File system monitoring in a system which incrementally updates clients with events that occurred in a cloud-based collaboration platform

Information

  • Patent Grant
  • 9953036
  • Patent Number
    9,953,036
  • Date Filed
    Tuesday, January 7, 2014
    11 years ago
  • Date Issued
    Tuesday, April 24, 2018
    6 years ago
Abstract
Techniques are disclosed for file system monitoring in a system which incrementally updates clients with what occurred in a cloud-enabled platform. In one embodiment, a method comprises, in response to an event which represents that a modification to an item has taken place on the cloud-based platform, identifying whether execution of the event is to violate any local file system rule. The method further comprises, if the execution of the event is to violate any local file system rule, buffering the event until a subsequent event arrives. The method further comprises identifying whether execution of an aggregate of the events is to violate any local file system rule.
Description
BACKGROUND

The use of electronic and digital content has greatly increased in enterprise settings or other organizations as the preferred mechanism for project, task, and work flow management, as has the need for streamlined collaboration and sharing of digital content and documents. In such an environment, multiple users share, access and otherwise perform actions or tasks on content and files in a shared workspace, where any number of users may have access to a given file or may want to or need to perform an action on the file at any given time.


The cloud-based nature of such an environment enables users/collaborators to access, view, edit content anytime, from any device, or using any number of and/or types of clients, simultaneously while other collaborators in the same group, enterprise, or other types of organizations may also be accessing, viewing, or editing the same file or content or content in the same work group. Among others, the different types of clients and the number of devices which can be used to access a single account or work item or cloud content in the cloud-based environment create problems of maintaining consistency and correct ordering in how changes are reflected at the clients that are used by users/collaborators. Updating a large number of collaborators within a limited amount of time when actions take place in the cloud-based environment further presents extra challenges.





BRIEF DESCRIPTION OF DRAWINGS

The present embodiments are illustrated by way of example and are not intended to be limited by the figures of the accompanying drawings. In the drawings:



FIG. 1 depicts an example diagram of a system having improved race condition handling in providing a cloud-based service, collaboration and/or cloud storage platform that incrementally updates remote clients at devices with events that occurred via the platform;



FIG. 2 depicts an example diagram of a web-based or online collaboration platform deployed in an enterprise or other organizational setting for organizing work items and workspaces;



FIG. 3A depicts an example diagram of a workspace in a cloud-based platform such as an online or web-based collaboration environment accessible by multiple collaborators through various devices;



FIG. 3B depicts an abstract diagram illustrating an example data structure of the folders and files in the workspace of FIG. 3A;



FIG. 4A depicts an example system block diagram showing the interaction between server-side components for incrementally updating a remote client with events or actions that occurred via a cloud-based platform;



FIG. 4B depicts an example block diagram showing the interaction of remote clients and with a distributed database cluster for incremental updates of events/actions which occurred at a cloud-based environment;



FIG. 5 depicts an example system block diagram showing action log entries recorded from actions/interactions on or with files/content stored in a database of a cloud-based environment;



FIG. 6 depicts an abstract example of events as received by synchronization clients illustrating some scenarios in which race condition handling techniques described herein may be applied;



FIG. 7 depicts a block diagram illustrating an example system showing select components described in relation to FIG. 6 on the client side of the cloud-based platform for incrementally updating a remote client with occurred events or actions;



FIG. 8 depicts a flowchart illustrating an example process for race condition handling in a system that incrementally updates remote clients at devices with events that occurred via the platform;



FIG. 9 depicts a flowchart illustrating further example details of the process of FIG. 8;



FIG. 10 depicts a flowchart illustrating another example process for race condition handling in a system that incrementally updates remote clients at devices with events that occurred via the platform;



FIG. 11 depicts a flowchart illustrating further example details of the process of FIG. 10; and



FIG. 12 depicts a diagrammatic representation of a machine in the example form of a computer system within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, can be executed.





The same reference numbers and any acronyms identify elements or acts with the same or similar structure or functionality throughout the drawings and specification for ease of understanding and convenience.


DETAILED DESCRIPTION

Techniques are disclosed for race condition handling in a system which incrementally updates remote clients with events that occurred in a cloud-enabled platform. More specifically, some embodiments disclosed herein provide systems and methods for handling race conditions in a synchronization client, for example, when it receives updates from a cloud-based platform (e.g., via an action log framework (ALF), described further below). In one embodiment, a method comprises, in response to an event received at a synchronization client which indicates a modification to an item, comparing a sequence identifier of the item in the event with a current sequence identifier of the item. The sequence identifier of the item can be numeric and can monotonically increase as a state of the item changes. The method further comprises, if the sequence identifier in the event is larger than the current sequence identifier of the item, determining a difference between the item's state as represented in the event and a current state of the item. Then, based on the difference, at least one synchronization step to update the current state of the item to the item's state as represented in the event can be generated. In some embodiments, if the difference does not exist, the current sequence identifier of the item to the sequence identifier of the item in the event can be updated. In some embodiments, if the sequence identifier in the event is not larger than the current sequence identifier of the item, the event is discarded.


Among other benefits, the disclosed techniques can handle potential race conditions when ALF events are received out-of-order, thereby ensuring the correctness of data resulted from those events delivered to the synchronization client. In particular, some embodiments can operate in a way such that all possible race conditions must be accounted for, and generally no approximations are made. Additionally, some embodiments can be easily tunable for performance of individual components to maximize the responsiveness to the user. Also, the disclosed embodiments can be capable of accommodate throttling in order to ensure that too much processing or other device resources is consumed. Overall, the disclosed techniques can improve correctness, performance, and throttlability of a system which incrementally updates clients with events that occurred in the cloud-based platform.


The following description and drawings are illustrative and are not to be construed as limiting. Numerous specific details are described to provide a thorough understanding of the disclosure. However, in certain instances, well-known or conventional details are not described in order to avoid obscuring the description. References to one or an embodiment in the present disclosure can be, but not necessarily are, references to the same embodiment; and, such references mean at least one of the embodiments.


Reference in this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Moreover, various features are described which can be exhibited by some embodiments and not by others. Similarly, various requirements are described which can be requirements for some embodiments but not other embodiments.


The terms used in this specification generally have their ordinary meanings in the art, within the context of the disclosure, and in the specific context where each term is used. Certain terms that are used to describe the disclosure are discussed below, or elsewhere in the specification, to provide additional guidance to the practitioner regarding the description of the disclosure. For convenience, certain terms can be highlighted, for example using italics and/or quotation marks. The use of highlighting has no influence on the scope and meaning of a term; the scope and meaning of a term is the same, in the same context, whether or not it is highlighted. It will be appreciated that same thing can be said in more than one way.


Consequently, alternative language and synonyms can be used for any one or more of the terms discussed herein, nor is any special significance to be placed upon whether or not a term is elaborated or discussed herein. Synonyms for certain terms are provided. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification including examples of any terms discussed herein is illustrative only, and is not intended to further limit the scope and meaning of the disclosure or of any exemplified term. Likewise, the disclosure is not limited to various embodiments given in this specification.


Without intent to limit the scope of the disclosure, examples of instruments, apparatus, methods and their related results according to the embodiments of the present disclosure are given below. Note that titles or subtitles can be used in the examples for convenience of a reader, which in no way should limit the scope of the disclosure. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. In the case of conflict, the present document, including definitions will control.



FIG. 1 illustrates an example diagram of a system having improved race condition handling in providing a cloud-based service, collaboration and/or cloud storage platform that incrementally updates remote clients at devices with events that occurred via the platform. As shown in FIG. 1, a host server 100 of a cloud-based service, collaboration and/or cloud storage platform can incrementally update remote synchronization clients (e.g., clients 110, 120, 130, 140, 160, 170) at devices 102 with events that occurred via the platform hosted by the server 100.


The client devices 102 can be any system and/or device, and/or any combination of devices/systems that is able to establish a communication or a connection, including wired, wireless, cellular connections with another device, a server and/or other systems such as host server 100 and/or a notification server 150. Client devices 102 typically include a display and/or other output functionalities to present information and data exchanged between among the devices 102, the notification server 150, and/or the host server 100.


For example, the client devices 102 can include mobile, hand held or portable devices or non-portable devices and can be any of, but not limited to, a server desktop, a desktop computer, a computer cluster, or portable devices including, a notebook, a laptop computer, a handheld computer, a palmtop computer, a mobile phone, a cell phone, a PDA, a smart phone (e.g., a BlackBerry device such as BlackBerry Z10/Q10, an iPhone, Nexus 4, etc.), a Treo, a handheld tablet (e.g. an iPad, iPad Mini, a Galaxy Note, Galaxy Note II, Xoom Tablet, Microsoft Surface, Blackberry PlayBook, Nexus 7, 10 etc.), a phablet (e.g., HTC Droid DNA, etc.), a tablet PC, a thin-client, a hand held console, a hand held gaming device or console (e.g., XBOX live, Nintendo DS, Sony PlayStation Portable, etc.), mobile-enabled powered watch (e.g., iOS, Android or other platform based), Google Glass, a Chromebook and/or any other portable, mobile, hand held devices, etc. running on any platform or any operating system (e.g., Mac-based OS (OS X, iOS, etc.), Windows-based OS (Windows Mobile, Windows 7, Windows 8, etc.), Android, Blackberry OS, Embedded Linux platforms, Palm OS, Symbian platform, Google Chrome OS, and the like. In one embodiment, the client devices 102, host server 100, and/or the notification server 150 (e.g., a server hosting application 120) are coupled via a network 106. In some embodiments, the devices 102 and host server 100 and/or notification server 150 may be directly connected to one another.


