Stage lighting systems may be extremely complex. A typical system may include a console which controls a number of different lighting systems. Each lighting system may be a self-contained system, or may be a computer-based box that controls an external system. Many complicated effects are often carried out during the show. The complicated effects require knowledge of the files that actually exist within each lamp.
The present system defines a special file system and discovery mechanism for automatically determining the content of certain files in a display system of a type adapted for digital control of an external projector.
A block diagram of the basic system is shown in
The actual light 120 being controlled by the control line 102 is an M BOX™ light made by Light and Sound Design, Ltd. The M BOX is formed of a computer part 122 which is programmed with suitable programs as described herein, a user interface 124, an external memory source 126, and a display 128. In a preferred embodiment, a keyboard switch or KVM switch 125 is used so that the user interface 124 and display 128 may be used in common for all of a multiplicity of different computer units 122,116 & 118.
The computer part 122 also includes its own internal memory 130, which stores both programs which are used for image processing, and also stores prestored gobos and effects to be used by the light. For example, the memory 130 may store video clips, as well as a number of different shapes, and may store specified libraries from different gobo manufacturers. The gobo shapes may be used to shape the outer shape of the light beam being projected. In an embodiment, the final effect produced by the light may be a combination of a number of different layers, and the shape of the layer may also be controlled by the images stored in memory 130.
The computer part 122 also includes a processor shown as CPU 132, and a video card 134. All of these may be off-the-shelf items. The CPU 132 operates based on the programs stored in memory 130 to produce a video output using video card 134. The video output 136 is connected to an external projector 140. In an embodiment, this projector 140 may be a projector which is digitally controllable, which is to say that each of a plurality of digital bits forming the image is separately controllable for brightness, color and other aspects such as duty cycle. For example, the projector 140 may be a digital micromirror based device or DMD, also referred to as a digital light processor based device. The projector produces an output effect 145 which is used for part of the show. For example, the effect 145 may be projected onto the stage.
As explained above, there be may be a number of computer units 122 controlled by the common user interface 124 and display 128, and also controlled by the ethernet control signal 102. In this embodiment, two additional computer units 116 and 118 are shown, each also controlling external projectors 117, 119 to produce other lighting effects.
In operation, the CPU 132 operates according to a stored program to carry out certain operations based on the basic shapes and effects which are stored in the memory 130. For example, the CPU 132 typically controls a number of different layers collectively forming the image which is used to control the projector. Each of these layers may define shape, color and movement. The movements can be rotations or can be more complicated movements. One layer may cover any other layer or may add to or subtract from any of the other layers. The combined images, as controlled in this way, form a composite image 136 which is used to control the projector.
The images may be stored in memory as libraries, or may be part of external memory 126 that is added to the libraries. The CPU 132, however, needs to know which images it can use. Accordingly, the CPU executes the routine shown in
At 200, the device looks for its configuration file. The configuration file defines which kinds of files to look for in the system. Typical files may be files of type “gobo”, type “media”, as well as more conventional types such as JPEG and MPEG files may be used. In addition, the user can specify different types of files. The type of gobo in the type “media” are special files for use with the M BOX system. The “gobo” file comprises compiled code representing an effect of a gobo, which may comprise an image which is compiled to include a certain effect.
At 205, the processor searches all the memory media which may include memory 130, as well as external memory 126, for all files of the specified types. This search may use an indexing technique for faster results. For example, the indexing technique may index all files on the memory 130 during spare time of the computer 122. Any file which is added after the index, of course, needs to be searched separately and otherwise the system simply searches the index. A similar indexing technique may be used for external memory 126 by using a serial number of the external memory; that is, by using a unique identifying code referring to the removable memory. The external memory may be a removable memory such as a memory stick or like nonvolatile memory, or a CD or DVD drive.
At 210, the CPU makes a list of all the found files, and arranges them in a specified hierarchy. In one preferred hierarchy, a hyperlinked list, for example, in XML, is formed. The list may show the basic overall categories such as gobos, media, and others. Clicking on any item on the list may produce a sublist. Under the gobos, there is a sublist for numbered gobos, and other gobos. The basic gobos in the library may be named according to a 16-bit gobo number which uniquely identifies the gobo as part of the library. However, gobos may also be named as different things, hence the external gobos may be other gobos. Similarly, media may be numbered in a similar way, and numbered media and other media may be separately identified. Clicking on any item, such as the numbered gobos, can bring up the list of gobos or may bring up a sublist of the different gobos.
The file names associated with the gobos may also include MetaTag information, and that MetaTag information may be viewable as part of the XML hierarchy. In addition, the hierarchy shown in 210 may optionally include thumbnails or may include the light showing certain information about the gobos in the media. For example, for gobos, the thumbnail may show the basic shape of the gobo. The thumbnails may be automatically produced as a preview, or may be entered by a user as part of the meta tag information. The other information, which is shown as part of the hierarchy, may be any other feature which can be used to effect the output video produced at 134. For example, different effects which can be added to gobos can be compiled and stored as a file. The different effects may be specified types of rotation, shaping, and other such effects.
Basically any effect which can be used on an image can be compiled as one of the other effects.
The Meta Tag information and/or thumbnail information can include some information about the different gobos which are used. This hierarchy of files is displayed to the user at 215, and may be also stored in a specified location so that the user can call up the XML file at any point. In this way, a user can find the different files which exist on the system.
