File system management

Information

  • Patent Grant
  • 10303652
  • Patent Number
    10,303,652
  • Date Filed
    Wednesday, July 6, 2016
    8 years ago
  • Date Issued
    Tuesday, May 28, 2019
    5 years ago
  • CPC
  • Field of Search
    • US
    • 707 821000
    • CPC
    • G06F17/30115
    • G06F17/30179
    • H04L9/3213
  • International Classifications
    • G06F7/00
    • G06F17/30
    • G06F16/16
    • G06F16/178
    • H04L9/32
    • Disclaimer
      This patent is subject to a terminal disclaimer.
Abstract
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for file system management. In one aspect, a method includes receiving a request at a kernel to perform a file operation on a particular file; identifying a flag bit associated with the file; invoking user space file handler to perform particular action when the flag bit is set; determining whether notification that action has been performed by file handler is received; and allowing the file operation on the file when notification is received.
Description
BACKGROUND

This specification relates to file systems.


Requests for particular file operations, for example to read a file, are sent to the operating system kernel (e.g., using a system call). The kernel manages resources (e.g., system hardware as well as particular information such as a database record) available to perform the operations. The kernel allocates resources for performing the requested operation. Conventionally, resources can only be used by a single process at a time. When two processes are running, they can each be waiting for an event of the other to occur in order to proceed. For example, the event that each process is waiting for can be the release of a respective recourse currently possessed by the other process. However, since both processes are waiting for the other, neither will cause the event. This results in a deadlock.


SUMMARY

This specification describes technologies relating to file system management.


In general, one innovative aspect of the subject matter described in this specification can be embodied in methods that include the actions of receiving a request at a kernel to perform a file operation on a particular file; identifying a flag bit associated with the file; invoking user space file handler to perform particular action when the flag bit is set; determining whether notification that action has been performed by file handler is received; and allowing the file operation on the file when notification is received. Other embodiments of this aspect include corresponding systems, apparatus, and computer programs recorded on computer storage devices, each configured to perform the operations of the methods.


These and other embodiments can each optionally include one or more of the following features. Invoking the user space file handler includes holding the operation and setting a time for the file handler to perform the action without setting any resource locks. Expiration of the set time without a request for further time results in the kernel performing the file operation. The file operation is a read file operation and the file handler requests the file data from a network location. The file operation is a modify file operation and the file handler copies the file prior to performing the modify file operation being performed. The method further includes identifying i-node information for the file, where the i-node information includes one or more flag bits. The method further includes when the flag bit is set, accessing extended attribute information associated with the file to identify special file handling operation to be performed by file handler.


Particular embodiments of the subject matter described in this specification can be implemented so as to realize one or more of the following advantages. Techniques are provided for invoking user space handlers for kernel space events. As a result, file operations are also intercepted before they are performed. A hold on a request can be initiated while a user space handler is invoked without setting any locks. Thus, deadlocks can be avoided. Invoking user space handlers provides greater flexibility in performing operations than in the kernel space, for example, initiating network connections to retrieve data. Special file handling can be identified for files by examining i-node flags. Using an i-node flag to identify special file handling provides a quick check and reduces input/output (I/O) operations.


The details of one or more embodiments of the subject matter described in this specification are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of an example system.



FIG. 2 is an example diagram of kernel space interactions.



FIG. 3 is a flow diagram of an example process for performing file operations.



FIG. 4 is an example system architecture.





Like reference numbers and designations in the various drawings indicate like elements.


DETAILED DESCRIPTION

When a file operation request is received at the kernel, for example, as a system call to read a file or to modify a file (write), a determination is made as to whether additional operations are to be performed before allowing the requested file operation. If additional operations are to be performed, the kernel institutes a hold on the file operation, without reserving any resources to the request (e.g., no locks), and sets a timeout timer. An extended attribute of the file identifies special file handling to be performed on the file. A corresponding user space file handler is requested to perform one or more actions within the time provided by the timer. When the timer expires, the hold is released and the requested resources are allocated for performing the requested file operation.



FIG. 1 is a block diagram of an example system 100. The system 100 includes a user device 102 that can communicate with one or more network locations 106 through a network 104.


The user device 102 can represent various forms of digital computing devices, for example, laptops, desktops, workstations, personal digital assistants, tablet computers, and other mobile devices (e.g., smartphones, mobile phones). The network 104 can be, for example, a local area network (LAN), wide area network (WAN), the Internet, or a combination thereof. Communication through the network 104 can be performed using one or more wired, wireless, or a combination of connections. The network locations 106 can be other computing devices, remote storage locations, servers, or other data repositories accessible by the user device 102.


The user device 102 includes both a kernel space 110 and user space 108. In particular, an operating system typically segregates virtual memory into the kernel space 110 and the user space 108. The kernel space 110 is reserved for running the kernel, kernel extensions, and device drivers. The user space 108 includes the memory area where user mode applications work. The kernel represents a bridge between applications and the actual data processing done at the hardware level. The kernel's responsibilities include managing the system's resources. Particular operations can be performed in the user space that cannot be performed in the kernel space and vice versa. For example, network connections can be made in user space but not in kernel space.


In response to a request, for example, to perform a file modification or a file open, the kernel can invoke one or more file handlers in the user space 108 to perform particular actions prior to assigning resources in response to the request. The user space handler can perform operations including opening network connections in order to request data from one or more network locations 106 through the network 104.



FIG. 2 is an example diagram of kernel space interactions 200. A file operation request is received by the kernel 204 (e.g., from a user space application). Based on an analysis of the request, the kernel holds the request and invokes a user space handler 206 to perform one or more actions (e.g., according to a token sent to the user space file handler 206). In particular, the kernel can read an extended attribute 208 associated with the file to identify the particular file operations to be performed, e.g., prior to allowing the requested file operation to proceed. The kernel does not place a lock on any resources. The kernel further can set a timer in which the user space handler 206 has to perform the one or more actions or request additional time to perform the one or more actions.


The user space handler 206 performs the one or more actions and sends the token back to the kernel 204 indicating that the actions have been completed. Alternatively, the user space handler 206 can send a request for more time. The kernel 204 can increase or reset the timer in response to the request for more time. Once notified of the completed action, the kernel 204 releases the hold and assigns resources for performing the requests file operation.


No locks are placed by the kernel 204. Therefore, if the timer runs out without receiving notification or a request for time from the user space handler 206, the hold is released by the kernel 204 and resources are allocated for attempting to perform the requested file operation, after which control returns to the application (e.g., to perform further operations based on the requested file operation, for example, presenting file contents based on a requested read operation).



FIG. 3 is a flow diagram of an example process 300 for performing file operations. A request to perform a file operation is received (302). The request can be a system call to perform various types of file operations. For example, a read operation (e.g., to read a file) or a write operation (e.g., to edit file data). The received request can be sent to the kernel in response to user actions, for example, a user selecting a file to open or a user performing an edit on an open file.


