This invention relates generally to processing data, and more particularly to systems and methods for protecting data.
Virtualized computing environments are becoming increasingly popular due to their efficient use of hardware, ease of IT-management, and reduced operating costs. As with physical computing environments, data in virtualized computing environments also needs to be protected.
Protecting data in virtualized computing environments presents challenges that are not encountered in physical computing environments. Conventional methods to protect data in virtual environments typically include taking an image of a virtual disk and storing the image in a remote location.
However, such methods may take considerable time and resources to complete. As the amount of data that needs to be backed up or restored increases, the problem of efficiently protecting data is becoming more profound.
There is a need, therefore, for an improved method, article of manufacture, and apparatus for protecting data.
The present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
A detailed description of one or more embodiments of the invention is provided below along with accompanying figures that illustrate the principles of the invention. While the invention is described in conjunction with such embodiment(s), it should be understood that the invention is not limited to any one embodiment. On the contrary, the scope of the invention is limited only by the claims and the invention encompasses numerous alternatives, modifications, and equivalents. For the purpose of example, numerous specific details are set forth in the following description in order to provide a thorough understanding of the present invention. These details are provided for the purpose of example, and the present invention may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the invention has not been described in detail so that the present invention is not unnecessarily obscured.
It should be appreciated that the present invention can be implemented in numerous ways, including as a process, an apparatus, a system, a device, a method, or a computer readable medium such as a computer readable storage medium or a computer network wherein computer program instructions are sent over optical or electronic communication links. Applications may take the form of software executing on a general purpose computer or be hardwired or hard coded in hardware. In this specification, these implementations, or any other form that the invention may take, may be referred to as techniques. In general, the order of the steps of disclosed processes may be altered within the scope of the invention.
An embodiment of the invention will be described with reference to a data storage system in the form of a storage system configured to store files, but it should be understood that the principles of the invention are not limited to this configuration. Rather, they are applicable to any system capable of storing and handling various types of objects, in analog, digital, or other form. Although terms such as document, file, object, etc. may be used by way of example, the principles of the invention are not limited to any particular form of representing and storing data or other information; rather, they are equally applicable to any object capable of representing information.
It should be noted that although
By utilizing a virtual environment manager and a deduplicated data repository, backing up image of virtual images may be made more efficient. Virtual environment managers, such as vCenter, may take snapshots of VMs under their supervision. In some embodiments, these are Virtual Machine Disk (VMDK) files. Once the snapshot has been created, a backup engine may begin moving the snapshot to the deduplicated data repository. Due to the nature of the deduplicated data repository, redundant blocks of data do not need to be transmitted. For example, certain VMWare configuration files, such as .vmx files, rarely change in between backups. Since this data is usually the same, there is no need to re-transmit the data on subsequent backups, such as incremental backups. Further, since the virtual environment manager created a snapshot of a VM, the backed up image may also be used to start a VM directly. In other words, the deduplicated data repository contains a workable VM. In some embodiments, the backup engine may connect directly to the ESX server to receive VMDK files and other data required for a backup.
The deduplicated data repository and virtual environment manager also allow for efficient incremental backups. In addition to not transmitting redundant data on subsequent backups, the incremental backup may be treated as a whole image, as opposed to only a delta with conventional techniques. Virtual environment managers may keep track of which blocks, or data, changed during a time period. In some embodiments, this may be vCenter's Change Block Tracking (CBT) feature. Using this information, a backup engine may only transmit the changed blocks. However, instead of just storing the changed blocks, the features of a deduplicated data repository may be utilized.
Deduplicated data repositories may replicate data efficiently. Since replicated data is by definition redundant data, pointers to the same block(s) of data are created. Thus, whether a deduplicated data repository holds one copy of data, two copies of data, or twenty copies of data, the amount actually stored is almost the same (save the space required for pointers, and other overhead, etc.). Further, since these “duplicate” copies of data are small, it is relatively fast to generate them (as compared to copying data). This is especially true when the data set is large. For example, it may take little time to create pointers to a set of data that is 100 GB large, but it will take a considerable amount of time and computing resources to create an actual copy of that 100 GB data. In some embodiments, Data Domain Boost, a product offered by EMC Corporation, may be used to efficiently replicate data in a deduplicated data repository.
