Embodiments generally relate to cooling systems for electronic displays.
Electronic displays are sometimes used in outdoor environments or other areas where the surrounding temperatures may be high or there may be other sources of heat such as solar loading causing the temperatures within the display to rise. However, some portions of the display can be difficult to cool as simply ingesting ambient air into some portions of the display can introduce dust and contaminates into sensitive portions of the display, which can lead to premature failures.
Exemplary embodiments provide a figure eight closed loop circulating gas path which defines a center channel for the closed loop of circulating gas. A pair of open loop ambient air channels may be placed on opposite sides of the center channel, in order to remove heat from at least the center channel and the closed loop circulating gas. One or more open loop ambient air pathways may pass through the figure eight but do not allow the circulating gas and the ambient air to mix. In some embodiments, the open loop ambient air pathway travels along a rear surface of the electronic display. In some embodiments, the circulating gas pathways contain a front channel placed in front of the electronic display, a rear channel placed behind the electronic display, and a center channel placed between the front and rear channels. Pass-through apertures may be placed within the path of the circulating gas and/or the ambient air to allow the paths of the two gaseous matters to cross without allowing them to mix with one another.
The foregoing and other features and advantages of the present invention will be apparent from the following more detailed description of the particular embodiments, as illustrated in the accompanying drawings.
A better understanding of an exemplary embodiment will be obtained from a reading of the following detailed description and the accompanying drawings wherein identical reference characters refer to identical parts and in which:
The invention is described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Embodiments of the invention are described herein with reference to illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the invention. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
The rear open loop channel 11 is preferably positioned immediately adjacent to the center channel 13, and allows open loop air 10 to flow through, thereby removing heat from the center channel 13 (and/or the closed loop circulating gas 13 contained within) and the rear channel 30. The rear channel 30 is positioned near the rear of the display and may contain various electronic components 35 for operating the overall display assembly, fans, or the display 160 itself.
In an exemplary embodiment, the front channel 18, center channel 13, and rear channel 30 are in sealed gaseous communication with each other. In other words, these channels do not permit closed loop circulating gas 20 to substantially escape or to allow ambient air or open loop air to enter these channels. Also in an exemplary embodiment, open loop air 10 and 15 is simply ambient air surrounding the display assembly. However, in some embodiments the open loop air 10 and 15 may be treated in some way (ex. filtered, air conditioned, or pre-cooled in some way) prior to being ingested into the display assembly. In this particular embodiment, the closed loop fan 100 is positioned within the rear channel 30, although this is not required. All that is required is that the closed loop fan 100 is positioned to force the closed loop circulating gas 20 through the front channel 18, center channel 13, and rear channel 30. The closed loop circulating gas 20 can be any gaseous matter that preferably does not contain large amounts of particulate. However, it does not have to be pure gas of any type; simple clean air works fine with the exemplary embodiments.
It should be noted that subchannels 300 and 305 may not be required in some embodiments as the center channel 13 could be completely open. It should also be noted that other embodiments may use the subchannels 300 and 305 but would not allow a single subchannel to communicate gaseously with both the front channel 18 and the rear channel 30. In other words, when viewing the end of the assembly as shown in
Although there is preferably gaseous communication throughout the figure eight, subchannel 300 directs the flow of closed loop circulating gas 20 through rear channel 30 and center channel 13 while subchannel 305 directs the flow of closed loop circulating gas 20 through the center channel 13 and front channel 18. In this preferred embodiment, the subchannels 300 and 305 allow separate flow paths for closed loop circulating gas 20 within the center channel 13, without requiring additional fans. These separate flow paths which cross through the center and loop around the display in a single continuous flow, define the figure eight path for the closed loop circulating gas 20 (seen also in
In an exemplary embodiment, the rear channel 30 would share a plate with the rear open loop channel 11, such that one side of the plate would be within the rear channel 30 while the opposing side of the plate would be within the rear open loop channel 11. This arrangement is illustrated in
Having shown and described a preferred embodiment of the invention, those skilled in the art will realize that many variations and modifications may be made to affect the described invention and still be within the scope of the claimed invention. Additionally, many of the elements indicated above may be altered or replaced by different elements which will provide the same result and fall within the spirit of the claimed invention. It is the intention, therefore, to limit the invention only as indicated by the scope of the claims.