File information associated with the request is identified (304). For example, in order to perform a read or write of a file, the file data is identified according to the file's i-node or other catalog record. This is a unique identifier for the file that is indexed (e.g., a table of i-nodes) to file information including the location of blocks of data in which the file is stored, time stamps, last accessed, owner of file, permissions, size, and/or creation time. The kernel can load the i-node file information into memory. The i-node can also be associated with one or more flag bits.


A determination is made as to whether a particular flag bit is set (306). This particular flag bit indicates that special file handling should be performed. However, as a single bit this does not indicate what processing is to be performed on the file. Instead, when the flag bit is set, the kernel reads the extended attribute associated with the file. The extended attribute is an additional data structure associated with the file that describes the special file handling to be performed. Since the i-node (or corresponding catalog record) is loaded into memory by the kernel, little processing cost is required to check the flag bits (e.g., no additional I/O operations are required). If the flag bit is not set, the kernel can proceed to respond to the request.


For example, the extended attribute can provide metadata about the type of file and what special handling is needed to be performed. For example, the extended attribute can indicate that the particular file is a data-less file (e.g., the file is only virtually present) and that the corresponding file data needs to be retrieved before the requested operation can be performed (e.g., the file data has to be retrieved before the file can be read). In another example, the extended attribute can indicate that the particular file is to be backed up before the requested operation is performed (e.g., to back-up a copy of the file prior to modifying the file). In some implementations, the extended attribute identifies a particular user space handler to be invoked (e.g., designed to perform particular operations).


A user space file handler is invoked to perform the one or more actions indicated by the extended attribute (308). For example, in some implementations, the file handler has already called into the kernel requesting work and is waiting to be assigned a token. Alternatively, the specific user space file handler is invoked by the kernel. The kernel sends the token to the file handler indicating the actions to be performed with respect to the file. The file handler then initiates a thread to perform the requested action. For example, the file handler can open one or more network connections to a destination in which the file data is stored. The file data can then be retrieved and associated with the existing zero data file.


In addition to invoking the user space file handler, the kernel holds the requested operation and sets a timer (310). The timer provides a time limit for the user space file handler to perform the indicated operation. While the timer holds the requested operation, no resources are locked out by the kernel. Thus, no deadlocks can occur from the request (e.g., from a resource request made by the user space file handler). As a result, other requests for resources can be made (e.g., as part of other processes) while the user space file handler is performing the one or more actions.


A determination is made as to whether the timer has expired before receiving a response from the user space file handler (312). If a response is not received, the hold is released (314) and the requested operation proceeds (322). For example, the kernel can allocate the necessary resources for performing the requested operation. The operation may or may not be able to be performed. For example, if the requested file operation is to read a file that is not present, then an error will result from the attempted read operation. However, if the requested file operation is a file modification to an open file, the modification can be performed.


If a response is received from the user space file handler (316) before the timer has expired, a determination is made as to whether or not the action or actions have been completed (318). If the action or actions have not been completed, a request for more time can be sent by the user space file handler. The timer is extended or reset (320). The process then returns to the determination of whether a response is received before the timer expires (312). The hold on the file operation is maintained until the timer again expires.


If the action has been completed, the hold is released and the requested file operation proceeds (322). The user space file handler can indicate that the action has been complete, for example, by returning the received token to the kernel or other notification. The file operation can proceed, for example, by the kernel assigning resources to perform the requested operation. For example, when the request is a read file request, the resources are allocated for reading the file into memory. The file data can then, for example, be presented to the user (e.g., as a document).


Specific examples are provided below to further illustrate the process 300.


In some implementations, data-less data items are created that present the appearance of data items that are not located on the particular user device. For example, items being synchronized or downloaded from other locations (e.g., other user devices or network locations) may not have the data to be synchronized or downloaded stored locally. Different criteria can be used to determine whether or not to download the data. For example, the size of the file, the current transfer rate, the type of data, etc. As such, the data can be stored elsewhere and retrieved when requested by the user. In order to present the appearance of the data, virtual data items can be generated. For example, files can appear to be present on the user device (e.g., as a displayed icon in a particular directory), but the file data is not physically present.


Similarly, in another implementation, data items can be removed from the user device and stored in a network location while retaining the virtual item representation. Again, different criteria can be used to determine whether or not to remove a data item from physically being located on the user device. For example, data items that are accessed infrequently can be removed to save space. Additionally, data items can be removed based on a percentage or amount of free space remaining on the device to store data (e.g., when a threshold storage level is reached).


These virtual data items can appear as any other file, directory, or other data on the file system or can be identified as virtual files (e.g., with a particular badging of an associated icon).


When a user requests one of these virtual data items, for example a file, the data must be retrieved before the file read is attempted otherwise an error will result. Consequently, the read request the flag bit indicates that the file is an empty file and that the file data must be retrieved. The read request is held by the kernel while a particular user space file handler is requested in order to retrieve the associated file data.


The user space file handler performs the network connections to the storage location of the file data (e.g., at a location indicated in the extended attribute data). The retrieved file data is then associated with the data-less data file such that the file now has the file contents (e.g., the data-less file can be modified or replaced). If the user space file handler fails to perform the actions, for example, because the network connections are unavailable, a time out will result in the hold being released by the kernel. However, since there is no data to be read, an error will result. This read error can be presented to the user indicating that the action is unable to be performed at the present time.


Once the file data is retrieved, the user space file handler indicates to the kernel that the actions have been performed and the kernel releases the hold on the read operation. The file is then read, for example, for presentation to the user by an application associated with the file.


In some other implementations, changes to data items are tracked and periodically stored prior to any changes being made. For example, a modification to a data item can trigger a copy of the data item (e.g., a version of the data item) being stored prior to performing the modification. The user device can maintain a collection of versions of the data item for later retrieval by the user.


Thus, in order to store copies of the file prior to modification, the file modification request has to be intercepted and the copy performed prior to allowing the modification operation to proceed.


When a request to perform a file modification operation is received by the kernel, the kernel identifies the flag bit as set. The extended attribute indicates that the file is one to be tracked and that a copy should be made before a file modification operation. In some implementations, this is variable depending on specific criteria. For example, only one copy can be made for a given time period (e.g., 1 hour). Thus, a copy is made of the file prior to the first modification of the file.


However, any subsequent modifications to the same file within that time period are allowed to proceed without copying the file. Thus, a file that changes 10 times within an hour will only be copied the first time after the start of the specified time period. Later requests to modify the file within the specified time period will not trigger the special file handling prior to performing the requested operation.


