfaces in the radial direction).
As shown in
As shown in
Furthermore, the above-mentioned insertion hole 281a is provided at a center portion of the coil support body part 281 to be along the radial direction of the rotary shaft 21. Then, on an upper bottom side (an outer side in the radial direction of the rotary shaft 21) of this insertion hole 281a, there is provided a spot-faced part 281b that has a larger diameter than the insertion hole 281a. In the present embodiment, as shown in
The field winding support member of the salient pole rotor according to the present embodiment constructed as above is provided with the spot-faced part 281b. With this, as shown in
That is, in the case of abolishing the electrical insulation plates on the undersurfaces of the field windings 24 without providing the spot-faced part 281b, like a coil support 28′ shown in
1: a salient-pole rotary electric machine;
Number | Date | Country | Kind |
---|---|---|---|
2017-045799 | Mar 2017 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/008484 | 3/6/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/164093 | 9/13/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4990810 | Newhouse | Feb 1991 | A |
10097059 | Imura | Oct 2018 | B2 |
20170126098 | Furukawa | May 2017 | A1 |
Number | Date | Country |
---|---|---|
52-98902 | Aug 1977 | JP |
54-17005 | Feb 1979 | JP |
61-126757 | Aug 1986 | JP |
3-77251 | Aug 1991 | JP |
7-163078 | Jun 1995 | JP |
Number | Date | Country | |
---|---|---|---|
20200044508 A1 | Feb 2020 | US |