The input mechanism on client devices 102 can include touch screen keypad (including single touch, multi-touch, gesture sensing in 2D or 3D, etc.), a physical keypad, a mouse, a pointer, a track pad, motion detector (e.g., including 1-axis, 2-axis, 3-axis accelerometer, etc.), a light sensor, capacitance sensor, resistance sensor, temperature sensor, proximity sensor, a piezoelectric device, device orientation detector (e.g., electronic compass, tilt sensor, rotation sensor, gyroscope, accelerometer), or a combination of the above.


Signals received or detected indicating user activity at client devices 102 through one or more of the above input mechanism, or others, can be used by various users or collaborators (e.g., collaborators 108) for accessing, through network 106, a web-based collaboration environment or online collaboration platform (e.g., hosted by the host server 100). The collaboration environment or platform can have one or more collective settings 125 for an enterprise or an organization that the users belong, and can provide an user interface 104 for the users to access such platform under the settings 125.


The collaboration platform or environment hosts workspaces with work items that one or more users can access (e.g., view, edit, update, revise, comment, download, preview, tag, or otherwise manipulate, etc.). A work item can generally include any type of digital or electronic content that can be viewed or accessed via an electronic device (e.g., device 102). The digital content can include .pdf files, .doc, slides (e.g., Powerpoint slides), images, audio files, multimedia content, web pages, blogs, etc. A workspace can generally refer to any grouping of a set of digital content in the collaboration platform. The grouping can be created, identified, or specified by a user or through other means. This user may be a creator user or administrative user, for example.


In general, a workspace can be associated with a set of users or collaborators (e.g., collaborators 108) which have access to the content included therein. The levels of access (e.g., based on permissions or rules) of each user or collaborator to access the content in a given workspace may be the same or may vary among the users. Each user may have their own set of access rights to every piece of content in the workspace, or each user may be different access rights to different pieces of content. Access rights may be specified by a user associated with a workspace and/or a user who created/uploaded a particular piece of content to the workspace, or any other designated user or collaborator.


In general, the collaboration platform allows multiple users or collaborators to access or collaborate efforts on work items such each user can see, remotely, edits, revisions, comments, or annotations being made to specific work items through their own user devices. For example, a user can upload a document to a workspace for other users to access (e.g., for viewing, editing, commenting, signing-off, or otherwise manipulating). The user can login to the online platform and upload the document (or any other type of work item) to an existing workspace or to a new workspace. The document can be shared with existing users or collaborators in a workspace.


In general, network 106, over which the client devices 102 and the host server 100 communicate may be a cellular network, a telephonic network, an open network, such as the Internet, or a private network, such as an intranet and/or the extranet, or any combination or variation thereof. For example, the Internet can provide file transfer, remote log in, email, news, RSS, cloud-based services, instant messaging, visual voicemail, push mail, VoIP, and other services through any known or convenient protocol, such as, but is not limited to the TCP/IP protocol, Open System Interconnections (OSI), FTP, UPnP, iSCSI, NSF, ISDN, PDH, RS-232, SDH, SONET, etc.


The network 106 can be any collection of distinct networks operating wholly or partially in conjunction to provide connectivity to the client devices 102 and the host server 100 and may appear as one or more networks to the serviced systems and devices. In one embodiment, communications to and from the client devices 102 can be achieved by, an open network, such as the Internet, or a private network, such as an intranet and/or the extranet. In one embodiment, communications can be achieved by a secure communications protocol, such as secure sockets layer (SSL), or transport layer security (TLS).


In addition, communications can be achieved via one or more networks, such as, but are not limited to, one or more of WiMax, a Local Area Network (LAN), Wireless Local Area Network (WLAN), a Personal area network (PAN), a Campus area network (CAN), a Metropolitan area network (MAN), a Wide area network (WAN), a Wireless wide area network (WWAN), or any broadband network, and further enabled with technologies such as, by way of example, Global System for Mobile Communications (GSM), Personal Communications Service (PCS), Bluetooth, WiFi, Fixed Wireless Data, 2G, 2.5G, 3G (e.g., WCDMA/UMTS based 3G networks), 4G, IMT-Advanced, pre-4G, LTE Advanced, mobile WiMax, WiMax 2, WirelessMAN-Advanced networks, enhanced data rates for GSM evolution (EDGE), General packet radio service (GPRS), enhanced GPRS, iBurst, UMTS, HSPDA, HSUPA, HSPA, HSPA+, UMTS-TDD, 1xRTT, EV-DO, messaging protocols such as, TCP/IP, SMS, MMS, extensible messaging and presence protocol (XMPP), real time messaging protocol (RTMP), instant messaging and presence protocol (IMPP), instant messaging, USSD, IRC, or any other wireless data networks, broadband networks, or messaging protocols.


A diagrammatic illustration of the cloud-based environment (e.g., collaboration environment) and the relationships between workspaces and users/collaborators are illustrated with further reference to the example of FIG. 2. A diagrammatic illustration of a workspace having multiple work items with which collaborators can access through multiple devices is illustrated with further reference to the example of FIG. 3A.


Embodiments of the present disclosure provide enhanced ability for race condition handling in a system that updates or informs remote clients 110-170 on user devices 102 based on events, actions, or changes (e.g., from user edits, updates, comments, etc.) that occurred in the cloud environment hosted by the host server 100.


In general, multiple users collaborate in the cloud-based environment hosted by server 100, and the user devices 102 of these users need to be appropriately updated such that the most current versions of data/content are synchronized with the relevant user devices and that notification of events are sent to the relevant devices/users in a timely and orderly fashion. Any given user can utilize any number and types of clients (e.g., synchronization client, real time web client, mobile synchronization client, mobile application, email client, server synchronization client, etc.) at any given time. Thus, the host server 100 and the remote synchronization clients 110-170 described herein together can implement the disclosed techniques in facilitating the orderly synchronizing or updating of the remote clients 110-170 which a given user/collaborator may use to access the cloud platform via any number of user devices 102.


In general, when a user action takes place, the user action is processed (e.g., as described in FIGS. 4A-4B below) to become a plurality of event entries each corresponding to a collaborator 175, and each event entry can be read by a remote client of the collaborator to reflect the user action.


Specifically, it is recognized in the disclosed embodiments that, although current implementations of the host server 100 already employs some mechanisms for solving out-of-order event problems (e.g., the revision ID, explained below, which can make sure the events can be written into the queue from which the client reads in a correct order), errors and/or race conditions can still take place on the client when the events arrive at the client in an out-of-order manner when they are delivered from the queue to the client.


Accordingly, the present embodiments of the synchronization client (e.g., client 110) can ensure the correctness of the synchronized tree and other synchronized items (e.g., folders or files) completely independent from the order in which the client receives events from the action log framework (“ALF”) system. In other words, so long as the ALF system correctly delivers all events to the synchronization client, the synchronization client can end up in the correct final state.


More implementation details regarding the synchronization clients 110-170, the host server 100, the repository 130, distributed data cluster 180, and various techniques in implementing race condition handling are discussed below.



FIG. 2 depicts an example diagram of a web-based or online collaboration platform deployed in an enterprise or other organizational setting 250 for organizing work items 215, 235, 255 and workspaces 205, 225, 245.


The web-based platform for collaborating on projects or jointly working on documents can be used by individual users and shared among collaborators. In addition, the collaboration platform can be deployed in an organized setting including but not limited to, a company (e.g., an enterprise setting), a department in a company, an academic institution, a department in an academic institution, a class or course setting, or any other types of organizations or organized setting.


When deployed in an organizational setting, multiple workspaces (e.g., workspace A, B C) can be created to support different projects or a variety of work flows. Each workspace can have its own associate work items. For example, workspace A 205 can be associated with work items 215, workspace B 225 can be associated with work items 235, and workspace N can be associated with work items 255. The work items 215, 235, and 255 can be unique to each workspace but need not be. For example, a particular word document can be associated with only one workspace (e.g., workspace A 205) or it can be associated with multiple workspaces (e.g., Workspace A 205 and workspace B 225, etc.).


In general, each workspace has a set of users or collaborators associated with it. For example, workspace A 205 is associated with multiple users or collaborators 206. In some instances, workspaces deployed in an enterprise can be department specific. For example, workspace B can be associated with department 210 and some users shown as example user A 208 and workspace N 245 can be associated with departments 212 and 216 and users shown as example user B 214.


Each user associated with a workspace can generally access the work items associated with the workspace. The level of access depends on permissions associated with the specific workspace, and/or with a specific work item. Permissions can be set for the workspace or set individually on a per work item basis. For example, the creator of a workspace (e.g., one of user A 208 who creates workspace B) can set one permission setting applicable to all work items 235 for other associated users and/or users associated with the affiliate department 210, for example. Creator user A 208 can also set different permission settings for each work item, which can be the same for different users, or varying for different users.


In each workspace A, B . . . N, when an action is performed on a work item by a given user or any other activity is detected in the workspace, other users in the same workspace can be notified (e.g., in real time or in near real time, or not in real time). Activities which trigger real time notifications can include, by way of example but not limitation, adding, deleting, or modifying collaborators in the workspace, uploading, downloading, adding, deleting a work item in the workspace, creating a discussion topic in the workspace.


In some embodiments, items or content downloaded or edited can cause notifications to be generated. Such notifications can be sent to relevant users to notify them of actions surrounding a download, an edit, a change, a modification, a new file, a conflicting version, an upload of an edited or modified file.