In some other implementations, when a request to perform a file modification operation is received, a determination is made as to whether a prior operation has been performed on the file within a specified time period. For example, the time of the requested modification can be compared to operations performed on the file within a current fixed window of time. For example, the specified time period can be one of a sequence of fixed time windows (e.g., every hour block of time can form a specified time period regardless of when a prior file modification operation occurred). If there has not been a prior operation on the file within a current time window (or less than a specified number of modifications), the file is copied prior to the modification operation being performed. In some implementations, in addition to the determination with respect to time, the type of requested modification is considered. For example, an edit operation can trigger the copy being made while a name change may not.


If there has been a prior operation on the file within the current time window, the requested modification can be allowed within performing any intervening action (e.g., copying the unmodified version of the file). For example, when only one action (e.g., copy file) per time window is performed prior to a requested modification operation on a file.


If the file is to be copied prior to the modification operation, the user space file handler is called to perform the file copy operation. When the kernel is notified that the operation is complete, the hold on the operation is removed and the file is allowed to be modified.


If a timeout occurs without a response from the user space file handler, the hold is released and the modification is allowed to occur. Thus, no pre-modified version will be stored.


In some other implementations, files can have a flag bit set when the file is to be tracked. For example, when versions of a file are stored as described above, the versions can be tracked to make sure all the versions are linked together. In another example, if a request for a name change is received for a tracked file the name change is held while performing a link between the new file and the earlier versions.



FIG. 4 illustrates an example architecture of a system 400. The system architecture 400 is capable of performing operations for performing file system management. The architecture 400 includes one or more processors 402 (e.g., IBM PowerPC, Intel Pentium 4, etc.), one or more display devices 404 (e.g., CRT, LCD), graphics processing units 406 (e.g., NVIDIA GeForce, etc.), a network interface 408 (e.g., Ethernet, FireWire, USB, etc.), input devices 410 (e.g., keyboard, mouse, etc.), and one or more computer-readable mediums 412. These components exchange communications and data using one or more buses 414 (e.g., EISA, PCI, PCI Express, etc.).


The term “computer-readable medium” refers to any medium that participates in providing instructions to a processor 402 for execution. The computer-readable medium 412 further includes an operating system 416 (e.g., Mac OS®, Windows®, Linux, etc.), a network communication module 418, user space file handlers 422, and other applications 424.


The operating system 416 can be multi-user, multiprocessing, multitasking, multithreading, real-time and the like. The operating system 416 performs basic tasks, including but not limited to: recognizing input from input devices 410; sending output to display devices 404; keeping track of files and directories on computer-readable mediums 412 (e.g., memory or a storage device); controlling peripheral devices (e.g., disk drives, printers, etc.); and managing traffic on the one or more buses 414. The operating system 416 also includes kernel functions. The network communications module 418 includes various components for establishing and maintaining network connections (e.g., software for implementing communication protocols, such as TCP/IP, HTTP, Ethernet, etc.).


The operating system 416, particularly the kernel, and the user space file handlers 422 provide various software components for performing the various functions for holding file operation requests at the kernel and invoking a user space handler to perform one or more actions before releasing or timing out the hold on the requested operation as described with respect to FIGS. 1-3.


Embodiments of the subject matter and the operations described in this specification can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this specification and their structural equivalents, or in combinations of one or more of them. Embodiments of the subject matter described in this specification can be implemented as one or more computer programs, i.e., one or more modules of computer program instructions, encoded on computer storage medium for execution by, or to control the operation of, data processing apparatus. Alternatively or in addition, the program instructions can be encoded on an artificially-generated propagated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to encode information for transmission to suitable receiver apparatus for execution by a data processing apparatus. A computer storage medium can be, or be included in, a computer-readable storage device, a computer-readable storage substrate, a random or serial access memory array or device, or a combination of one or more of them. Moreover, while a computer storage medium is not a propagated signal, a computer storage medium can be a source or destination of computer program instructions encoded in an artificially-generated propagated signal. The computer storage medium can also be, or be included in, one or more separate physical components or media (e.g., multiple CDs, disks, or other storage devices).


The operations described in this specification can be implemented as operations performed by a data processing apparatus on data stored on one or more computer-readable storage devices or received from other sources.


The term “data processing apparatus” encompasses all kinds of apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, a system on a chip, or multiple ones, or combinations, of the foregoing The apparatus can include special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit). The apparatus can also include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, a cross-platform runtime environment, a virtual machine, or a combination of one or more of them. The apparatus and execution environment can realize various different computing model infrastructures, such as web services, distributed computing and grid computing infrastructures.


A computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, declarative or procedural languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, object, or other unit suitable for use in a computing environment. A computer program may, but need not, correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document), in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub-programs, or portions of code). A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.


The processes and logic flows described in this specification can be performed by one or more programmable processors executing one or more computer programs to perform actions by operating on input data and generating output. The processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit).


Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read-only memory or a random access memory or both. The essential elements of a computer are a processor for performing actions in accordance with instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto-optical disks, or optical disks. However, a computer need not have such devices. Moreover, a computer can be embedded in another device, e.g., a mobile telephone, a personal digital assistant (PDA), a mobile audio or video player, a game console, a Global Positioning System (GPS) receiver, or a portable storage device (e.g., a universal serial bus (USB) flash drive), to name just a few. Devices suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.


To provide for interaction with a user, embodiments of the subject matter described in this specification can be implemented on a computer having a display device, e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor, for displaying information to the user and a keyboard and a pointing device, e.g., a mouse or a trackball, by which the user can provide input to the computer. Other kinds of devices can be used to provide for interaction with a user as well; for example, feedback provided to the user can be any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile feedback; and input from the user can be received in any form, including acoustic, speech, or tactile input. In addition, a computer can interact with a user by sending documents to and receiving documents from a device that is used by the user; for example, by sending web pages to a web browser on a user's client device in response to requests received from the web browser.


Embodiments of the subject matter described in this specification can be implemented in a computing system that includes a back-end component, e.g., as a data server, or that includes a middleware component, e.g., an application server, or that includes a front-end component, e.g., a client computer having a graphical user interface or a Web browser through which a user can interact with an implementation of the subject matter described in this specification, or any combination of one or more such back-end, middleware, or front-end components. The components of the system can be interconnected by any form or medium of digital data communication, e.g., a communication network. Examples of communication networks include a local area network (“LAN”) and a wide area network (“WAN”), an inter-network (e.g., the Internet), and peer-to-peer networks (e.g., ad hoc peer-to-peer networks).


The computing system can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other. In some embodiments, a server transmits data (e.g., an HTML page) to a client device (e.g., for purposes of displaying data to and receiving user input from a user interacting with the client device). Data generated at the client device (e.g., a result of the user interaction) can be received from the client device at the server.


While this specification contains many specific implementation details, these should not be construed as limitations on the scope of any inventions or of what may be claimed, but rather as descriptions of features specific to particular embodiments of particular inventions. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.


Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the embodiments described above should not be understood as requiring such separation in all embodiments, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products.