This application is a continuation of U.S. patent application Ser. No. 14/326,059 filed on Jul. 8, 2014, which claims priority to U.S. Provisional Application No. 61/843,706 filed on Jul. 8, 2013, both of which are herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4093355 | Kaplit et al. | Jun 1978 | A |
4593978 | Mourey et al. | Jun 1986 | A |
4634225 | Haim et al. | Jan 1987 | A |
4748765 | Martin | Jun 1988 | A |
4763993 | Vogeley et al. | Aug 1988 | A |
4921041 | Akachi | May 1990 | A |
4952783 | Aufderheide et al. | Aug 1990 | A |
4952925 | Haastert | Aug 1990 | A |
5029982 | Nash | Jul 1991 | A |
5088806 | McCartney et al. | Feb 1992 | A |
5247374 | Terada | Sep 1993 | A |
5282114 | Stone | Jan 1994 | A |
5293930 | Pitasi | Mar 1994 | A |
5432526 | Hyatt | Jul 1995 | A |
5535816 | Ishida | Jul 1996 | A |
5559614 | Urbish et al. | Sep 1996 | A |
5621614 | O'Neill | Apr 1997 | A |
5657641 | Cunningham et al. | Aug 1997 | A |
5748269 | Harris et al. | May 1998 | A |
5765743 | Sakiura et al. | Jun 1998 | A |
5767489 | Ferrier | Jun 1998 | A |
5808418 | Pitman et al. | Sep 1998 | A |
5818010 | McCann | Oct 1998 | A |
5818694 | Daikoku et al. | Oct 1998 | A |
5835179 | Yamanaka | Nov 1998 | A |
5864465 | Liu | Jan 1999 | A |
5869818 | Kim | Feb 1999 | A |
5869919 | Sato et al. | Feb 1999 | A |
5903433 | Gudmundsson | May 1999 | A |
5991153 | Heady et al. | Nov 1999 | A |
6003015 | Kang et al. | Dec 1999 | A |
6007205 | Fujimori | Dec 1999 | A |
6089751 | Conover et al. | Jul 2000 | A |
6104451 | Matsuoka et al. | Aug 2000 | A |
6157432 | Helbing | Dec 2000 | A |
6181070 | Dunn et al. | Jan 2001 | B1 |
6191839 | Briley et al. | Feb 2001 | B1 |
6198222 | Chang | Mar 2001 | B1 |
6211934 | Habing et al. | Apr 2001 | B1 |
6215655 | Heady et al. | Apr 2001 | B1 |
6351381 | Bilski et al. | Feb 2002 | B1 |
6392727 | Larson et al. | May 2002 | B1 |
6417900 | Shin et al. | Jul 2002 | B1 |
6428198 | Saccomanno et al. | Aug 2002 | B1 |
6473150 | Takushima et al. | Oct 2002 | B1 |
6493440 | Gromatsky et al. | Dec 2002 | B2 |
6504713 | Pandolfi et al. | Jan 2003 | B1 |
6535266 | Nemeth et al. | Mar 2003 | B1 |
6628355 | Takahara | Sep 2003 | B1 |
6714410 | Wellhofer | Mar 2004 | B2 |
6727468 | Nemeth | Apr 2004 | B1 |
6825828 | Burke et al. | Nov 2004 | B2 |
6839104 | Taniguchi et al. | Jan 2005 | B2 |
6885412 | Ohnishi et al. | Apr 2005 | B2 |
6886942 | Okada et al. | May 2005 | B2 |
6891135 | Pala et al. | May 2005 | B2 |
6909486 | Wang et al. | Jun 2005 | B2 |
6943768 | Cavanaugh et al. | Sep 2005 | B2 |
6961108 | Wang et al. | Nov 2005 | B2 |
7015470 | Faytlin et al. | Mar 2006 | B2 |
7059757 | Shimizu | Jun 2006 | B2 |
7083285 | Hsu et al. | Aug 2006 | B2 |
7157838 | Thielemans et al. | Jan 2007 | B2 |