In one embodiment, in a user interface to the web-based collaboration platform where notifications are presented, users can, via the same interface, create action items (e.g., tasks) and delegate the action items to other users including collaborators pertaining to a work item 215, for example. The collaborators 206 can be in the same workspace A 205 or the user can include a newly invited collaborator. Similarly, in the same user interface where discussion topics can be created in a workspace (e.g., workspace A, B or N, etc.), actionable events on work items can be created and/or delegated/assigned to other users such as collaborators of a given workspace 206 or other users. Through the same user interface, task status and updates from multiple users or collaborators can be indicated and reflected. In some instances, the users can perform the tasks (e.g., review or approve or reject, etc.) via the same user interface.



FIG. 3A depicts an example diagram of a workspace 302 in an online or web-based collaboration environment accessible by multiple collaborators 322 through various devices.


Each of users 316, 318, and 320 can individually use multiple different devices to access and/or manipulate work items 324 in the workspace 302 with which they are associated with. For example users 316, 318, 320 can be collaborators on a project to which work items 324 are relevant. Since the work items 324 are hosted by the collaboration environment (e.g., a cloud-based environment), each user can access the work items 324 anytime, and from any physical location using any device (e.g., including devices they own or any shared/public/loaner device).


Work items to be edited or viewed can be accessed from the workspace 302. Users can also be notified of access, edit, modification, and/or upload related-actions performed on work items 324 by other users or any other types of activities detected in the workspace 302. For example, if user 316 modifies a document, one or both of the other collaborators 318 and 320 can be notified of the modification in real time, or near real-time, or not in real time. The notifications can be sent through any of all of the devices associated with a given user, in various formats including, one or more of, email, SMS, or via a pop-up window in a user interface in which the user uses to access the collaboration platform. In the event of multiple notifications, each notification can be depicted preferentially (e.g., ordering in the user interface) based on user preferences and/or relevance to the user (e.g., implicit or explicit).


For example, a notification of a download, access, read, write, edit, or uploaded related activities can be presented in a feed stream among other notifications through a user interface on the user device according to relevancy to the user determined based on current or recent activity of the user in the web-based collaboration environment.


In one embodiment, the notification feed stream further enables users to create or generate actionable events (e.g., as task) which are or can be performed by other users 316 or collaborators 322 (e.g., including admin users or other users not in the same workspace), either in the same workspace 302 or in some other workspace. The actionable events such as tasks can also be assigned or delegated to other users via the same user interface.


For example, a given notification regarding a work item 324 can be associated with user interface features allowing a user 316 to assign a task related to the work item 324 (e.g., to another user 316, admin user 318, creator user 320 or another user). In one embodiment, a commenting user interface or a comment action associated with a notification can be used in conjunction with user interface features to enable task assignment, delegation, and/or management of the relevant work item or work items in the relevant workspaces, in the same user interface.



FIG. 3B depicts an abstract diagram illustrating an example data structure of the folders and files in the workspace 302 of FIG. 3A. As illustrated in FIG. 3B, work items 324 of FIG. 3A can be further organized into groups using one or more folders 342 within workspace 302. The folders 342 can have more than one levels of hierarchy including, for example, parent/ascendant folder(s), child/descendant folder(s) or subfolder(s), and/or sibling folder(s). A person having ordinary skill in the art will understand that terminologies describing the hierarchy of the folders are used in a relative sense. For example, a parent folder can be a child folder of a grandparent folder, a particular child folder can be a parent folder of a grandchild folder, and so on. It is noted that the illustration of the folders are merely exemplary; depending on the embodiments, there can be more than one level of hierarchy between the illustrated folders.


Further, in some of the present embodiments, the synchronization state of a folder can be: (i) synchronized, (ii) partially synchronized, or (iii) unsynchronized. For purposes of discussion herein, a folder is synchronized when all items (e.g., folders and files) under the folder are synchronized. Likewise, a folder is unsynchronized when all items (e.g., folders and files) under the folder are unsynchronized. A folder is partially synchronized when it is neither synchronized nor unsynchronized.



FIG. 4A depicts an example system block diagram showing the interaction between server-side components for incrementally updating a remote client with events or actions that occurred via a cloud-based platform.


The server-side includes front end components 402A-N, a database 410, a dispatcher 430, one or more processors 440A-N, and a second database (e.g., HBase 460). The front end components 402A-N can interface with client devices/end user devices to detect/identify actions or transactions or events. The data or file change that occur as a result of the event is effectuated in the database 410 of the cloud-enabled platform (e.g., the relevant changes are made in the file table 411 of the database).


Depending on the type of action or event, an action log entry can be created and stored in the action log table or action log 416. In general, the front end 402 determines whether an action log entry is created from a given action or transaction. In general, an action log entry can be created for an action or event if certain durability requirements are to be met. The dispatcher 430 reads the action log entries from the action log 416 and sends them to the processors 440A-N where the fan-out, or collaborators to be notified of the event or to receive the file/data change as a result of the event is determined. Based on the computed fan-out or identified collaborators, the processors 440A-N writes the events/transactions to the relevant queues in the second database 460, from which remote clients can read.


It is noted also that the action log 416, the dispatcher 430, the processors 440A-N, the HBase 460, and one or more real time clients 470A-N (see FIG. 4B) are generally referred to as an “action log framework (ALF) 490.” More specifically, HBase 460 is a primary data repository of the ALF 490. User actions initiated (e.g., via the webapp or the API) result in rows (or action log entries) being written to the action log 416 (or action log table 416). Then, in some embodiments, the action log entries are read from action log 416 by the ALF dispatcher 430, de-normalized into separate entries per user that needs to be notified of the action by an ALF processor (e.g., processor 440A), and written to the HBase 460. The HBase 460 is in turn read (e.g., via an API web service call) by real time clients 470A-N to notify a collaborator of the new change.



FIG. 4B depicts an example block diagram showing the interaction of remote clients 470A-N and 480A-N with a distributed database cluster 460 for incremental updates of events/actions which occurred at a cloud-based environment. The remote clients can include, for example real time clients 470A-N (e.g., real-time web clients launched via a web browser, mobile application), and synchronization clients 480A-N (e.g., desktop synchronization, mobile synchronization, server synchronization, etc.) that users or collaborators use to interface/access the cloud-based platform including, but not limited to, a collaboration environment. Other types of clients may also read from the database cluster 460.


The queues in the database 460 (e.g., the distributed database cluster) are usually client type specific. For example, each queue is for a given client type for one given user. So, a user ‘A’ may have a synchronization client queue that all of the synchronization clients that user “A” uses reads from since user “A” may have multiple devices on which synchronization clients are installed. In general, the queues for clients in the database 460 are read only queues such that multiple clients can read from the same queue without making modifications. In this manner, if a user utilizes multiple synchronization clients, each client can still receive and detect the respective updates such that multiple devices can be synchronized. The remote clients also typically individually track the location in the queue from which they last read such that only the most recent events are updated at the client, and that the events read from a queue is specific to a given client, dependent on what has previously been synchronized or read.


In one embodiment, synchronization clients 480 connect to both real-time 470 and API front end 490 machines. The real time machines 470 can notify a synchronization client 480 when there has been an update in a user's account. The synchronization client 480 can then connect to API front end machine 490 to obtain the actual change/content. Alternatively, in some instances, the synchronization clients 480 can also obtain the changes/content/updates from the real time machines 470 simultaneous with the notification, or after being notified.



FIG. 5 depicts an example system block diagram showing action log entries 516 recorded from actions/interactions on or with files/content 511 stored in a database 510 of a cloud-based environment.


The front ends 502A-N detect, identify, or receive the various actions or events on data or content performed by users or collaborators in a cloud-based environment. For example, events/actions can include by way of example but not limitation, file renames, file uploads/downloads, file edits, comments, etc. Based on the type of event, the front end 502 determines whether the action/event is to be created into a log entry to be stored in the action log 516. In creating a log entry, each action/event is recorded as a transaction with the file system change for asynchronous processing. In recording the transaction, the relevant file/folder row in the file 511 of the database 510 is inserted, updated, deleted, or otherwise modified according to the action. In one embodiment, the row is inserted in to the action log table 516 simultaneously with the write to the file 511 and also with the performance of action itself. Note that each entry includes an owner ID 514 in the file 511 and in the action log 516 to represent the owner of the item upon which an action occurred.


In one embodiment, action log entries are created in the same database 510 as the file table 511 such that file/content rollback can be performed if the file/data/content change results in an error or failure. As such, the action log entry creation in the action log table 516 can be created, in part, to meet durability (e.g., longevity) requirements of a given event/transaction (e.g., write events, or other edit events typically have higher durability requirements than a comment event, or a share event, etc.).


Action log entries can be created for select types of events or all events. For example, events/transactions such as file renames, file uploads may have higher durability requirements than a comment event, or a share event, in a sense that the changes from a file rename/file upload need to be maintained and updated at various respective clients for the relevant collaborators and the implication for missing a file rename or file upload is potentially more severe than missing a comment event or a share event, etc.


In general, action log entries are generally created for actions/events with higher durability requirements. Such a determination can be made by the front ends 502 as to whether a given event type is to be writing into the action log table 516. Action log entries may also be created for all events with durability requirements carried out downstream at event queues stored in the second database (e.g., the database 460 of FIG. 4B). Table 516 shows the action log entries created from the events stored in the file table 511.


The action log entries can be identified by the action ID 517. In addition, each action log entry can be associated with a user (e.g., owner) identifier 518, a data entry 519, and/or a revision identifier 520. The user identifier 518 can identify a user who is to a recipient as a result of an event (e.g., upload file to User 1). The owner identifier 518 represents the owner of the item upon which an action (e.g., represented by action ID 517) occurred and in general, each work item has no more than one owner. The data field 519 can identify the type of action/event (e.g., rename, upload, edit, comment, share, send, download, etc.).