Thus, particular embodiments of the subject matter have been described. Other embodiments are within the scope of the following claims. In some cases, the actions recited in the claims can be performed in a different order and still achieve desirable results. In addition, the processes depicted in the accompanying figures do not necessarily require the particular order shown, or sequential order, to achieve desirable results. In certain implementations, multitasking and parallel processing may be advantageous.

Claims
  • 1. A method, comprising, by a kernel of a computing device: intercepting a first request to perform a first modification to a file;in response to determining, based on a file attribute associated with the file, that a time restriction associated with copying the file is inactive:invoking a user space file handler to generate a copy of the file, andin response to determining that the copy of the file has been generated by the user space file handler: performing the first modification to the file;intercepting a second request to perform a second modification to the file; andin response to determining, based on the file attribute associated with the file, that the time restriction associated with copying the file is active: performing the second modification to the file.
  • 2. The method of claim 1, wherein the time restriction is active when at least one prior request to perform a modification to the file is received within a current periodic time span relative to a current time of day.
  • 3. The method of claim 2, wherein the time restriction is inactive when no prior requests to perform modifications to the file are received within the current periodic time span relative to the current time of day.
  • 4. The method of claim 2, wherein the current periodic time span is one hour.
  • 5. The method of claim 1, wherein the time restriction is inactive when a pre-defined number of requests to perform modifications to the file are received within a current periodic time span relative to a current time of day.
  • 6. The method of claim 1, further comprising: receiving a third request to perform a third modification to the file;determining that the third modification is associated with changing a name of the file but not a content of the file; andperforming the third modification to the file regardless of whether the time restriction is active or inactive.
  • 7. The method of claim 1, wherein the kernel analyzes the file attribute associated with the file in response to identifying that a flag bit associated with the file is set.
  • 8. A computing device, comprising: at least one processor; andat least one memory storing instructions that, when executed by the at least one processor, cause the computing device to implement a kernel configured to: intercept a first request to perform a first modification to a file;in response to determining, based on a file attribute associated with the file, that a time restriction associated with copying the file is inactive:invoke a user space file handler to generate a copy of the file, andin response to determining that the copy of the file has been generated by the user space file handler: perform the first modification to the file;intercept a second request to perform a second modification to the file; andin response to determining, based on the file attribute associated with the file, that the time restriction associated with copying the file is active: perform the second modification to the file.
  • 9. The computing device of claim 8, wherein the time restriction is active when at least one prior request to perform a modification to the file is received within a current periodic time span relative to a current time of day.
  • 10. The computing device of claim 9, wherein the time restriction is inactive when no prior requests to perform modifications to the file are received within the current periodic time span relative to the current time of day.
  • 11. The computing device of claim 9, wherein the current periodic time span is one hour.
  • 12. The computing device of claim 8, wherein the time restriction is inactive when a pre-defined number of requests to perform modifications to the file are received within a current periodic time span relative to a current time of day.
  • 13. The computing device of claim 8, wherein the kernel is further configured to: receive a third request to perform a third modification to the file;determine that the third modification is associated with changing a name of the file but not a content of the file; andperform the third modification to the file regardless of whether the time restriction is active or inactive.
  • 14. The computing device of claim 8, wherein the kernel analyzes the file attribute associated with the file in response to identifying that a flag bit associated with the file is set.
  • 15. At least one non-transitory computer readable storage medium storing instructions that, when executed by at least one processor included in a computing device, cause the computing device to implement a kernel configured to: intercept a first request to perform a first modification to a file;in response to determining, based on a file attribute associated with the file, that a time restriction associated with copying the file is inactive: invoke a user space file handler to generate a copy of the file, andin response to determining that the copy of the file has been generated by the user space file handler: perform the first modification to the file;intercept a second request to perform a second modification to the file; andin response to determining, based on the file attribute associated with the file, that the time restriction associated with copying the file is active:perform the second modification to the file.
  • 16. The at least one non-transitory computer readable storage medium of claim 15, wherein the time restriction is active when at least one prior request to perform a modification to the file is received within a current periodic time span relative to a current time of day.
  • 17. The at least one non-transitory computer readable storage medium of claim 16, wherein the time restriction is inactive when no prior requests to perform modifications to the file are received within the current periodic time span relative to the current time of day.
  • 18. The at least one non-transitory computer readable storage medium of claim 15, wherein the time restriction is inactive when a pre-defined number of requests to perform modifications to the file are received within a current periodic time span relative to a current time of day.
  • 19. The at least one non-transitory computer readable storage medium of claim 15, wherein the kernel is further configured to: receive a third request to perform a third modification to the file;determine that the third modification is associated with changing a name of the file but not a content of the file; andperform the third modification to the file regardless of whether the time restriction is active or inactive.
  • 20. The at least one non-transitory computer readable storage medium of claim 15, wherein the kernel analyzes the file attribute associated with the file in response to identifying that a flag bit associated with the file is set.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 14/644,070, filed Mar. 10, 2015, now U.S. Pat. No. 9,411,812 issued Jul. 2, 2015, which is a continuation of U.S. application Ser. No. 13/350,047, filed Jan. 13, 2012, now U.S. Pat. No. 8,984,029, which claims the benefit under 35 U.S.C. § 119(e) of the filing date of U.S. Provisional Patent Application No. 61/433,180, filed Jan. 14, 2011, all of which are incorporated herein by reference in their entireties for all purposes.