7161803 | Heady | Jan 2007 | B1 |
7190587 | Kim et al. | Mar 2007 | B2 |
7209349 | Chien et al. | Apr 2007 | B2 |
7212403 | Rockenfeller | May 2007 | B2 |
7259964 | Yamamura et al. | Aug 2007 | B2 |
7269023 | Nagano | Sep 2007 | B2 |
7284874 | Jeong et al. | Oct 2007 | B2 |
7452121 | Cho et al. | Nov 2008 | B2 |
7457113 | Kumhyr et al. | Nov 2008 | B2 |
7480140 | Hara et al. | Jan 2009 | B2 |
7535543 | Dewa et al. | May 2009 | B2 |
7591508 | Chang | Sep 2009 | B2 |
7602469 | Shin | Oct 2009 | B2 |
D608775 | Leung | Jan 2010 | S |
7667964 | Kang et al. | Feb 2010 | B2 |
7752858 | Johnson et al. | Jul 2010 | B2 |
7753567 | Kang et al. | Jul 2010 | B2 |
7800706 | Kim et al. | Sep 2010 | B2 |
7813124 | Karppanen | Oct 2010 | B2 |
7903416 | Chou | Mar 2011 | B2 |
7995342 | Nakamichi et al. | Aug 2011 | B2 |
8004648 | Dunn | Aug 2011 | B2 |
8035968 | Kwon et al. | Oct 2011 | B2 |
8081465 | Nishiura | Dec 2011 | B2 |
8102173 | Merrow | Jan 2012 | B2 |
8142027 | Sakai | Mar 2012 | B2 |
8208115 | Dunn | Jun 2012 | B2 |
8223311 | Kim et al. | Jul 2012 | B2 |
8241573 | Banerjee et al. | Aug 2012 | B2 |
8248784 | Nakamichi et al. | Aug 2012 | B2 |
8254121 | Lee et al. | Aug 2012 | B2 |
8269916 | Ohkawa | Sep 2012 | B2 |
8270163 | Nakamichi et al. | Sep 2012 | B2 |
8274622 | Dunn | Sep 2012 | B2 |
8274789 | Nakamichi et al. | Sep 2012 | B2 |
8300203 | Nakamichi et al. | Oct 2012 | B2 |
8320119 | Isoshima et al. | Nov 2012 | B2 |
8351014 | Dunn | Jan 2013 | B2 |
8358397 | Dunn | Jan 2013 | B2 |
8369083 | Dunn et al. | Feb 2013 | B2 |
8373841 | Dunn | Feb 2013 | B2 |
8379182 | Dunn | Feb 2013 | B2 |
8400608 | Takahashi et al. | Mar 2013 | B2 |
8472174 | Idems et al. | Jun 2013 | B2 |
8472191 | Yamamoto et al. | Jun 2013 | B2 |
8482695 | Dunn | Jul 2013 | B2 |
8497972 | Dunn et al. | Jul 2013 | B2 |
8649170 | Dunn et al. | Feb 2014 | B2 |
8649176 | Okada et al. | Feb 2014 | B2 |
8654302 | Dunn et al. | Feb 2014 | B2 |
8678603 | Zhang | Mar 2014 | B2 |
8693185 | Dunn et al. | Apr 2014 | B2 |
8700226 | Schuch et al. | Apr 2014 | B2 |
8711321 | Dunn et al. | Apr 2014 | B2 |
8749749 | Hubbard | Jun 2014 | B2 |
8755021 | Hubbard | Jun 2014 | B2 |
8760613 | Dunn | Jun 2014 | B2 |
8767165 | Dunn | Jul 2014 | B2 |
8773633 | Dunn et al. | Jul 2014 | B2 |
8804091 | Dunn et al. | Aug 2014 | B2 |
8823916 | Hubbard et al. | Sep 2014 | B2 |
8854572 | Dunn | Oct 2014 | B2 |
8854595 | Dunn | Oct 2014 | B2 |
8879042 | Dunn | Nov 2014 | B2 |
8988647 | Hubbard | Mar 2015 | B2 |
9030641 | Dunn | May 2015 | B2 |
9089079 | Dunn | Jul 2015 | B2 |
9119325 | Dunn et al. | Aug 2015 | B2 |
9119330 | Hubbard et al. | Aug 2015 | B2 |
9173322 | Dunn | Oct 2015 | B2 |
9173325 | Dunn | Oct 2015 | B2 |
9282676 | Diaz | Mar 2016 | B1 |
9285108 | Dunn et al. | Mar 2016 | B2 |