The revision identifier 520 can indicate the version of any change made to a given file (e.g., edit, rename, upload, etc.). In one embodiment, the revision identifier 520 is derived from version tracking mechanisms (e.g., via revision ID 515) inherent to the database 510. The revision identifier 520 can used by remote clients to resolve conflicts in view of potentially conflicting events/transactions. For example, if a file is re-named twice and both events are synchronized/updated at a remote client, the client can use the rename event associated with the latest revision ID to make the necessary updates. This can ensure that the client is updated with the most current change regardless of when the events are read from the queue. Thus, even if the two rename events are writing to the queue for the client out of order, the client can still make the ‘correct’ update using the revision ID in case of conflicting changes.



FIG. 6 depicts an abstract example of events as received by synchronization clients (or “synchronization client”) illustrating some scenarios in which race condition handling techniques described herein may be applied. The events received by synchronization clients (e.g., synchronization client 480A) from the ALF system (e.g., ALF 490) is depicted as entries 611-616 (in the chronological order which they are received) in a table of received events 610. For simplicity, not all of the following described race condition scenarios are depicted in table 610. It is also noted that, in the following description, implementation of the disclosed techniques may be discussed from either the server 100's or the synchronization client 480A's perspective for simplicity; however, a person having ordinary skill in the art will know that the techniques disclosed herein can be adapted to perform on any suitable component.


As aforementioned, although the host server 100 already employs one or more mechanisms (e.g., the revision ID which can make sure the events can be written into the queue from which the client reads in a correct order) for solving out-of-order event problems, errors and/or race conditions can still take place on the client when the events arrive at the client in an out-of-order manner when they are delivered from the queue to the client.


Accordingly, embodiments of the present disclosure include systems and methods for handling action log framework race conditions which can take place, for example, on a synchronization client when being updated about events from a cloud-based platform. In one embodiment, synchronization client implementing the disclosed techniques can maintain the correctness of synchronized items (e.g., files, folders, folder tree structure, etc.) completely independent from the order in which the client receives events from the action log framework (“ALF”) system. That is to say, so long as the ALF system correctly delivers all events to the synchronization client, the synchronization client can reach the correct final state.


More specifically, it is recognized in the present disclosure that the potential race conditions presented by the aforementioned ALF system 490 can fall into one or more of the following example categories: (I) single item race conditions, (II) impossible event sequence race conditions, or (III) folder tree materialization race conditions.


Single Item Race Conditions


The single item race conditions can occur when two events that modify the same field on a given item are received out-of-order. For example, suppose that there is a file X and receive two rename events (e.g., events 611 and 612) for that file, the first (e.g., event 612) indicating that the file should be renamed to Y and the second (e.g., event 611) indicating that the file should be renamed to Z. If the two rename events were received out-of-order and were applied without discretion, then the final name of the file on the synchronization client would be Y, which would be incorrect.


In accordance with the present embodiments, in response to an event received at a synchronization client which indicates a modification to an item, the synchronization client 480A can compare a sequence identifier of the item in the event with a current sequence identifier of the item. Specifically, the synchronization client can resolve the above scenario using a sequence identifier (Sequence_ID) attached to every item (e.g., a file object or a folder object) on the cloud-based platform (e.g., on workspace 302). An item's Sequence_ID field can monotonically increase when an item's core properties change. For example, the Sequence_ID can be incremented every time the file or folder's name, parent folder, or checksum (e.g., as result of content change) is changed on the cloud-based platform. In this way, the Sequence_ID can provide a monotonically increasing version identifier for the item.


Thus, when processing the renames from the above example, the synchronization client 480A can see that the rename to Z (e.g., of event 611) has a higher Sequence_ID than the rename to Y (e.g., of event 612) and thus that the final name of the item should be Z.


Further, it is observed that since the system uses one Sequence_ID for an item (e.g., a folder/file) as a whole rather than separate Sequence_IDs for each individual property or field of the object. If the system attempts to simply pass through events with higher Sequence_IDs and drop those events with lower Sequence_IDs, any out of order events may block all previous events from being executed even if the events are to modify different fields or properties. For example, an out-of-order rename might block a move, which can cause the item's final parent folder to be incorrect.


As such, in some embodiments, the synchronization client 480A can first compare the Sequence_ID for an incoming event to the current Sequence_ID of the item that event changes; if the Sequence_ID of the event is lower, then the event may be dropped, but if the Sequence_ID of the event is higher, the synchronization client 480A then can differentiates the state of the item in the event with a current state of the item, and the synchronization client 480A can generate one or more events that are deemed necessary to bring the two states in synchronization. Specifically, in some embodiments, the synchronization client 480A can determine a difference between the item's state as represented in the event and a current state of the item if the sequence identifier in the event is larger than the current sequence identifier of the item, and then, the synchronization client 480A can generate at least one synchronization step to update the current state of the item to the item's state as represented in the event based on the difference.


Moreover, one case of the single item race condition can occur when a field is changed to a new value and then subsequently changed back to its original value, and these two events are received out-of-order. An example of this is illustrated as event 615 where item 38's value is changed from A to B back to A. Assuming the event is updating item 38 to a state which appears to be the same as the current state of item 38 and the Sequence_ID of event 615 is higher than that of the current Sequence_ID for item 38, when the synchronization client 480A receives the higher Sequence_ID event, it might see that there is no difference between the current state of the item and the state of the item in the event, and thus it may determine that there are no events required to bring the two states in synchronization. Were it to respond by simply dropping the event, when it subsequently received the lower Sequence_ID event (e.g., event 616), it would see this event as having a higher Sequence_ID and generate an event to make the corresponding change (e.g., on the file system), resulting in the item moving into an incorrect state.


Accordingly, some embodiments of the synchronization client 480A can update the current sequence identifier of the item to the sequence identifier of the item in the event if there is no difference resulted from the comparison. For example, the synchronization client 480A can handle this scenario by generating an event (e.g., a “touch event,” not shown in FIG. 6 for simplicity) to bump/update the Sequence_ID on an item (e.g., from 6 to 8) when it encounters an ALF event for which no other change is required. Once the touch event has been generated, the synchronization client 480A can properly drop the lower Sequence_ID event (e.g., event 616 with Sequence_ID's value being only 7) as reflecting an earlier state of the item.


Another example case of the single item race condition can occur when a delete event (e.g., event 613) for an item is received out of order with the create event (e.g., event 614) for the item. In this scenario, when the synchronization client 480A receives the delete event, there is no action required (e.g., on the files system of client 480A) but there is also no item on the synchronization client 480A for which to send an aforementioned touch event to bump/update the Sequence_ID. As in the previous example, the synchronization client 480A should not simply drop the delete event 613 because it would then incorrectly create the item when it later receives the create event 614.


Accordingly, in some embodiments, the synchronization client 480A can generate a create event (not shown in FIG. 6 for simplicity) for the deleted item that marks the item as deleted. Specifically, in an additional or alternative embodiment, if the modification is deletion and if the item does not exist, the synchronization client 480A can generate a creation event for the item with a mark which indicates the item as deleted. In this way, the generated creation event is treated as a no-op by the file system on the synchronization client 480A but allows the synchronization client 480A to persist the Sequence_ID of the item at the point when it was deleted. The create event 614 is then filtered out as usual for lower Sequence_ID events.


Impossible Event Sequence Race Conditions


Impossible event sequence race conditions may occur when events are provided by the ALF system 490 to the synchronization client 480A in an order that is impossible for the synchronization client 480A to apply to the file system (e.g., where the synchronization client 480A is located) while still observing some of the standard file system rules. Examples of these rules can include an item cannot be added to a folder that does not exist, no two items in the same folder can have the same name. Another example rule is that a non-empty folder cannot be deleted.


In some embodiments, after the synchronization client 480A has determined that an event represents a future state of the item and has manufactured the corresponding events that need to be applied on the opposite file system (e.g., in ways described above), it passes each event through an event filter pipeline, which can check if the event is consistent with the current state of the file system.


If the event fails any of the required checks, the event can be buffered until more events are received and the aggregate can potentially successfully pass though the filter (e.g., when a subsequent event modifies the same item as or an related item of the buffered event), at which point the buffered event is retried and potentially re-buffered if it still fails the checks. Further, in some implementations, if an event remains buffered in the event filter pipeline for longer than a configurable maximum time limit, the event filter pipeline can drop the event, and some embodiments of the synchronization client 480A may report that a full scan of file/folder status within the synchronization scope is required to resolve the inconsistency.


Tree Materialization Race Conditions


Tree materialization race conditions can occur when an entire tree structure (of the folders) either enters or leaves the synchronization scope of a client without ALF events being generated for each item in the tree. With ALF system 490, scenarios in which this type of race condition may occur include, for example, a folder is synchronized or unsynchronized, copied into a synchronized folder, or moved into or out of a synchronized folder.


Specifically, the present embodiments recognized that, because it is desirable to minimize the amount of scanning (e.g., of tree structure) required for tree materialization or dematerialization, in each of the cases mentioned above, the above-mentioned ALF system 490 only generates one ALF event on the top-level folder of the tree that experienced the change. This can present two distinct problems. First, because events are not received for every item being added to or removed from the synchronization scope, the synchronization client 480A may need to perform at least some amount of scanning to create the correct tree, but there are a variety of race conditions that can occur. As such, in one implementation the synchronization client 480A can respond to all folder moves, copies, synchronization, and unsynchronizations by performing a full scan; however, it is noted that this can create a large amount of data traffic due to the scanning.