US Referenced Citations (359)
Number Name Date Kind
5150407 Chan et al. Sep 1992 A
5150473 Zulch Sep 1992 A
5163148 Walls Nov 1992 A
5276867 Kenley et al. Jan 1994 A
5349658 O'Rourke et al. Sep 1994 A
5369570 Parad Nov 1994 A
5659614 Bailey, III Aug 1997 A
5664186 Bennett et al. Sep 1997 A
5680562 Conrad et al. Oct 1997 A
5736974 Selker et al. Apr 1998 A
5745669 Hugard et al. Apr 1998 A
5754178 Johnston, Jr. et al. May 1998 A
5758359 Saxon May 1998 A
5790120 Lozares et al. Aug 1998 A
5802175 Kara Sep 1998 A
5818936 Mashayekhi Oct 1998 A
5819032 De Vries et al. Oct 1998 A
5819292 Hitz et al. Oct 1998 A
5831617 Bhukhanwala Nov 1998 A
5832526 Schuyler Nov 1998 A
5961605 Deng et al. Oct 1999 A
5987566 Vishlitzky et al. Nov 1999 A
6006227 Freeman et al. Dec 1999 A
6023506 Ote et al. Feb 2000 A
6097313 Takahashi et al. Aug 2000 A
6112318 Jouppi et al. Aug 2000 A
6134660 Boneh et al. Oct 2000 A
6167532 Wisecup Dec 2000 A
6188405 Czerwinski et al. Feb 2001 B1
6269381 St. Pierre et al. Jul 2001 B1
6366988 Skiba et al. Apr 2002 B1
6378071 Sasaki Apr 2002 B1
6396500 Qureshi et al. May 2002 B1
6397308 Ofek et al. May 2002 B1
6424626 Kidambi et al. Jul 2002 B1
6460055 Midgley et al. Oct 2002 B1
6493745 Cherian Dec 2002 B1
6553392 Mosher, Jr. et al. Apr 2003 B1
6574733 Langford Jun 2003 B1
6604118 Kleiman et al. Aug 2003 B2
6625704 Winokur Sep 2003 B2
6629129 Bookspan et al. Sep 2003 B1
6636937 Peter Oct 2003 B2
6638313 Freeman et al. Oct 2003 B1
6701454 Fischer et al. Mar 2004 B1
6711572 Zakharov et al. Mar 2004 B2
6714201 Grinstein et al. Mar 2004 B1
6714952 Dunham et al. Mar 2004 B2
6725427 Freeman et al. Apr 2004 B2
6728735 Fong Apr 2004 B1
6768999 Prager et al. Jul 2004 B2
6785751 Connor Aug 2004 B1
6785786 Gold et al. Aug 2004 B1
6801229 Tinkler Oct 2004 B1
6831913 Vialen Dec 2004 B1
6836657 Ji et al. Dec 2004 B2
6857001 Hitz et al. Feb 2005 B2
6892211 Hitz et al. May 2005 B2
6901493 Maffezzoni May 2005 B1
6918124 Novik et al. Jul 2005 B1
6947556 Matyas, Jr. et al. Sep 2005 B1
6948039 Biessener et al. Sep 2005 B2
6959368 St. Pierre et al. Oct 2005 B1
6993710 Coad et al. Jan 2006 B1
7062532 Sweat Jun 2006 B1
7069402 Coulter et al. Jun 2006 B2
7072916 Lewis et al. Jul 2006 B1
7099900 Bromley et al. Aug 2006 B1
7103740 Colgrove et al. Sep 2006 B1
7107527 Takahashi et al. Sep 2006 B2
7111136 Yamagami Sep 2006 B2
7133902 Saha et al. Nov 2006 B2
7134026 Horiuchi et al. Nov 2006 B2
7155486 Aoshima et al. Dec 2006 B2
7174352 Kleiman et al. Feb 2007 B2
7185028 Lechner Feb 2007 B2
7200617 Kibuse Apr 2007 B2
7222194 Kano et al. May 2007 B2
7257717 Huang Aug 2007 B2
7275075 Cannon Sep 2007 B2
7284190 Chellis et al. Oct 2007 B2
7289973 Kiessig et al. Oct 2007 B2
7318134 Oliveira et al. Jan 2008 B1
7320076 Caronni Jan 2008 B2
7386801 Horvitz et al. Jun 2008 B1
7401194 Jewell Jul 2008 B2
7418619 Uhlmann et al. Aug 2008 B1
7434164 Salesin et al. Oct 2008 B2
7434177 Ording et al. Oct 2008 B1
7440125 Maekawa et al. Oct 2008 B2
7483693 Lueng et al. Jan 2009 B2
7505762 Onyon et al. Mar 2009 B2
7518611 Boyd et al. Apr 2009 B2
7558930 Kitamura et al. Jul 2009 B2
7559016 Rakowski et al. Jul 2009 B1
7574459 Sen et al. Aug 2009 B2
7590668 Kathuria et al. Sep 2009 B2
7596586 Gokhale et al. Sep 2009 B2
7600133 Long et al. Oct 2009 B2
7614007 Chakravarty Nov 2009 B2
7620670 Tokuda Nov 2009 B2
7624133 Ojalvo Nov 2009 B1
7630021 Matsuzaka et al. Dec 2009 B2
7657450 Amit et al. Feb 2010 B2
7660817 Smith et al. Feb 2010 B2
7669141 Pegg Feb 2010 B1
7676689 Shioyama et al. Mar 2010 B1
7711771 Kirnos May 2010 B2
7734594 Wang Jun 2010 B2
7739464 Coulter et al. Jun 2010 B1
7739622 DeLine et al. Jun 2010 B2
7761456 Cram et al. Jul 2010 B1
7809687 Cisler et al. Oct 2010 B2
7809688 Cisler et al. Oct 2010 B2
7836311 Kuriya et al. Nov 2010 B2
7853566 Cisler et al. Dec 2010 B2
7853567 Cisler et al. Dec 2010 B2
7856424 Cisler et al. Dec 2010 B2
7860839 Cisler et al. Dec 2010 B2
7882072 Axe et al. Feb 2011 B1
7890527 Nene et al. Feb 2011 B1
7934064 Per et al. Apr 2011 B1
7974948 Baer et al. Jul 2011 B2
8010900 Hart et al. Aug 2011 B2
8024292 Thompson et al. Sep 2011 B2
8055911 Feng et al. Nov 2011 B2
8099392 Paterson et al. Jan 2012 B2
8166415 Cisler et al. Apr 2012 B2
8209308 Rueben et al. Jun 2012 B2
8219995 Flemming et al. Jul 2012 B2
8229897 Cannon et al. Jul 2012 B2
8245078 Chatterjee et al. Aug 2012 B1
8260770 Bell et al. Sep 2012 B2
8307004 Weiss et al. Nov 2012 B2
8311988 Cisler et al. Nov 2012 B2
8352702 O'Neill et al. Jan 2013 B2
8370853 Giampaolo et al. Feb 2013 B2
8468136 Ulrich et al. Jun 2013 B2
8495024 Cisler et al. Jul 2013 B2
8504516 Weiss et al. Aug 2013 B2
8504527 Cisler et al. Aug 2013 B2
8566289 Paterson et al. Oct 2013 B2
8725965 Hart et al. May 2014 B2
8745523 McInerney et al. Jun 2014 B2
8775378 Cisler et al. Jul 2014 B2
8984029 Giampaolo et al. Mar 2015 B2
9411812 Giampaolo et al. Aug 2016 B2
20010047368 Oshinsky et al. Nov 2001 A1
20010055317 Kajizaki et al. Dec 2001 A1
20020016912 Johnson Feb 2002 A1
20020023198 Kokubun et al. Feb 2002 A1
20020046220 Freeman et al. Apr 2002 A1
20020049883 Schneider et al. Apr 2002 A1
20020054158 Asami May 2002 A1
20020063737 Feig et al. May 2002 A1
20020065999 Kikuchi et al. May 2002 A1
20020080180 Mander et al. Jun 2002 A1