9313917 | Dunn et al. | Apr 2016 | B2 |
9370127 | Dunn | Jun 2016 | B2 |
9448569 | Schuch et al. | Sep 2016 | B2 |
9451060 | Bowers et al. | Sep 2016 | B1 |
9451733 | Dunn et al. | Sep 2016 | B2 |
9456525 | Yoon et al. | Sep 2016 | B2 |
9470924 | Dunn et al. | Oct 2016 | B2 |
9500896 | Dunn et al. | Nov 2016 | B2 |
9516485 | Bowers et al. | Dec 2016 | B1 |
9549490 | Hubbard | Jan 2017 | B2 |
9594271 | Dunn et al. | Mar 2017 | B2 |
9613548 | DeMars | Apr 2017 | B2 |
9622392 | Bowers et al. | Apr 2017 | B1 |
9629287 | Dunn | Apr 2017 | B2 |
9648790 | Dunn et al. | May 2017 | B2 |
9723765 | DeMars | Aug 2017 | B2 |
20010001459 | Savant et al. | May 2001 | A1 |
20010019454 | Tadic-Galeb et al. | Sep 2001 | A1 |
20020033919 | Sanelle et al. | Mar 2002 | A1 |
20020101553 | Enomoto et al. | Aug 2002 | A1 |
20020126248 | Yoshia | Sep 2002 | A1 |
20020148600 | Bosch et al. | Oct 2002 | A1 |
20020149714 | Anderson et al. | Oct 2002 | A1 |
20020154255 | Gromatzky et al. | Oct 2002 | A1 |
20020164944 | Haglid | Nov 2002 | A1 |
20020167637 | Burke et al. | Nov 2002 | A1 |
20030007109 | Park | Jan 2003 | A1 |
20030020884 | Okada et al. | Jan 2003 | A1 |
20030043091 | Takeuchi et al. | Mar 2003 | A1 |
20030104210 | Azumi et al. | Jun 2003 | A1 |
20030128511 | Nagashima et al. | Jul 2003 | A1 |
20030214785 | Perazzo | Nov 2003 | A1 |
20040012722 | Alvarez | Jan 2004 | A1 |
20040035558 | Todd et al. | Feb 2004 | A1 |
20040036834 | Ohnishi et al. | Feb 2004 | A1 |
20040103570 | Ruttenberg | Jun 2004 | A1 |
20040105159 | Saccomanno et al. | Jun 2004 | A1 |
20040165139 | Anderson et al. | Aug 2004 | A1 |
20040223299 | Ghosh | Nov 2004 | A1 |
20050012039 | Faytlin et al. | Jan 2005 | A1 |
20050012722 | Chon | Jan 2005 | A1 |
20050062373 | Kim et al. | Mar 2005 | A1 |
20050073632 | Dunn et al. | Apr 2005 | A1 |
20050073639 | Pan | Apr 2005 | A1 |
20050134525 | Tanghe et al. | Jun 2005 | A1 |
20050134526 | Willem et al. | Jun 2005 | A1 |
20050213950 | Yoshimura | Sep 2005 | A1 |
20050229630 | Richter et al. | Oct 2005 | A1 |
20050237714 | Ebermann | Oct 2005 | A1 |
20050276053 | Nortrup et al. | Dec 2005 | A1 |
20050286131 | Saxena et al. | Dec 2005 | A1 |
20060012958 | Tomioka et al. | Jan 2006 | A1 |
20060018093 | Lai et al. | Jan 2006 | A1 |
20060034051 | Wang et al. | Feb 2006 | A1 |
20060056994 | Van Lear et al. | Mar 2006 | A1 |
20060082271 | Lee et al. | Apr 2006 | A1 |
20060092348 | Park | May 2006 | A1 |
20060125998 | Dewa et al. | Jun 2006 | A1 |
20060132699 | Cho et al. | Jun 2006 | A1 |
20060177587 | Ishizuka et al. | Aug 2006 | A1 |
20060199514 | Kimura | Sep 2006 | A1 |
20060209266 | Utsunomiya | Sep 2006 | A1 |
20060260790 | Theno et al. | Nov 2006 | A1 |
20060262079 | Seong et al. | Nov 2006 | A1 |