Second, current scans to materialize or de-materialize the tree do not return enough information to completely protect the tree from being corrupted by those events which (i) occur in the tree before the materialization or dematerialization and (ii) are only received by the synchronization client 480A after the materialization or dematerialization. Specifically, the scans the current system employ do not return any information about the deleted or unsynchronized items in the scanned tree, and because the out-of-order nature, it is still possible to receive create events for these deleted and unsynchronized items after the scan has been performed. At that point, the synchronization client 480A may not have enough information to prevent it from re-creating the deleted or unsynchronized item, thereby corrupting the tree. An example scenario is as follows:


(1) An item in an unsynchronized tree is created and deleted in workspace 302, and the tree then becomes synchronized.


(2) The create event is somehow delayed so that the first event processed by the ALF system 490 is the delete event, which is not sent to the synchronization client 480A because the tree has not yet been synchronized.


(3) The tree becomes synchronized and the synchronization event is sent to the synchronization client 480A.


(4) The create event is processed by the ALF system 490 and is delivered to the synchronization client 480A since the tree is now synchronized.


(5) The synchronization client 480A receives the synchronization event and performs a scan of the synchronized tree. The scan does not return any information about the deleted item.


(6) The synchronization client 480A receives the create event for the deleted item. At this point, the client 480A has no knowledge that the item is deleted and the create event appears like any other create. The synchronization client 480A thus adds the deleted item to its tree erroneously.


In accordance with some embodiments, if the item is a folder and the modification results in the folder entering or leaving a synchronization scope of the synchronization client 480A, the synchronization client 480A can perform a scan of a tree structure of synchronized folders on the synchronization client 480A. In some examples, the scan can include information regarding all items deleted within a select time period of the scan. In one specific example, for deleted items, all items deleted within some time period X of the scan can be included in the scan result. This information can then be used to filter out any create events for these deleted items so that the create events that are received can become trustworthy if any of the events' appearance in the ALF stream has not been delayed by longer than X.


In additional or alternative examples, the scan can include information regarding all unsynchronized folders which are located inside a synchronized folder. Specifically, for creates that are delayed by longer than X, a scan of tree structure (e.g., the structure as shown in FIG. 3B) on the cloud-based platform (e.g., workspace 302) can be performed to ensure correctness. For unsynchronized items, information regarding all unsynchronized folders that are themselves inside of a synchronized folder is to be included in the scan results. Then, the information can be used to filter out any create event for these folders. Any create event inside their sub-trees (or subfolders) can be identified by a file system conflict filter of the synchronization client 480A and/or the host server 100 since their parent folders would not exist, thereby resulting in full scans. Accordingly, the scans in one or more of the above described embodiments can provide more information about deleted and unsynchronized items to the results returned from tree scans.


Additionally or alternatively, all events that occurred before the scan can be dropped. Specifically, some implementation of the synchronization client 480A can identify a timestamp of the scan, and discard all ALF events which occurred on the workspace 302 before the scan. This can prevent the synchronization client 480A from attempting to apply any create events for items that are deleted when the scan occurs, since based on logic those create events must have happened before the scan is performed. However, it is noted that clock skew between servers, event time resolution, and the time performing a scan on the cloud server 100 requires may reduce (sometimes significantly) the reliability of using the timestamp to determine whether an event has occurred in a given scan or not. It is also noted that this technique might not scale well with partial scans. When full scans are performed, the system only needs to keep track of the timestamp of the last full scan and can compare all event times against this timestamp. Once partial scans are performed, track timestamps for every sub-tree that has been partially scanned becomes necessary, and determining what sub-tree an event is in when it occurs for every event can be difficult.


Additional Examples of Optimization


The handling of folder move, copy, synchronization, and unsynchronization events can also be optimized so that the synchronization client 480A need not perform a full scan every time it receives one of these events. The following are some example techniques which the synchronization client 480A can employ.


A. Partial scans are performed instead of full scans.


It is recognized in the present disclosure that switching to partial scans of the affected sub-tree from full scans can cut down the cost of each scan.


However, several potential issues may need to be addressed in order to implement partial scans. For example, there may exist a race condition where, if a subfolder is synchronized and then moved to a new folder tree, and the synchronization client 480A performs the scan of the synchronized subfolder after the move has occurred, then the synchronization client 480A can end up with an incomplete synchronization tree. In this particular scenario, when the subfolder is initially synchronized, all the folder's descendants may become synchronized while all its ancestors may become partially synchronized, meaning that the folders files become synchronized but not other folders they contain.


Upon moving the synchronized folder to the new tree, the folder's new ancestors become partially synchronized while the folders old ancestors remain partially synchronized. Thus, the correct end result for the synchronization client is to have both the synchronized subfolder's old and new ancestors in its synchronization tree. However, if the synchronization client 480A does not perform the partial scan on the synchronized subfolder until after the subfolder has moved, the scan may only return information about the subfolder's current ancestors, leaving the synchronization client 480A with no information about the subfolder's old ancestors and thus rendering them unsynchronized.


In accordance with some embodiments, the synchronization client 480A can generate a synchronization event for a lowest partially synchronized folder in a given path when the last fully synchronized folder, which is a descendant folder in the path, is moved out from the path to a new path. It is recognized in the present disclosure that this may be the earliest instance for the synchronization client 480A to miss the partially synchronized path in its other scans, and the server 100 is already marking this folder in the database at this point to preserve its partially synchronized status.


Additionally, it is recognized that partial scans can also cause problems for synchronized trees with nested collaborations when the top-level collaboration is removed. Assuming the subfolder synchronized is below the lower level collaboration, the correct behavior in this scenario is for the partially synchronized folders above the lower level collaboration folder to disappear and the lower level collaboration folder to become the new root-level folder for the tree. However, just performing a scan on the former top-level folder can cause the entire tree to be deleted since the scan can return an empty tree; moreover, just performing a scan on the new top-level folder can result in that folder being moved to the root-level since it's impossible to infer ancestor deletes from a partial scan of a folder.


It is recognized in the present disclosure that the aforementioned transformation may require partial scans to be performed on both the former top-level collaborated folder as well as the current top-level collaborated folder. In accordance with some embodiments, the synchronization client 480A can initiate partial scans on both a former top-level collaborated folder and a current top-level collaborated folder if there exists nested collaborations and if the modification results in removal of a top-level collaboration.


It is noted, however, that introducing two events comes with a potential performance penalty since if the client 480A receives the unsynchronization event for the old top-level collaboration folder before receiving the synchronization event for the new top-level collaboration folder, the client 480A may delete the whole tree before re-downloading the portion it should keep.


B. Scans are performed only once per event.


In some embodiments, filtering can be used to detect duplicate folder move, copy, synchronization, and unsynchronization events so that scans only need to be performed on the first event received by the synchronization client 480A.


In some instances, Sequence_ID filtering can be used to detect duplicate events (e.g., folder move, copy, synchronization, or unsynchronization events), and the synchronization client 480A only perform scans only on a first event received. However, it is noted that because these events can affect entire sub-trees, the scan still needs to be performed even if the folder which the event occurred on has already reached a higher Sequence_ID state on the synchronization client. An example scenario explains this problem:


(1) A folder is created, a file is uploaded into that folder, the folder is synchronized, and then the folder is renamed.


(2) The upload event is processed first, before the folder has been synchronized, and is therefore not delivered to the synchronization client.


(3) The folder create and rename events are processed next, after the folder has been synchronized but before the synchronization event has been processed.


(4) The synchronization client would thus receive the create and rename events first and, if it performed filtering based on the Sequence_ID for the synchronization event, would drop them, resulting in the synchronization client missing the file uploaded into the folder.


As such, in one embodiment, the synchronization client 480A can employ a separate event de-duplication filter which can be based on Event_ID rather than Sequence_ID to resolve de-duplicating scan triggering events. For example, the filter can be a small cache of Event_IDs for recently seen events (or in some embodiments, recently seen scan triggering events in applications where more targeted de-duplication is preferred), allowing the synchronization client 480A to drop the events if it detects them being duplicative. It is also noted that restricting Sequence_IDs to never have gaps can mitigate the above described problem. As such, in one embodiment, the Sequence_ID logic as implemented in the synchronization client 480 can apply events once all previous events have been applied (e.g., by start incrementing the Sequence_ID for synchronization/unsynchronization events) instead of dropping old events as previously discussed.


C. Scans are not performed for moves of folders that the synchronization client already has locally.


In some embodiments, a scan is not be necessary for a folder move where the folder does not move into or out of synchronization scope. In these cases, the synchronization client 480A can receive events for all changes inside the tree and can, for example, move the current tree to its new destination if the tree already exists locally, or create the folder in its current location if it does not.


However, because events can arrive at the synchronization client 480A out of order, it may become difficult or sometimes event impossible to guarantee that, when a move occurs, the tree being moved has never been outside the synchronization scope. An example scenario explains this problem:


(1) A folder is unsynchronized and a file is then uploaded into that folder.


(2) The upload event is processed and is not delivered to the synchronization client because the folder is no longer synchronized. The unsynchronization event is delayed.


(3) The folder is moved into another synchronized folder. This move event is processed by the ALF system and received by the synchronization client while it still has both the old and new parents locally. This appears like a move within synchronization scope to the client and so the client would simply move the folder locally.


(4) The unsynchronization event is finally processed and sent to the synchronization client. The synchronization client unsynchronizes the old parent folder, but it is too late at this point for the synchronization client to realize that the previous move was actually a move into synchronization scope and required a scan. The file that was uploaded into the moved folder is thus never downloaded.