20020107886 Gentner et al. Aug 2002 A1
20020112237 Kelts Aug 2002 A1
20020120648 Ball et al. Aug 2002 A1
20020156921 Dutta et al. Oct 2002 A1
20020160760 Aoyama Oct 2002 A1
20020174283 Lin Nov 2002 A1
20030014521 Elson Jan 2003 A1
20030016248 Hayes Ubillos Jan 2003 A1
20030018878 Dorward et al. Jan 2003 A1
20030050940 Robinson Mar 2003 A1
20030063128 Salmimaa et al. Apr 2003 A1
20030065687 Momiji et al. Apr 2003 A1
20030097640 Abrams et al. May 2003 A1
20030122874 Dieberger et al. Jul 2003 A1
20030126247 Strasser et al. Jul 2003 A1
20030131007 Schirmer et al. Jul 2003 A1
20030135650 Kano et al. Jul 2003 A1
20030137540 Klevenz et al. Jul 2003 A1
20030167380 Green et al. Sep 2003 A1
20030172937 Faries, Jr. et al. Sep 2003 A1
20030182332 McBrearty et al. Sep 2003 A1
20030195903 Manley et al. Oct 2003 A1
20030220949 Witt, Jr. et al. Nov 2003 A1
20040044707 Richard Mar 2004 A1
20040066414 Czerwinski et al. Apr 2004 A1
20040073560 Edwards Apr 2004 A1
20040078641 Fleischmann Apr 2004 A1
20040088331 Therrien et al. May 2004 A1
20040117459 Fry Jun 2004 A1
20040125137 Stata et al. Jul 2004 A1
20040133575 Farmer et al. Jul 2004 A1
20040139396 Gelernter et al. Jul 2004 A1
20040143652 Grannan et al. Jul 2004 A1
20040162917 Akiyama Aug 2004 A1
20040163009 Goldstein et al. Aug 2004 A1
20040167942 Oshinsky et al. Aug 2004 A1
20040175000 Caronni Sep 2004 A1
20040193953 Callahan et al. Sep 2004 A1
20040199779 Huang Oct 2004 A1
20040199826 Bertram et al. Oct 2004 A1
20040210608 Lee et al. Oct 2004 A1
20040220965 Harville et al. Nov 2004 A1
20040220980 Forster Nov 2004 A1
20040228493 Ma Nov 2004 A1
20040230892 Horton Nov 2004 A1
20040235523 Schrire et al. Nov 2004 A1
20040236769 Smith et al. Nov 2004 A1
20040236916 Berkowitz et al. Nov 2004 A1
20040236958 Teicher et al. Nov 2004 A1
20040243675 Taoyama Dec 2004 A1
20040267700 Dumais et al. Dec 2004 A1
20050010955 Elia et al. Jan 2005 A1
20050047295 Kim et al. Mar 2005 A1
20050071390 Midgley et al. Mar 2005 A1
20050091596 Anthony et al. Apr 2005 A1
20050102695 Musser May 2005 A1
20050108253 Metsatahti et al. May 2005 A1
20050138013 Walker et al. Jun 2005 A1
20050138081 Alshab et al. Jun 2005 A1
20050144135 Juarez et al. Jun 2005 A1
20050144422 McAlpine Jun 2005 A1
20050149577 Okada et al. Jul 2005 A1
20050165867 Barton et al. Jul 2005 A1
20050187992 Prahlad et al. Aug 2005 A1
20050204186 Rothman et al. Sep 2005 A1
20050216520 He et al. Sep 2005 A1
20050216527 Erlingsson Sep 2005 A1
20050246398 Barzilai et al. Nov 2005 A1
20050262168 Helliker et al. Nov 2005 A1
20050262377 Sim-Tang Nov 2005 A1
20060026218 Urmston Feb 2006 A1
20060036568 Moore et al. Feb 2006 A1
20060041603 Paterson et al. Feb 2006 A1
20060041823 Wolfgang et al. Feb 2006 A1
20060053332 Uhlmann et al. Mar 2006 A1
20060064444 van Ingen et al. Mar 2006 A1
20060064634 Dettinger et al. Mar 2006 A1
20060080521 Barr et al. Apr 2006 A1
20060085792 Traut Apr 2006 A1
20060085817 Kim et al. Apr 2006 A1
20060088167 Bade et al. Apr 2006 A1
20060101384 Sim-Tang et al. May 2006 A1
20060106893 Daniels et al. May 2006 A1
20060117309 Singhal et al. Jun 2006 A1
20060129496 Chow Jun 2006 A1
20060137010 Kramer et al. Jun 2006 A1
20060143250 Peterson et al. Jun 2006 A1
20060150107 Leung et al. Jul 2006 A1
20060156246 Williams et al. Jul 2006 A1
20060161861 Holecek et al. Jul 2006 A1
20060173848 Peterson et al. Aug 2006 A1
20060200754 Kablesh Sep 2006 A1
20060218363 Palapudi Sep 2006 A1
20060224956 Storisteanu et al. Oct 2006 A1
20060235907 Kathuria et al. Oct 2006 A1
20060236406 Johnson Oct 2006 A1
20060248294 Nedved et al. Nov 2006 A1
20060253470 Friedman et al. Nov 2006 A1
20060288205 Linares Dec 2006 A1
20070027935 Haselton et al. Feb 2007 A1
20070030528 Quaeler et al. Feb 2007 A1
20070038884 Campbell et al. Feb 2007 A1
20070043715 Kaushik et al. Feb 2007 A1
20070043790 Kryger Feb 2007 A1
20070050184 Drucker Mar 2007 A1
20070070066 Bakhash Mar 2007 A1
20070078910 Bopardikar Apr 2007 A1
20070088702 Fridella et al. Apr 2007 A1
20070094312 Sim-Tang Apr 2007 A1
20070106978 Felts May 2007 A1
20070136381 Cannon et al. Jun 2007 A1
20070136389 Bergant et al. Jun 2007 A1
20070136423 Gilmore Jun 2007 A1
20070143425 Kieselbach et al. Jun 2007 A1
20070150326 Nakao Jun 2007 A1
20070156772 Lechner Jul 2007 A1
20070168497 Locker et al. Jul 2007 A1
20070174580 Shulga Jul 2007 A1
20070180268 Filimon et al. Aug 2007 A1
20070185879 Roublev et al. Aug 2007 A1
20070185922 Kapoor et al. Aug 2007 A1
20070186127 Desai et al. Aug 2007 A1
20070192386 Fries et al. Aug 2007 A1
20070266007 Arrouye et al. Nov 2007 A1
20070271263 Merrild Nov 2007 A1
20070271303 Menendez et al. Nov 2007 A1
20070282854 Bhogal et al. Dec 2007 A1
20070288536 Sen et al. Dec 2007 A1
20080016576 Ueda et al. Jan 2008 A1
20080022393 Waltermann et al. Jan 2008 A1
20080028007 Ishii et al. Jan 2008 A1
20080033969 Koo et al. Feb 2008 A1
20080034004 Cisler et al. Feb 2008 A1
20080034011 Cisler et al. Feb 2008 A1
20080034017 Giampaolo et al. Feb 2008 A1
20080034019 Cisler et al. Feb 2008 A1
20080046557 Cheng Feb 2008 A1
20080065663 Farlee et al. Mar 2008 A1
20080070496 Jackson Mar 2008 A1
20080077808 Teicher et al. Mar 2008 A1
20080082578 Hogue et al. Apr 2008 A1
20080091655 Gokhale et al. Apr 2008 A1