20060266499 | Choi et al. | Nov 2006 | A1 |
20060283579 | Ghosh et al. | Dec 2006 | A1 |
20070019419 | Hafuka et al. | Jan 2007 | A1 |
20070030879 | Hatta | Feb 2007 | A1 |
20070047239 | Kang et al. | Mar 2007 | A1 |
20070065091 | Hinata et al. | Mar 2007 | A1 |
20070076431 | Atarashi et al. | Apr 2007 | A1 |
20070103863 | Kim | May 2007 | A1 |
20070103866 | Park | May 2007 | A1 |
20070115686 | Tyberghien | May 2007 | A1 |
20070139929 | Yoo et al. | Jun 2007 | A1 |
20070140671 | Yoshimura | Jun 2007 | A1 |
20070151274 | Roche et al. | Jul 2007 | A1 |
20070151664 | Shin | Jul 2007 | A1 |
20070171353 | Hong | Jul 2007 | A1 |
20070206158 | Kinoshita et al. | Sep 2007 | A1 |
20070211205 | Shibata | Sep 2007 | A1 |
20070212211 | Chiyoda et al. | Sep 2007 | A1 |
20070217221 | Lee et al. | Sep 2007 | A1 |
20070237636 | Hsu | Oct 2007 | A1 |
20070267174 | Kim | Nov 2007 | A1 |
20080055534 | Kawano | Mar 2008 | A1 |
20080076342 | Bryant et al. | Mar 2008 | A1 |
20080099193 | Aksamit et al. | May 2008 | A1 |
20080148609 | Ogoreve | Jun 2008 | A1 |
20080209934 | Richards | Sep 2008 | A1 |
20080218446 | Yamanaka | Sep 2008 | A1 |
20080236005 | Isayev et al. | Oct 2008 | A1 |
20080267790 | Gaudet et al. | Oct 2008 | A1 |
20080283234 | Sagi et al. | Nov 2008 | A1 |
20080285290 | Ohashi et al. | Nov 2008 | A1 |
20090009729 | Sakai | Jan 2009 | A1 |
20090086430 | Kang et al. | Apr 2009 | A1 |
20090120629 | Ashe | May 2009 | A1 |
20090126906 | Dunn | May 2009 | A1 |
20090126907 | Dunn | May 2009 | A1 |
20090126914 | Dunn | May 2009 | A1 |
20090135365 | Dunn | May 2009 | A1 |
20090147170 | Oh et al. | Jun 2009 | A1 |
20090154096 | Iyengar et al. | Jun 2009 | A1 |
20090174626 | Isoshima et al. | Jul 2009 | A1 |
20090244472 | Dunn | Oct 2009 | A1 |
20090279240 | Karppanen | Nov 2009 | A1 |
20090306820 | Simmons et al. | Dec 2009 | A1 |
20100060861 | Medin | Mar 2010 | A1 |
20100079949 | Nakamichi et al. | Apr 2010 | A1 |
20100162747 | Hamel et al. | Jul 2010 | A1 |
20100171889 | Pantel et al. | Jul 2010 | A1 |
20100182562 | Yoshida et al. | Jul 2010 | A1 |
20100220249 | Nakamichi et al. | Sep 2010 | A1 |
20100226091 | Dunn | Sep 2010 | A1 |
20100232107 | Dunn | Sep 2010 | A1 |
20100238394 | Dunn | Sep 2010 | A1 |
20100321887 | Kwon et al. | Dec 2010 | A1 |
20110001898 | Mikubo et al. | Jan 2011 | A1 |
20110013114 | Dunn et al. | Jan 2011 | A1 |
20110019363 | Vahlsing et al. | Jan 2011 | A1 |
20110051071 | Nakamichi et al. | Mar 2011 | A1 |
20110058326 | Idems et al. | Mar 2011 | A1 |
20110075361 | Nakamichi et al. | Mar 2011 | A1 |
20110083460 | Thomas et al. | Apr 2011 | A1 |
20110083824 | Rogers | Apr 2011 | A1 |
20110085301 | Dunn | Apr 2011 | A1 |
20110114384 | Sakamoto et al. | May 2011 | A1 |
20110116000 | Dunn et al. | May 2011 | A1 |