Accordingly, in some embodiments, the workspace 302 can log folder moves recursively instead of only on the top-level folder moved. This technique may remove the need for scans on moves in general, and the synchronization client 480A can use its state differentiating logic (as mentioned above) to determine whether any change is actually required in response to a move event. It is noted that, in these embodiments, move events are logged for recently deleted items as well, so that the move results exactly mimic the results of a scan. Also, in at least some of these embodiments, the de-duplicating logic is implemented on the server 110 (e.g., as compared to the synchronization client 480A). In addition, control over what constitutes recently deleted can be implemented on the server 100 (e.g., instead of the client 480A) since, in these embodiments, the server 100 decides for all clients (e.g., client 480A-480N) which events get logged and which do not.


In another implementation, scans for folder copy events can be reduced or removed completely through the aforementioned recursive logging technique since a brand new folder tree is created, and therefore there are no recently deleted items that need events logged.


D. Scans are not performed for unsynchronization events.


In some embodiments, upon receiving an unsynchronization event, the synchronization client 480A is implemented to respond by deleting the unsynchronized folder tree locally.


However, it is recognized in the present disclosure that the synchronization state of the tree depends on the precise order in which synchronization and unsynchronization events are executed on the tree, and that this ordering dependency stretches across different items in the tree. An example scenario explains this problem:


(1) The folder tree /A/B, /A/C is synchronized.


(2) Folder A is unsynchronized and Folder B is synchronized. The synchronized tree should become /A/B/


(3) If the synchronization client receives the unsynchronization event on A and then the synchronization event on B, it would delete the tree and then re-create it with its scan of B. However, if it received the unsynchronization event on A second, it would end up simply deleting the whole tree.


(4) If however, the unsynchronization event on A were actually executed second on the server, the final empty tree state would be the correct one.


E. Echoback moves do not result in any scans.


Similarly, in some embodiments, scans are not performed on echoback move events, since these events can only have been performed on the synchronization client 480A if both folders involved in the move had been synchronized on the client 480A when the move occurred. For purposes of discussion herein, “echoback events” are event representing the same modification to the item originates from the sync client, to the workspace, and comes back to the same sync client again.


However, similar to what is mentioned previously, simply because the two folders are synchronized on the synchronization client 480A when the move occurred does not necessarily result that they are synchronized on the cloud server 100 when the move occurred. That is to say, it is possible that the move is a move into synchronization scope, rather than a move within synchronization scope. Consequently, that event may have been missed on the moved tree while it was outside of synchronization scope, necessitating a scan.


In this way, the disclosed techniques can handle file system modification events (e.g., Creates, Edits, Moves, Renames, and Deletes) and thus can reduce or avoid race condition when updating the collaborators (e.g., of their synchronization clients).


Table I includes a list of example race conditions which can be used, for example, for verifying functionalities in implementing the race condition handling techniques disclosed herein.









TABLE 1







Example Race Conditions









Initial State
Events took
Events


in the Cloud
place on Cloud
Received by Client










A. Single Item Race Conditions









A/x
Rename A/x -> A/y
Rename A/x -> A/z



Rename A/y -> A/z
Rename A/z -> A/y


A/x
Rename A/x -> A/y
Rename A/x -> A/x



Rename A/y -> A/x
Rename A/x -> A/y


A/
Create A/x
Delete A/x



Delete A/x
Create A/x


A/
Create A/x
Delete A/y



Rename A/x -> A/y
Create A/x



Delete A/y
Rename A/x-> A/y







B. Name Conflicts









A/x, A/y
Move A/x -> B/
Rename A/x -> A/y


B/
Rename B/x -> B/y
Move A/y -> B/y


A/x, A/y
Move A/y -> B/
Rename A/x -> A/y


B/
Rename A/x -> A/y
Move A/y -> B/


A/x, A/y
Delete A/y
Rename A/x -> A/y



Rename A/x -> A/y
Delete A/y


A/x, A/y
Rename A/y -> A/z
Rename A/x -> A/y



Rename A/x -> A/y
Rename A/y -> A/z







C. Parentless Items









A/
Create A/B/
Create A/B/x



Create A/B/x
Create A/B/


A/x
Create B/
Move A/x -> B/x



Move A/x -> B/x
Create B/


A/
Restore B/
Restore B/x




Restore B/







D. Deletion of a Non-Empty Folder









A/x
Delete A/x
Delete A/



Delete A/
Delete A/x


A/x
Delete A/
Delete A/




Delete A/x







E. Synchronization/Unsynchronization









A/
Synchronization A/
Unsynchronization A/



Unsynchronization A/
Synchronization A/


A/
Unsynchronization A/
Synchronization A/



Synchronization A/
Unsynchronization A/


A/
Create A/x
Synchronization A



Delete A/x
Create A/x



Synchronization A
(delete never sent)


A/B/
Synchronization A
Unsynchronization B



Unsynchronization B
Synchronization A


A/B/
Synchronization B
Unsynchronization A



Unsynchronization A
Synchronization B


A/B/
Unsynchronization A
Synchronization B



Synchronization B
Unsynchronization A


A/B/, A/C
Unsynchronization A
Synchronization B



Synchronization B
Unsynchronization A


A/B/
Unsynchronization B
Synchronization A



Synchronization A
Unsynchronization B


A/
Create A/x
Unsynchronization A



Unsynchronization A
Create A/x


/
Create A/
Synchronization A/



Synchronization A/
Unsynchronization A/



Unsynchronization A/
Create A/


A/
Create A/B/
Unsynchronization A/B/



Unsynchronization A/B/
Create B/


A/
Create A/B/
Create A/B/



Rename A/B/ -> A/C/
Unsynchronization A/B/



Unsynchronization A/C/
Rename A/B -> A/C


A/B/
Move C/ -> A/B/
Unsynchronization C


C/
Unsynchronization C
Move C/ -> A/B/


A/B/
Unsynchronization C
Move C/ -> A/B/


C/
Move C/ -> A/B/
Unsynchronization C


A/B/
Unsynchronization A
Move A/B/ -> C


C/
Create A/B/x
Unsynchronization A



Move A/B/ -> C/
(create never sent)







F. Full Scan Timing









A/
Create A/x
Full Scan



Delete A/x
Create A/x



Full Scan
(delete never received)


A/
Create A/B/
Full Scan



Unsynchronization A/B/
Create A/B/



Full Scan
(unsynchronization never




received)







G. Partial Scan Timing









A/B/
Synchronization B/
Synchronization B/


C/
Move A/B/ -> C/
Partial Scan



Partial Scan
Move A/B/ -> C/










FIG. 7 depicts a block diagram illustrating an example system 700 showing select components described in relation to FIG. 6 on the client side (e.g., devices 102, FIG. 1) of the cloud-based platform for incrementally updating a remote client (e.g., client 110, FIG. 1; client 480A, FIGS. 4B and 5) with occurred events or actions, such as one hosted by the host server 100. With additional reference to FIGS. 1-3B, the race condition handling techniques which can employed by, for example, the synchronization client 480A are described.


The mobile device 700 can include, for example, a bus 702, and a memory 704 among other components. The memory 704 may include, among others, a synchronization client 780, which can include a raw event processor 782, a file system monitor 784, an event filter pipeline 785 with one or more event filters 785a, and an event buffer 786. The memory 704 can also include a communication module 706 that facilitates communication among the mobile device 700, the host server 100, and other components discussed herein (e.g., the ALF system 490) using any of the communication protocols that are supported. The memory 704 may also include other device modules (not shown in FIG. 7 for simplicity) such as a GPS module for determining and providing location information, text input module for accepting and processing inputs provided using different input mechanisms of the mobile device, and the like for handling various functions of the mobile device 700. It is noted that the aforementioned modules are intended for purposes of enabling the present embodiments, rather than limiting. As such, a person of ordinary skill in the art will understand that the present disclosure covers apparent alternatives, modifications, and equivalents (e.g., combining or separating the modules) made to the techniques described herein. Additional or less components/modules/engines can be included in the mobile device 700 and each illustrated component.


As used herein, a “module,” “a manager,” an “interface,” or an “engine” includes a general purpose, dedicated or shared processor and, typically, firmware or software modules that are executed by the processor. Depending upon implementation-specific or other considerations, the module, manager, interface, or engine can be centralized or its functionality distributed. The module, manager, interface, or engine can include general or special purpose hardware, firmware, or software embodied in a computer-readable (storage) medium for execution by the processor. As used herein, a computer-readable medium or computer-readable storage medium is intended to include all media that are statutory (e.g., in the United States, under 35 U.S.C. § 101), and to specifically exclude all media that are non-statutory in nature to the extent that the exclusion is necessary for a claim that includes the computer-readable (storage) medium to be valid. Known statutory computer-readable mediums include hardware (e.g., registers, random access memory (RAM), non-volatile (NV) storage, to name a few), but may or may not be limited to hardware.


The bus 702 is a subsystem for transferring data between the components of the mobile device 700. For example, the bus 702 facilitates the transfer of data between the memory 704 and other components of the mobile device such as the processor and/or the input/output components that utilize the data.


As previously mentioned, over all, the present embodiments can provide race condition handling capabilities to the synchronization client 780.


In one embodiment of the present disclosure, during normal operations, the synchronization client 780 can operate in one or both of two modes. When in a listening mode, a listener module 782a (e.g., as a thread running in the operating system of device 700) can receive new events reported from the host server 100 (e.g., via the ALF system) as these events occur, and the raw event processor 782 can process these events in manners described herein. During a startup phase of the synchronization client 780, or when there is an inconsistency (e.g., resulted from a potential violation of local file system rules), the synchronization client 780 may switch into a full scan mode, in which the full scanner 782b can request that all existing files and folders, for example, be retrieved from the workspace 302 (e.g., in host server 100) and turned into events.