20080126442 Cisler et al. May 2008 A1
20080141029 Culver Jun 2008 A1
20080162999 Schlueter et al. Jul 2008 A1
20080168184 Freedman et al. Jul 2008 A1
20080168245 De Atley et al. Jul 2008 A1
20080168391 Robbin et al. Jul 2008 A1
20080172428 Stokes Jul 2008 A1
20080172607 Baer Jul 2008 A1
20080177807 Dile Jul 2008 A1
20080177961 McSharry et al. Jul 2008 A1
20080208630 Fors et al. Aug 2008 A1
20080214163 Onyon et al. Sep 2008 A1
20080216011 Gould Sep 2008 A1
20080222512 Albornoz et al. Sep 2008 A1
20080229037 Bunte et al. Sep 2008 A1
20080250342 Clark et al. Oct 2008 A1
20080250400 Vertes Oct 2008 A1
20080285754 Kezmann Nov 2008 A1
20080307017 Lyons et al. Dec 2008 A1
20080307020 Ko et al. Dec 2008 A1
20080307347 Cisler et al. Dec 2008 A1
20080310628 Fujioka et al. Dec 2008 A1
20080310633 Brown et al. Dec 2008 A1
20080313243 Poston et al. Dec 2008 A1
20090019291 Murray Jan 2009 A1
20090031401 Cudich et al. Jan 2009 A1
20090052669 Ma Feb 2009 A1
20090116641 Bokor May 2009 A1
20090271447 Shin Oct 2009 A1
20090307333 Welingkar et al. Dec 2009 A1
20100017855 Johnson et al. Jan 2010 A1
20100063960 Lehto Mar 2010 A1
20100070844 Aymeloglu et al. Mar 2010 A1
20100169823 Audet Jul 2010 A1
20100205397 Chellam Aug 2010 A1
20100217929 Kirshenbaum et al. Aug 2010 A1
20100228795 Hahn Sep 2010 A1
20110010672 Hope Jan 2011 A1
20110016087 Freedman Jan 2011 A1
20110016089 Freedman et al. Jan 2011 A1
20110083098 Cisler et al. Apr 2011 A1
20110093516 Geng Apr 2011 A1
20110162050 Krajna Jun 2011 A1
20110191341 Meyer Aug 2011 A1
20110202763 Martin et al. Aug 2011 A1
20110225593 Hamilton, II Sep 2011 A1
20110296351 Ewing, Jr. et al. Dec 2011 A1
20110302502 Hart et al. Dec 2011 A1
20120030187 Marano et al. Feb 2012 A1
20120185438 Giampaolo et al. Jul 2012 A1
20120185518 Giampaolo et al. Jul 2012 A1
20120185762 Ozer et al. Jul 2012 A1
20120185767 Schlegel Jul 2012 A1
20120198383 Cisler et al. Aug 2012 A1
20120246565 Kumamoto Sep 2012 A1
20120272173 Grossman et al. Oct 2012 A1
20130066836 Weiss et al. Mar 2013 A1
20130073821 Flynn Mar 2013 A1
20130117240 Taylor May 2013 A1
20130212599 Giampaolo et al. Aug 2013 A1
Foreign Referenced Citations (16)
Number Date Country
629950 Dec 1994 EP
629950 Oct 2001 EP
1152352 Nov 2001 EP
1582982 May 2005 EP
1152352 Oct 2005 EP
1582982 Sep 2006 EP
1582982 May 2008 EP
1152352 Nov 2009 EP
0106356 Jan 2001 WO
02101540 Dec 2002 WO
2005045756 May 2005 WO
2005045756 Aug 2005 WO
2008019237 Feb 2008 WO
2008019259 Feb 2008 WO
2008019237 Oct 2008 WO
2008019259 May 2009 WO
Non-Patent Literature Citations (49)
Entry
Bonwick et al., “The Zettabyte File System,” [Online] [Retrieved on Jan. 22, 2008] Retrieved from the Internet: URL: http://partneradvantage.sun.com/protected/solaris 1O/adoptionkit/tech/zfs/zfs_overview.pdf, 13 pages.
Communication pursuant to Article 94(3) EPC for Aoolication No. EP 07 813 540.7, dated Jun. 23, 2009, 2 pages.
International Search Report and Written Opinion, PCT/US2008/065146, dated Oct. 31, 2008, 15 pages.
International Search Report and Written Opinion, PCT/US2008/066212, dated Mar. 9, 2009, 20 pages.
“How to Interpret Windows Installer Logs,” [Online] [Retrieved on Dec. 12, 2009] Retrieved from the Internet URL: http://blogs.technet.com/richard_macdonald/archive/2007 /04/02/How-to- Interpret-Windows-Installer-Logs.aspx; published Apr. 4, 2007; 6 pages.
“MSDN Academic Alliance Developer Center, Curriculum Repository Glossary,” [Online] [Retrieved on Apr. 22, 2009] Retrieved from the Internet URL: http://www.academicresourcecenter.net/curriculum/ glossary. aspx, 4 pages.
“StorageSync: Backup, Restore, & Synchronization Software User's Guide”, SimpleTech, 2003, 100 pages.
“What's New in Word 2002,” Wellesly College Information Services Computing Documentation, Jan. 2002, [Online] Retrieved on Aug. 14, 2008] Retrieved from the Internet URL: http://www.wellesley.edu/Computing/Office02/Word02/word02.html,19 pages.
Bonwick et al., “The Zettabyte File System,” [Online] [Retrieved on Jan. 22, 2008] Retrieved from the Internet: URL:http://partneradvantage.sun.com/protected/solaris10/adoptionkit/tech/zfs/zfs_overview.pdf, 13 pages.
Bonwick, “ZFS the Last Word in File Systems,” [Online] [Retrieved on Jan. 22, 2008] Retrieved from the Internet: URL:http://opensolaris.org/os/community/zfs/docs/zfs.pdf, 34 pages.
Bott, “Windows XP Backup Made Easy,” [Online] [Retrieved on Jul. 7, 2009]; Retrieved from the Internet URL: http://www.microsoft.com/windowsxp/using/setup/learnmore/bott_03julyl 4.mspx, 4 pages.
Charles Rubin, Mary Millhollon and Katherine Murray, “Microsoft Office Word 2003, Official Manual”, First Edition, Japan, Nikkei BP Softpress, Jul. 12, 2004, vol. 1, p. 300, 815-818.
Chen et al., “Data Redundancy and Compression Methods for a Disk-based Network Backup System”, 2004, IEEE, pp. 1-8.
Engst, “Retrospect 6.0: Powerful Backup Program Adds Panther Compatibility and Enterprise Features,” [Online] [Retrieved on Jul. 8, 2009]; Retrieved from the Internet URL: http://www.macworld.com/article/31038/2004/06/retrospect 6x0.html, 8 pages.
Communication pursuant to Article 94(3) EPC for Application No. EP 07 813540.7, dated Jun. 23, 2009, 2 pages.