20110122162 | Sato et al. | May 2011 | A1 |
20110141724 | Erion | Jun 2011 | A1 |
20110261523 | Dunn et al. | Oct 2011 | A1 |
20120006523 | Masahiro et al. | Jan 2012 | A1 |
20120012295 | Kakiuchi et al. | Jan 2012 | A1 |
20120012300 | Dunn et al. | Jan 2012 | A1 |
20120014063 | Weiss | Jan 2012 | A1 |
20120020114 | Miyamoto et al. | Jan 2012 | A1 |
20120038849 | Dunn et al. | Feb 2012 | A1 |
20120044217 | Okada et al. | Feb 2012 | A1 |
20120106081 | Hubbard | May 2012 | A1 |
20120206687 | Dunn et al. | Aug 2012 | A1 |
20120249402 | Kang | Oct 2012 | A1 |
20120255704 | Nakamichi | Oct 2012 | A1 |
20120274876 | Cappaert et al. | Nov 2012 | A1 |
20120284547 | Culbert et al. | Nov 2012 | A1 |
20130170140 | Dunn | Jul 2013 | A1 |
20130201685 | Messmore et al. | Aug 2013 | A1 |
20130258659 | Erion | Oct 2013 | A1 |
20130279154 | Dunn | Oct 2013 | A1 |
20130294039 | Chao | Nov 2013 | A1 |
20140085564 | Hendren et al. | Mar 2014 | A1 |
20140111758 | Dunn et al. | Apr 2014 | A1 |
20140113540 | Dunn et al. | Apr 2014 | A1 |
Number | Date | Country |
---|---|---|
2011248190 | May 2011 | AU |
2702363 | May 2005 | CN |
1408476 | Apr 2004 | EP |
1647766 | Apr 2006 | EP |
1762892 | Mar 2007 | EP |
1951020 | Jul 2008 | EP |
2225603 | Sep 2010 | EP |
2370987 | Oct 2011 | EP |
2603831 | Jun 2013 | EP |
2801888 | Nov 2014 | EP |
2909829 | Aug 2015 | EP |
3020260 | May 2016 | EP |
3117693 | Jan 2017 | EP |
2402205 | Dec 2004 | GB |
402062015 | Mar 1990 | JP |
402307080 | Dec 1990 | JP |
3153212 | Jul 1991 | JP |
6082745 | Mar 1994 | JP |
8115788 | May 1996 | JP |
8194437 | Jul 1996 | JP |
8339034 | Dec 1996 | JP |
H09246766 | Sep 1997 | JP |
11160727 | Jun 1999 | JP |
H11296094 | Oct 1999 | JP |
2001209126 | Aug 2001 | JP |
2002158475 | May 2002 | JP |
2004053749 | Feb 2004 | JP |
2005017556 | Jan 2005 | JP |
2000131682 | May 2005 | JP |
2005134849 | May 2005 | JP |
2005265922 | Sep 2005 | JP |
2006513577 | Apr 2006 | JP |
2007322718 | May 2006 | JP |
2006148047 | Jun 2006 | JP |
2006163217 | Jun 2006 | JP |
2007003638 | Jan 2007 | JP |
09307257 | Nov 2007 | JP |
2008010361 | Jan 2008 | JP |
2008292743 | Dec 2008 | JP |
2010024624 | Feb 2010 | JP |
200366674 | Nov 2004 | KR |
20050033986 | Apr 2005 | KR |
200401354 | Nov 2005 | KR |
20060016469 | Feb 2006 | KR |
100666961 | Jan 2007 | KR |
1020070070675 | Apr 2007 | KR |
1020070048294 | Aug 2007 | KR |
101764381 | Jul 2017 | KR |
2513043 | Apr 2014 | RU |
2005079129 | Aug 2005 | WO |
WO2007116116 | Oct 2007 | WO |
WO2008050660 | May 2008 | WO |
WO2009065125 | May 2009 | WO |
WO2009065125 | May 2009 | WO |
WO2009135308 | Nov 2009 | WO |
WO2010007821 | Feb 2010 | WO |
WO2010080624 | Jul 2010 | WO |
WO2011069084 | Jun 2011 | WO |
WO2011072217 | Jun 2011 | WO |