Thus, instead of just storing the changed blocks in the deduplicated data repository, a replicate data set can be created, and the changed blocks can be written to the replicate data set. This results in an independent full image, not just a delta. Further, the original data set stored in the deduplicated data repository (e.g the original the replica was based off of) has not been modified, and may still be used for recovery processes.
A VM may typically include several VMDK files. Once a VM or VMDK has been backed up to a deduplicated data repository, a user may want to retrieve one or more individual files from the backup. Typically, this has been accomplished by mounting the image, and browsing it as a local file system for the particular files(s). However, this may be an inefficient way of recovering individual files. For example, if a VMDK file 10 GB large, but a user only wanted a 1 KB file from it, mounting the entire VMDK would be a waste resources. Further, the user would have to wait for a 10 GB image to mount before being able to brose for the 1 KB file.
Instead of mounting the VMDK, the enhanced techniques described herein parse a VMDK to index files in it. A VMDK can be broken down to two sections: A VMDK header, and a file system. The file system has the same layout as a normal file system under the native operating system. For example, if a VMDK included a Windows XP operating system, the file system would be same as a normal Windows XP operating system (e.g. NTFS file system).
Since a VMDK header is well defined, it is possible to skip over the VMDK header and go straight to the file system. If the file system is a NTFS file system, the Master File Table (MFT) can be parsed to identify every file in the NTFS file system. In some embodiments, this includes reading the MFT and getting file attributes, and for non-resident files, getting an extent list. Resident files are files that reside in the MFT. Non-resident files are files that reside outside the MFT.
In some embodiments, a backup engine parses the full MFT, processes each file record in the table, and saves the file information in its database or index. When parsing the MFT, the backup engine saves the following information for each file record: File type (e.g. resident vs. non-resident), file record number (used to access the data for a resident file), time stamp, size of file, and a file extent list (used to access the data for non-resident files). In some embodiments, the index may be saved in the deduplicated data repository. In some embodiments, the index may be saved on the VM for ease of access. In some embodiments, the index may be stored locally to the backup engine. By pre-indexing the files during a backup process, a user will be able to identify individual files after the backup engine has completed the backup process. Thus, when a user wants to recover an individual file, a backup or recovery engine does not need to mount the entire VMDK to find the file. Rather, the index may be used to locate where in the VMDK the individual file resides. Since the deduplicated data repository has a full image of a VMDK file, the backup may also be parsed based on the information in the index (e.g. whether the individual file is a resident or nonresident file, and where in the file system the file is, etc.). In some embodiments, after isolating the part of the VMDK the individual file resides in, the backup or recovery engine may reconstruct the file on the deduplicated data repository, or may push it to an ESX server or individual VMs.
In some embodiments, if a user wanted to recover multiple resident files, it may be preferable to recover the whole MFT in memory and then recover each file based on file record number. If a user wanted to recover non-resident files, the backup engine may recover the file data extent list to determine where in the VMDK the files are, and use the deduplicated data repository's replication ability to quickly recover the file.
In some embodiments, it may not be preferable to parse the entire MFT. For example, when processing an incremental backup, it may be determined that very little data has changed (e.g. CBT identifies only a few changed blocks). However, the actually data set may be very large and contain a large number of files. Accordingly, the MFT may also be very large. It may be inefficient to parse the entire MFT when it can be inferred that only a few files have changed based on the CBT. Using the enhanced techniques described herein, it may be preferable to parse only the section of the MFT that changed.
In some embodiments, the deduplicated data repository is disk based. A disk may be preferable to tape in some embodiments, such as in the case of disaster recovery. For example, suppose a VM in a vSphere went down. Assuming the VM had been backed up to the disk based deduplicated data repository, a user may configure the ESX server via NFS to enable ESX access to all data on the repository. In other words, the storage in
Further, if a user did not wish to alter the original backup by performing operations on it, the replication features of the repository may be used to create a copy of the full backup. The copy may then be used to start the VM instead of the original, and all changes made during the operation of the VM will be made to the copy. The user may keep, delete, or migrate the new VM as needed after the VM has been registered with the virtual environment manager (vCenter).