In operation, the user/operator can select any of the files for part of the show. In addition, a show can be tested to determine if all the files needed for that show are available. The testing is carried out by entering a test mode which is shown in
In an embodiment, the file name may also be alphanumerically placed on the default screen. The operation then continues to show the remainder of the show with the default screen in place of the missing file. A user reviewing this, however, may be able to determine, at a glance, that the default screen is present and therefore that a file is missing.
Although only a few embodiments have been disclosed in detail above, other modifications are possible. For example, other types of default screens may be used. In addition, other files besides those mentioned may be used, and also this system may be usable in other types of lighting instruments. For example, this system has been described as being used in a system in which the computer box which controls the image that is formed is separate from the projector that actually projects the image. However, the computer box 122 and projector 140 may be combined into a single device, such as the icon M device. In addition, while the above describes the projector as being a DMD based projector, other types of controlled projectors may also be used, including projectors based on grating light valves and the like.
All such modifications are intended to be encompassed within the following claims, in which:
This application is a continuation application of and claims priority to U.S. patent application Ser. No. 11/861,182 filed Sep. 25, 2007, which is a continuation application of and claims priority to U.S. patent application Ser. No. 10/913,022, filed Aug. 6, 2004, which claims benefit of the priority of U.S. Provisional Application Ser. No. 60/493,862, filed Aug. 8, 2003, and entitled “File System for a Stage Lighting Array System.”
Number | Name | Date | Kind |
---|---|---|---|
5061997 | Rea et al. | Oct 1991 | A |
5769527 | Taylor et al. | Jun 1998 | A |
5812422 | Lyons | Sep 1998 | A |
5940049 | Hinman et al. | Aug 1999 | A |
5969485 | Hunt | Oct 1999 | A |
5983280 | Hunt | Nov 1999 | A |
6029122 | Hunt | Feb 2000 | A |
6175771 | Hunt et al. | Jan 2001 | B1 |
6369835 | Lin | Apr 2002 | B1 |
6429867 | Deering | Aug 2002 | B1 |
6538797 | Hunt | Mar 2003 | B1 |
6548967 | Dowling et al. | Apr 2003 | B1 |
6549326 | Hunt et al. | Apr 2003 | B2 |
6597132 | Hunt et al. | Jul 2003 | B2 |
6674955 | Matsui et al. | Jan 2004 | B2 |
6765544 | Wynne | Jul 2004 | B1 |
6774584 | Lys et al. | Aug 2004 | B2 |
6801353 | Hunt et al. | Oct 2004 | B2 |
6891656 | Hunt | May 2005 | B2 |
6894443 | Hunt et al. | May 2005 | B2 |
6922679 | Walkins | Jul 2005 | B2 |
6961922 | Knutson | Nov 2005 | B1 |
7020390 | Maeda et al. | Mar 2006 | B2 |
7057797 | Hunt | Jun 2006 | B2 |
7139617 | Morgan et al. | Nov 2006 | B1 |
7148632 | Berman et al. | Dec 2006 | B2 |
7161562 | Hunt | Jan 2007 | B1 |
7181112 | Harris | Feb 2007 | B2 |
7185274 | Rubin et al. | Feb 2007 | B1 |
7194701 | Stavely et al. | Mar 2007 | B2 |
7199805 | Langmacher et al. | Apr 2007 | B1 |
7301662 | Mifune | Nov 2007 | B2 |
7355637 | Uchino | Apr 2008 | B2 |
7369262 | Masumoto et al. | May 2008 | B2 |
7693368 | Harris | Apr 2010 | B2 |
7764026 | Dowling et al. | Jul 2010 | B2 |
20020078221 | Blackwell et al. | Jun 2002 | A1 |
20020181070 | Hewlett | Dec 2002 | A1 |
20030076322 | Ouzts et al. | Apr 2003 | A1 |
20040160198 | Hewlett et al. | Aug 2004 | A1 |
20040252486 | Krause | Dec 2004 | A1 |
20050057543 | Hunt et al. | Mar 2005 | A1 |
20050083487 | Hunt et al. | Apr 2005 | A1 |
20050094635 | Hunt | May 2005 | A1 |
20050108643 | Schybergson et al. | May 2005 | A1 |
20050190985 | Hunt | Sep 2005 | A1 |
20050200318 | Hunt et al. | Sep 2005 | A1 |
20050206328 | Hunt | Sep 2005 | A1 |
20050207163 | Hunt | Sep 2005 | A1 |
20050213335 | Hunt | Sep 2005 | A1 |
20050275626 | Mueller et al. | Dec 2005 | A1 |
20060064716 | Sull et al. | Mar 2006 | A1 |
20060187532 | Hewlett et al. | Aug 2006 | A1 |
20060227297 | Hunt | Oct 2006 | A1 |
20070183152 | Hauck et al. | Aug 2007 | A1 |
20100188019 | Harris | Jul 2010 | A1 |
20110115413 | Erickson et al. | May 2011 | A1 |
Number | Date | Country |
---|---|---|
2003068473 | Mar 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20110122629 A1 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
60493862 | Aug 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11861182 | Sep 2007 | US |
Child | 13018218 | US | |
Parent | 10913022 | Aug 2004 | US |
Child | 11861182 | US |