According to some embodiments, the raw event processor 782 can receives events from the ALF system 490 which represents that a modification to an item (e.g., a file or a folder) has taken place on the workspace 302, and can function together with other components to process the received raw events, such as the generating of the aforementioned synchronization steps which can bring the state of the item as indicated in the received event and the current state of the item in synchronization (e.g., by selectively updating the current state) after deemed appropriate (e.g., by the file system monitor 784).


In a particular embodiment, the file system monitor 784 can cause the sync client 780 to receive (e.g., using the listener 782a) or to retrieve (e.g., using the full scanner 782b) events from the workspace 302 and to normalize those events (e.g., using aforementioned Sequence_ID or other techniques described herein) so that the events can be executed correctly. The file system monitor 784 can operate multiple processes to, for example, receive raw events with the listener 782a, retrieve events with the full scanner 782b, generate synchronization steps with the event processor 782, normalize events with the event filter pipeline 785, and control the operating status of the file system monitor 784 itself by responding to start, stop, pause, and resume, as well as transitioning between the aforementioned listen and full scan mode.


According to some embodiments, after an event indicating a modification to an item is received from the host server 100 (e.g., via the ALF system 490), the file system monitor 784 can initiate the event's processing by requesting the raw event processor 782 (e.g., the full scanner 782b or the listener 782a) to send that event through the event filter pipeline 785. Then, the event filter pipeline 785 can utilize one or more filters in the event filters 785a to identify whether execution of the event can cause violation of any local file system rule. Examples of these local file system rules can include: (1) an item cannot be added to a folder that does not exist; (2) no two items in the same folder can have the same name; and/or (3) a non-empty folder cannot be deleted. If the execution of the event can cause violation of any rule, the event filter pipeline can buffer the event in the event buffer 786 until a subsequent event arrives. The event filter pipeline 785 can then identify whether execution of an aggregate of the events is to violate any local file system rule. If the execution of the aggregate of the events is to violate any rule, the event filter pipeline 785 can continue to buffer the subsequent event until another subsequent event arrives. Additionally, in some implementations, if an event remains buffered in the event filter pipeline 785 for longer than a configurable maximum time limit, the event filter pipeline 785 can drop the event, and some embodiments of the synchronization client 780 may report (e.g., via the full scanner 782b) that a full scan of file/folder status within the synchronization scope is required to resolve the inconsistency.


Further, the result of this processing can be used to update the raw event processor 782 according to a set of transition rules. An example pseudocode describes this functionality is provided as follows:














def execute( ):


  # Setup the intial generator


  transition_generator(START)


  while not should_stop:


  # Grab the next event


  current_event = current_generator.next_event( )


  if current_event:


     # We have an event, so run it through the normalization


     pipeline


     result = normalize_event(current_event)


     # If there was an inconsistency, transition the current generator


     # Otherwise, continue with this generator


     if result is INCONSISTENCY:


        transition_generator(INCONSISTENCY)


  else:


     # The current generator is finished, so transition


     transition_generator(FINISHED)









It is noted that the current generator in the example psuedocode can be, in some examples, one or more threads that are operated by (e.g., the raw event processor 782 of) the file system monitor 784 in implementing the techniques described herein. Similarly, the transition generator in the example psuedocode can be, in some examples, one or more threads that are operated by (e.g., the event filter pipeline 785 of) the file system monitor 784 in implementing the techniques described herein.


Continuing with the psuedocode example, the current generator can be, for example, maintained using a finite state machine. One example of a default transition in such finite state machine can be as follows:














transition_rules = {


  # Always start with the full scanner


  START: FULL_SCANNER,


  # On inconsistency, both the full scanner and listener can restart the


  full scan


  INCONSISTENCY: {


   LISTENER: FULL_SCANNER,


   FULL_SCANNER: FULL_SCANNER,


  },


  # On finished, the full scanner can transition to listener, and the


  # listener can continue listening


  FINISHED: {


   LISTENER: LISTENER,


   FULL_SCANNER, LISTENER,


  },


}









And, an example of the state transition of the current generator, can be as follows:

















def transition_generator(transition):



  new_generator = transition_rules[transition][current_generator]



  if new_generator != current_generator:



   # Tell the current generator to reset



   current_generator.reset( )



   # Update the current generator



   current_generator = new_generator










It is noted that, in the example psuedocode, a call is placed to reset the current generator before it is replaced rather than deleting it. This implementation may be important in some example situations.


In one example, some generators may generate inconsistencies when they are in a “background” mode. For example, if the local listener 782a receives an event while the local full scanner 782b is running, then this can generate an inconsistency at handoff time so that the full scan can be repeated. As such, in one embodiment, the local listener 782a can return an inconsistency if it receives any events between the call to reset( ) and the first call to next_event( ). In another example, if the full scanner 782b encounters an inconsistency, another full scan can be performed. The reset call can, therefore, allow the full scanner 782b to reset its state between scans.


In some embodiments, the full scanner 782b and listener 782a can be implemented to inherit from a FSRawEventGenerator class which exposes next_event( ) in the class's public interface. In some implementations, a Python ‘yield’ keyword can be used which can hide the implementation details of how the events are produced from the file system monitor 784. For example, the local listener 782a can spawn a new watchdog thread which fills a queue (not shown for simplicity) with new events. The function call, next_event( ) can then return an event from the queue.


On the other hand, the full scanner 782b can make a get_account_tree (GAT) command to the ALF system 490, and then parse the response for a number of events. In one or more embodiments, the full scanner 782b can return events are soon as they are parsed while maintaining the state of the parsing.


Depending on the embodiment, calls made to next_event( ) may or may not be blocking. For example, if the full scanner 782b has no reason to block (e.g., because it has parsed the entire GAT response), then the full scanner 782b can immediately return “None” to indicate that the full scanner 782b has no further events, and therefore the monitor 784 should enter the listening mode. On the other hand, the local listener 782a may need to block for a new event in order to prevent the file system monitor 784 from busy waiting. Notably, in implementation, in order to accommodate blocking next_event( ) calls and still be able to terminate quickly when STOP is called, the FSRawEventGenerator class can, for example, include a public method “release_control( ).” In non-blocking generators, this call can be a no-op; however, in blocking generators, this call can immediately return “None,” thereby allowing the monitor 784 to shutdown gracefully.


It is further recognized in the present disclosure that the events that come out of the raw event processor 782 often need to be normalized. For example, as is discussed below, a move event can be received as a delete event and a create event, and the events can be reordered when they arrive from the ALF 490. Also, operations performed on an item by a synchronization client 780 to the cloud-based platform (e.g., workspace 302) can generate echo-back copies of the event (e.g., event representing the same modification to the item originates from the sync client, to the workspace, and comes back to the same sync client again), which need normalization/processing as well.


The event filter pipeline 785 in the file system monitor 784 can be responsible for normalizing raw events received from the cloud-based platform (e.g., workspace 302 through ALF 490) into synchronization event (or synchronization steps) that are safe to apply on the local file system where the synchronization client 780 operates. As mentioned before, because the cloud-based platform (e.g., workspace 302) does not provide any ordering guarantees around the delivery of events, the event filter pipeline 785 can perform the guaranteeing that, for example, a given raw event received which represents a future state of the associated item (e.g., by its Sequence_ID or other suitable indications) is not applied until the item can be moved into that state without violating any local file system rules.


Some embodiments of the event filter pipeline 785 can treat each raw event in the cloud-based platform (e.g., each ALF event from the ALF system 490) as a state update notification for a specific item (e.g., a file or a folder). Each raw event (which is to pass through the event filter pipeline 785 can include, in some examples, the full state of the item affected by the event.


In some embodiments, the event filter pipeline 785 then can compare the state of the item as indicated by the event against the current state of that item as stored on the local mobile device 700. The comparison can be used to determine whether the received event represents a newer version of the item, whether the newer state in the event is currently valid, and/or which synchronization steps need to be generated to move the item from its current state on the mobile device 700 to its newer state in the event.


In addition, the event filter pipeline 785 can include one or more of the following example filter components in the event filters 785a in order to carry out the functionalities of the event filter pipeline 785 described herein:


A. Raw Retrieve Shadow Item Filter


The raw retrieve shadow item filter can retrieve the current state of the item affected by the event from (e.g., a local storage of) the local mobile device 700. This current item state can be used, for example, by later stages in the pipeline 785 to determine whether the event represents a newer state for the item and what synchronization steps need to be generated for the item to move it from its shadow state to the event state.


B. Drop Duplicate Raw Events Filter


The drop duplicate raw events filter can compare the Sequence_ID in the event item state with the Sequence_ID in the current item state to determine if the event item state is newer. In some embodiments, the drop duplicate raw events filter can drop the event if the event represents an older state of the item. In one or more embodiments, however, this check can be skipped for events originating from either the full scanner 782b or a partial scanner 782c since (a) events from the scanners are typically guaranteed to represent the current state of the item; and (b) the scanners detect item deletions through the absence of the item in the scan result, and therefore the scanners typically do not have access to an updated Sequence_ID for deletion events.


C. Folder Sync and Unsync Filter


The folder synchronization and unsynchronization filter can determine whether the received event represents a folder synchronization/unsynchronization. If the event does represent so, the event filters 785a indicates to the file system monitor 784 that a partial scan is required for the specified folder.


D. File System Conflict Filter


The local file system conflict filter can check if the event item state is consistent with the current state(s) of the rest of the local items based on local file system rules. Examples of these local file system rules can include: (1) an item cannot be added to a folder that does not exist; (2) no two items in the same folder can have the same name; and/or (3) a non-empty folder cannot be deleted. So, if the event item state indicates that the item is not deleted, the local file system conflict filter can check that the item's parent folder exists and that there is no other item with the same name in that folder. If the event item state indicates that the item is deleted and the item is a folder, the local file system conflict filter can check that the folder is empty. If any of these checks fails, the item event is buffered until the checks can pass (e.g., upon receiving further events).