In some embodiments, a database may be created for a virtual backup. The database may be used to assist in keeping track of files in the backup. Suppose a file system has the following structure:
File 1 and File 2 are in the path /C:\Dir1. There is nothing in /C:\Dir2\, and there is only File 1 in /D:\Dir1. In some embodiments, a key/value database is used. In the above example, a key/value database may look like:
The “Value” may also include other file attribute information, such as reference flag, data block information (e.g. start block number, total number of blocks in the file, etc.), access control, and resident/non-resident file flag, among others.
Version info includes information on the freshness of a file. For example, suppose during a full virtual backup, the file CONFIG.SYS was backed up. An entry in the database may look like:
Suppose another backup occurred at time t2, and CONFIG.SYS was not changed. Since CONFIG.SYS was not changed, the database would not need to be modified. However, if CONFIG.SYS was changed, the database would need to be updated. A database may look like the following in some embodiments:
To determine if a file changed, change block tracking (CBT) as described herein may be used. However, a file does not typically correlate 1:1 to a block. Typically, a block may be used by several files. For example, in some embodiments, the minimum CBT block size is 64 k, and MTF entries are 1 k each. Thus, a single block may potentially be used by 64 different files. If only one file is actually changed, the other 63 files may be considered candidates for “modified files” since CBT only keeps track of changes on the block level, and the block, as a whole, has changed due to the one modified file.
In order to keep the database accurate (e.g. not report 63 modified files when they are not actually modified), the timestamps may be compared. Using the above example, suppose at t2, the second backup's CBT indicated that CONFIG.SYS may have been modified. If the second CONFIG.SYS's timestamp was the same as the first CONFIG.SYS's timestamp, then CONFIG.SYS did not change between the two backups, and its database entry may be updated to reflect the “changed block.” The following data entry illustrates how an entry may be updated in accordance with some embodiments.
When a file is added after a backup, the MFT will change and the CBT will notice this change. The file will be compared against the database, which currently does not have an entry for the file, and added to the database. Using the above example, suppose NEW_CONFIG.SYS was created after t1 but before t2. At time t2, when the second backup commences, the CBT will indicate a change in a MFT block. One of the files in the changed MFT block is NEW_CONFIG.SYS. Since the database does not have any entry for this file, a new entry will be created. In some embodiments, the entry may be:
Deleting a file will also affect the MFT and the CBT will notice this change. However, since the MFT no longer has a record of the deleted file, there will be no indication of this file during a subsequent backup. As discussed above, a “no indication” may mean that a file has not changed since the last backup (e.g. CBT did not detect a change, thus MFT did not show a changed file). In order to detect a deleted file, the previous backup is read to get the file list in CBT. Each file in the modified MFT list is checked for its reference flag. If the reference flag is set to the current version, then the file is present (e.g. not deleted). If the reference flag is not set, then there is no reference in the current backup and the file is not present (e.g. deleted). After determining a file has been deleted, its database entry would need to be modified. Using the example above, suppose NEW_CONFIG.SYS was deleted at time t3.
For the sake of clarity, the processes and methods herein have been illustrated with a specific flow, but it should be understood that other sequences may be possible and that some may be performed in parallel, without departing from the spirit of the invention. Additionally, steps may be subdivided or combined. As disclosed herein, software written in accordance with the present invention may be stored in some form of computer-readable medium, such as memory or CD-ROM, or transmitted over a network, and executed by a processor.
All references cited herein are intended to be incorporated by reference. Although the present invention has been described above in terms of specific embodiments, it is anticipated that alterations and modifications to this invention will no doubt become apparent to those skilled in the art and may be practiced within the scope and equivalents of the appended claims. More than one computer may be used, such as by using multiple computers in a parallel or load-sharing arrangement or distributing tasks across multiple computers such that, as a whole, they perform the functions of the components identified herein; i.e. they take the place of a single computer. Various functions described above may be performed by a single process or groups of processes, on a single computer or distributed over several computers. Processes may invoke other processes to handle certain tasks. A single storage device may be used, or several may be used to take the place of a single storage device. The disclosed embodiments are illustrative and not restrictive, and the invention is not to be limited to the details given herein. There are many alternative ways of implementing the invention. It is therefore intended that the disclosure and following claims be interpreted as covering all such alterations and modifications as fall within the true spirit and scope of the invention.