Extended European Search Report and Written Opinion, European Application No. 11171738.5, dated Aug. 29, 2011, 5 pages.
Communication pursuant to Article 94(3) EPC for Application No. EP 07 799 899.5, dated May 14, 2009, 2 pages.
Communication pursuant to Article 94(3) EPC for Application No. EP 07 799 899.5, dated Oct. 7, 2009, 4 pages.
European Search Report dated Oct. 16, 2012 in EP Application No. 12150673, 9 pgs.
Examination Report from European Application No. 07 813 540.7 dated Oct. 27, 2011, 5 pages.
Examination Report from European Application No. 07 813 593.6 dated Mar. 25, 2013, 4 pages.
Examination Report from European Application No. 07 813 605.8 dated Oct. 27, 2011, 5 pages.
Extended European Search Report, European Application No. 11184579.8, dated Nov. 17, 2011, 6 pages.
Godfrey, Michael et al., “Using Original Analysis to Detect Merging and Splitting of Source Code Entities,” IEEE Transactions on Software Engineering, vol. 31, No. 2. Feb. 2005. pp. 166-181.
Griffiths, “Leopard first looks: Time Machine,” Aug. 8, 2006 [Online] [Retrieved on Nov. 23, 2007] Retrieved from the Internet: URL:http://www.macworld.com/2006/08/firstlooks/leotimemac/index.php?pf=1, pp. 1-2.
Harder, “Microsoft Windows XP System Restore,” [Online] [Retrieved on Jul. 7, 2009] Retrieved from the Internet URL: http://msdn.microsoft.com/en-us/library/ms997627.aspx, 8 pages.
In-link files, The Open Group Base, Specifications Issue 6 [online]. IEEE Std 1003.1, 2004 Edition. [retrieved on Apr. 6, 2011]. Retrieved from the Internet:URL:http://pubs.opengroup.org/onlinepubs/009695399/utilities/In.html, 5 pages.
International Search Report and Written Opinion, PCT/US2007/074653, dated Aug. 14, 2008, 14 pages.
International Search Report and Written Opinion, PCT/US2007/074729, dated Jul. 12, 2007, 11 pages.
International Search Report and Written Opinion, PCT/US2007/074863 dated Apr. 21, 2009, 20 pages.
International Search Report and Written Opinion, PCT/US2007/074881, dated Jul. 12, 2007, 11 pages.
Microsoft Corporation, “Description of the AutoRecover Functions in Excel,” [online] Microsoft Corporation, Aug. 10, 2007, Article ID 289273; URL: http://support.microsoft.com/kb/289273/en-us.
Microsoft Technet: “Restore a previous version of a file,” Jan. 21, 2005, [Online] [Retrieved on Oct. 20, 2011] Retrieved from the Internet URL: http://technet.microsoft.com/en-us/library/cc778220(d=printer,v=WS.10).aspx, pp. 1-2. (From 18962-0128EP1 OA dated Oct. 27, 2011) (From 18962-0043EP1 OA May 26, 2014).
Microsoft-TechNet, “Using Encrypting File System,” Nov. 3, 2005, Microsoft, 40 pages.
Posey, Brien M., “Working with the Windows Server 2003 Volume Shadow Copy Service”. Published Jun. 24, 2004. http://www.windowsnetworking.com/articles_tutorials/Windows-Server-2003-Volume-Shadow-Copy-Service.html.; 11 pages.
Rubel, “Easy Automated Snapshot-Style Backups with Rsync,” [Online][Retrieved on Nov. 8, 2010] Retrieved from the Internet URL: http://www.mikerubel.org/computers/rsync_snapshots; 18 pages.
Sun Microsystems, Inc., “ZFS On-Disk Specification,” Draft: Dec. 9, 2005, [Online] [Retrieved on Jan. 22, 2008]; Retrieved from the Internet URL: http://opensolaris.org/os/community/zfs/docs/ondiskformat0822.pdf, 55 pages.
Tittel, “An EAZ Way to Restore Crippled and Inoperable Systems,” ChannelWeb, Apr. 25, 2005, [Online] [Retrieved on Aug. 13, 2008] Retrieved from the Internet URL: http://www.cm.com/white-box/16 l 502165, 10 pages.
Wang et al., “A Secure and Efficient Desktop Backup and Recovery System”, 2007, IEEE, pp. 304-309.
Shi et al., “USP: A Lightweight File System Management Framework,” 2010 Fifth IEEE International Conference on Networking, Architecture, and Storage, 2010 IEEE, pp. 250-256.
Moorthy, “Linux Crontab: 15 Awesome Cron Job Examples,” TheGeekStuff.com, Jun. 11, 2009, retrieved on Dec. 23, 2013, http://www.thegeekstuff.com/2009/06/15practical-crontabexamples, 6 pages.
Anonymous, “ForeverSave Version 1.1.3”, Published Jan. 1, 2009, 16 pgs [online]. Retrieved from the Internet: <URL: http://tool-forcesw.com/docs/ForeverSave Manual.pdf>.
“Apple Previews Mac OS X Leopard,” Aug. 7, 2006, [Online] [Retrieved on Nov. 26, 2007] Retrieved from the Internet: URL:http://www.apple.com/pr/library/2006/aug/07leopard.html, pp. 1-2.
“Aulaclic: Unit 6. The Recycle Bin,” Nov. 2005, [Online] [Retrieved on Nov. 26, 2007] Retrieved from the Internet: URL:http://www.teacherclick.com/winxp/t 6 1.htm, pp. 1-2.
PCT Patent Application No. PCT/US2007/074881—International Search Report and Written Opinion dated Jul. 12, 2007, 4 pages.
PCT Patent Application No. PCT/US2008/065146—International Search Report and Written Opinion dated Oct. 31, 2008, 15 pages.
PCT Patent Application No. PCT/US2008/066212—International Search Report and Written Opinion dated Mar. 9, 2009, 20 pages.
Chinese Patent Application No. 200880024710.0,—Office Action dated Feb. 29, 2012, 18 pages.
Chinese Patent Application No. 201310073409.1—Office Action dated Apr. 1, 2015, 13 pages.
Related Publications (1)
Number Date Country
20160314135 A1 Oct 2016 US
Provisional Applications (1)
Number Date Country
61433180 Jan 2011 US
Continuations (2)
Number Date Country
Parent 14644070 Mar 2015 US
Child 15203712 US
Parent 13350047 Jan 2012 US
Child 14644070 US