WO2011140179 | Nov 2011 | WO |
WO2011150078 | Dec 2011 | WO |
WO2012021573 | Feb 2012 | WO |
WO2012024426 | Feb 2012 | WO |
WO2014149773 | Sep 2014 | WO |
WO2014150036 | Sep 2014 | WO |
WO2015168375 | Nov 2015 | WO |
WO2016102982 | Jun 2016 | WO |
WO2016133852 | Aug 2016 | WO |
WO2017152166 | Sep 2017 | WO |
Entry |
---|
Itsenclosures, Product Catalog, 2009, 48 pages. |
Itsenclosures, Standard Product Data Sheet, 2011, 18 pages. |
Sunbritetv, All Weather Outdoor LCD Television Model 4610HD, 2008, 1 page. |
Sunbritetv, Introduces Two New All-Weather Outdoor Televisions InfoComm 2008, 7 pages. |
Itsenclosures, Viewstation, 2017, 16 pages. |
Novitsky, Driving LEDs versus CCFLs for LCD backlighting, Nov. 12, 2007, 6 pages. |
Federman, Cooling Flat Panel Displays, 2011, 4 pages. |
Zeeff, T.M., EMC analysis of an 18″ LCD monitor, 2000, 1 page. |
Wankhede, Evaluation of Cooling Solutions for Outdoor Electronics, Sep. 17-19, 2007, 6 pages. |
Bureau of Ships Navy Department, Guide Manual of Cooling methods for Electronic Equipment, Mar. 31, 1955, 212 pages. |
Scott, Cooling of Electronic Equipment, Apr. 4, 1947, 119 pages. |
Sergent, Thermal Management Handbook for Electronic Assemblies, Aug. 14, 1998, 190 pages. |
Steinberg, Cooling Techniques for Electronic Equipment First Edition, 1980, 255 pages. |
Steinberg, Cooling Techniques for Electronic Equipment Second Edition, 1991, 299 pages. |
Yen, Thermal Management of Microelectronic Equipment, Oct. 15, 2002, 148 pages. |
Civiq, Invalidity Contentions, Jan. 24, 2018, 51 pages. |
Civiq, Invalidity Claim Chart, Appendix I, Mar. 22, 2018, 4 pages. |
Civiq, Invalidity Claim Charts, Appendix A-Appendix D, Jan. 24, 2018, 51 pages. |
Civiq, Invalidity Claim Charts, Appendix F to H, Mar. 22, 2018, 18 pages. |
Civiq Smartscapes LLC. V Manufacturing Resources International, Inc., Petition for Inter Partes Review of U.S. Pat. No. 8,854,572 including Declaration of Greg Blonder in Support of Petition, Curriculum Vitae of Greg Blonder and Prosecution History of U.S. Pat. No. 8,854,572, Petition filed Mar. 14, 2018, 427 pages. |
Yung, Using Metal Core Printed Circuit Board as a Solution for Thermal Management article, 2007, 5 pages. |
Mentley, David E., State of Flat-Panel Display Technology and Future Trends, Proceedings of the IEEE, Apr. 2002, vol. 90, No. 4, pp. 453-459. |
Civiq Smartscapes LLC. V Manufacturing Resources International, Inc., Defendant's Amended Answer and Countercliams to Plaintiff's First Amended Complaint, Filed Apr. 24, 2018, 240 pages. |
Number | Date | Country | |
---|---|---|---|
20170023823 A1 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
61843706 | Jul 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14326059 | Jul 2014 | US |
Child | 15289563 | US |