This application is a continuation of co-pending U.S. patent application Ser. No. 13/251,189, entitled FILE DELETION DETECTION IN KEY VALUE DATABASES FOR VIRTUAL BACKUPS filed Sep. 30, 2011 which is incorporated herein by reference for all purposes, which is a continuation in part of co-pending U.S. patent application Ser. No. 13/174,666, entitled EFFICIENT BACKUP OF DATA filed Jun. 30, 2011 which is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5649196 | Woodhill et al. | Jul 1997 | A |
5926821 | Hirose | Jul 1999 | A |
6560615 | Zayas | May 2003 | B1 |
6631386 | Arun et al. | Oct 2003 | B1 |
6668262 | Cook | Dec 2003 | B1 |
7039663 | Federwisch | May 2006 | B1 |
7523343 | Leis | Apr 2009 | B2 |
7707165 | Jiang | Apr 2010 | B1 |
7734595 | Margolus | Jun 2010 | B2 |
7831789 | Per | Nov 2010 | B1 |
7890469 | Maionchi | Feb 2011 | B1 |
7962528 | Pasupathy et al. | Jun 2011 | B1 |
8041904 | Ergan | Oct 2011 | B2 |
8458392 | Gao | Jun 2013 | B2 |
8572045 | Shah | Oct 2013 | B1 |
20020055942 | Reynolds | May 2002 | A1 |
20030220903 | Mont | Nov 2003 | A1 |
20040267822 | Curran | Dec 2004 | A1 |
20040267835 | Zwilling et al. | Dec 2004 | A1 |
20040268068 | Curran | Dec 2004 | A1 |
20060184587 | Federwisch | Aug 2006 | A1 |
20060259527 | Devarakonda | Nov 2006 | A1 |
20060259587 | Ackerman | Nov 2006 | A1 |
20070198659 | Lam | Aug 2007 | A1 |
20070226443 | Giampaolo | Sep 2007 | A1 |
20070250671 | Lyon | Oct 2007 | A1 |
20070266037 | Terry | Nov 2007 | A1 |
20080208927 | Chikusa et al. | Aug 2008 | A1 |
20080307192 | Sinclair | Dec 2008 | A1 |
20090006496 | Shoens | Jan 2009 | A1 |
20090271562 | Sinclair | Oct 2009 | A1 |
20100005259 | Prahlad | Jan 2010 | A1 |
20100076934 | Pershin | Mar 2010 | A1 |
20100077165 | Lu | Mar 2010 | A1 |
20100094825 | Kelso et al. | Apr 2010 | A1 |
20100262586 | Rosikiewicz | Oct 2010 | A1 |
20100306171 | Antos et al. | Dec 2010 | A1 |
20110078681 | Li | Mar 2011 | A1 |
20110213765 | Cui et al. | Sep 2011 | A1 |
20110218967 | Sliger | Sep 2011 | A1 |
20110307657 | Timashev | Dec 2011 | A1 |
20120016839 | Yueh | Jan 2012 | A1 |
20120117342 | Karonde | May 2012 | A1 |
20120131072 | Fuentes, II | May 2012 | A1 |
20120143825 | Boehm et al. | Jun 2012 | A1 |
20120311279 | Hong | Dec 2012 | A1 |
20130007732 | Fries et al. | Jan 2013 | A1 |
Entry |
---|
Bernstein et al. (Microsoft Repository Version 2 and the Open Information Model, Information Systems, vol. 24, No. 2, pp. 71-98, 1999). |
Number | Date | Country | |
---|---|---|---|
20150046401 A1 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13251189 | Sep 2011 | US |
Child | 14466200 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13174666 | Jun 2011 | US |
Child | 13251189 | US |