E. Raw Event to Sync Event Filter


The raw event to synchronization event (or synchronization step) filter can generate the synchronization steps or synchronization events necessary to transform the item from the shadow item state to the event item state based on the differences between the shadow item state and the event item state. In some embodiments, this filter can also update the current state of the item with the new state of the item.


The event filter pipeline 785 can also include an event buffer 786 to buffer events. For example, in some particular implementations, a move event can be recorded by the local listener 782a as a delete event followed quickly by a create event. The event buffer 786 can buffer the delete event for a small amount of time and attempts to resolve it with a create event. Events can be held in the buffer until either the event resolves (e.g., when the filter pipeline 785 receives another event process operation) or until a buffer time expires (e.g., at which point the filter pipeline 785 can execute a flush buffer operation).


Continuing with the above pseudocode example, in some instances, this may present a problem with blocking calls to next_event( ). For example, if a delete event is received, the delete event may be buffered until another event happens on the local file system, which could be not for a some time. To remedy this, according to some embodiments, when an event process operation or a flush buffer operation is called on the filter pipeline 785, the pipeline 785 can return a next time at which the buffer 786 is to be flushed. Then, the next call to next_event( ) can specify the maximum time for which the call may block to the generator.


In this way, the disclosed techniques of the sync client 780 can handle race conditions of events in the cloud-based platform. In addition, the sync client 780 can bring the benefit of resilience to out of order events so as to minimize unnecessary full scans and to provide support for lock/unlock and collaboration/uncollaboration events in the cloud-based platform.


Among other benefits, the disclosed embodiments can bring the benefit of extensibility, maintainability, and testability. For extensibility, the disclosed embodiments can be extensible to handle any additional modes of generating new events, more complicated methods of normalizing events, and more complicated transitions and inconsistency handling. For maintainability, the disclosed embodiments can be easily maintained because modularization. Additionally, minor changes to execution logic do not require substantial changes to the design. For testability, each component can be tested individually, as well as the control mechanisms, in a single threaded manner. Further, multithreaded integration tests can be easily performed and designed as well.



FIG. 8 depicts a flowchart illustrating an example process 800 for a system that incrementally updates remote clients at devices with events that occurred via the platform to implement the disclosed techniques for race condition handling. The process 800 can be implemented in, for example, a sync client (e.g., client 480A, FIG. 6; client 780, FIG. 7). With reference to FIGS. 1, and 6-7, the process 800 is explained hereafter.


First, in accordance with some embodiments, in response to an event received at a synchronization client which indicates a modification to an item, the synchronization client 480A can compare (810) a sequence identifier of the item in the event with a current sequence identifier of the item. Specifically, the synchronization client can resolve the above scenario using a sequence identifier (Sequence_ID) attached to every item (e.g., a file object or a folder object) on the cloud-based platform (e.g., on workspace 302). An item's Sequence_ID field can monotonically increase (812) when an item's core properties change. For example, the Sequence_ID can be incremented every time the file or folder's name, parent folder, or checksum (e.g., as result of content change) is changed on the cloud-based platform. In this way, the Sequence_ID can provide a monotonically increasing version identifier for the item.


Then, in some embodiments, the synchronization client 480A can first compare the Sequence_ID for an incoming event to the current Sequence_ID of the item that event changes; if the Sequence_ID of the event is lower, then the event may be dropped (925), but if the Sequence_ID of the event is higher, the synchronization client 480A then can differentiates (820) the state of the item in the event with a current state of the item, and the synchronization client 480A can generate one or more events that are deemed necessary to bring the two states in synchronization. Specifically, in some embodiments, the synchronization client 480A can determine (820) a difference between the item's state as represented in the event and a current state of the item if the sequence identifier in the event is larger than the current sequence identifier of the item, and then, the synchronization client 480A can generate (830) at least one synchronization step to update the current state of the item to the item's state as represented in the event based on the difference.



FIG. 9 depicts a flowchart 900 illustrating further example details of the process 800 of FIG. 8. As said, after step 820, if the sequence identifier in the event is not larger than the current sequence identifier of the item, the sync client 480A can discard (925) the event in accordance with some embodiments.


Further, after step 830, some embodiments of the synchronization client 480A can update (935) the current sequence identifier of the item to the sequence identifier of the item in the event if there is no difference resulted from the comparison. For example, the synchronization client 480A can handle this scenario by generating an event (e.g., a “touch event”) to bump/update the Sequence_ID on an item (e.g., from 6 to 8, using the examples of FIG. 6) when it encounters an ALF event for which no other change is required. Once the touch event has been generated, the synchronization client 480A can properly drop the lower Sequence_ID event (e.g., event 616 with Sequence_ID's value being only 7) as reflecting an earlier state of the item.



FIG. 10 depicts a flowchart illustrating another example process 1000 for race condition handling in a system that incrementally updates remote clients at devices with events that occurred via the platform. The process 1000 can be implemented in, for example, a sync client (e.g., client 480A, FIG. 6; client 780, FIG. 7). With reference to FIGS. 1, and 6-7, the process 1000 is explained hereafter.


According to some embodiments, after an event indicating a modification to an item is received from the host server 100 (e.g., via the ALF system 490), the file system monitor 784 can initiate the event's processing by requesting the raw event processor 782 (e.g., the full scanner 782b or the listener 782a) to send that event through the event filter pipeline 785. Then, the event filter pipeline 785 can utilize one or more filters in the event filters 785a to identify (1010) whether execution of the event can cause violation of any local file system rule. Examples of these local file system rules can include: (1) an item cannot be added to a folder that does not exist; (2) no two items in the same folder can have the same name; and/or (3) a non-empty folder cannot be deleted.


If the execution of the event can cause (1020) violation of any rule, the event filter pipeline can buffer (1020) the event in the event buffer 786 until a subsequent event arrives. If the execution of the event is not to violate any local file system rule, the sync client 780 can execute (1025) the event.


Then, upon the arrival of the subsequent event, the event filter pipeline 785 can identify (1030) whether execution of an aggregate of the events is to violate any local file system rule. If the execution of the aggregate of the events is to violate any rule, the event filter pipeline 785 can continue to buffer (1035) the subsequent event until another subsequent event arrives. If the execution of the aggregate of the events is not to violate any local file system rule, the sync client 780 can execute (1037) the aggregate of the events.



FIG. 11 depicts a flowchart 1100 illustrating further example details of the process 1000 of FIG. 10.


Continuing with the example process 1000, in some implementations, if an event remains buffered in the event filter pipeline 785 for longer than a configurable maximum time limit, the event filter pipeline 785 can drop (1140) the event, and some embodiments of the synchronization client 780 may report (1150) (e.g., via the full scanner 782b) that a full scan of file/folder status within the synchronization scope is required to resolve the inconsistency.


In this way, among other advantages, the present embodiments can ensure the correctness of the synchronized tree and other synchronized items (e.g., folders or files) completely independent from the order in which the client receives events from the action log framework (“ALF”) system. In other words, so long as the ALF system correctly delivers all events to the synchronization client, the synchronization client can end up in the correct final state.



FIG. 12 shows a diagrammatic representation 1200 of a machine in the example form of a computer system within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, can be executed.


In alternative embodiments, the machine operates as a standalone device or can be connected (e.g., networked) to other machines. In a networked deployment, the machine can operate in the capacity of a server or a client machine in a client-server network environment, or as a peer machine in a peer-to-peer (or distributed) network environment.


The machine can be a server computer, a client computer, a personal computer (PC), a user device, a tablet, a phablet, a laptop computer, a set-top box (STB), a personal digital assistant (PDA), a thin-client device, a cellular telephone, an iPhone, an iPad, a Blackberry, a processor, a telephone, a web appliance, a network router, switch or bridge, a console, a hand-held console, a (hand-held) gaming device, a music player, any portable, mobile, hand-held device, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine.


While the machine-readable medium or machine-readable storage medium is shown in an exemplary embodiment to be a single medium, the term “machine-readable medium” and “machine-readable storage medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable medium” and “machine-readable storage medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the presently disclosed technique and innovation.


In general, the routines executed to implement the embodiments of the disclosure, can be implemented as part of an operating system or a specific application, component, program, object, module or sequence of instructions referred to as “computer programs.” The computer programs typically comprise one or more instructions set at various times in various memory and storage devices in a computer, and that, when read and executed by one or more processing units or processors in a computer, cause the computer to perform operations to execute elements involving the various aspects of the disclosure.


Moreover, while embodiments have been described in the context of fully functioning computers and computer systems, those skilled in the art will appreciate that the various embodiments are capable of being distributed as a program product in a variety of forms, and that the disclosure applies equally regardless of the particular type of machine or computer-readable media used to actually effect the distribution.


Further examples of machine-readable storage media, machine-readable media, or computer-readable (storage) media include, but are not limited to, recordable type media such as volatile and non-volatile memory devices, floppy and other removable disks, hard disk drives, optical disks (e.g., Compact Disk Read-Only Memory (CD ROMS), Digital Versatile Disks, (DVDs), etc.), among others, and transmission type media such as digital and analog communication links.


The network interface device enables the machine 2800 to mediate data in a network with an entity that is external to the host server, through any known and/or convenient communications protocol supported by the host and the external entity. The network interface device can include one or more of a network adaptor card, a wireless network interface card, a router, an access point, a wireless router, a switch, a multilayer switch, a protocol converter, a gateway, a bridge, bridge router, a hub, a digital media receiver, and/or a repeater.


The network interface device can include a firewall which can, in some embodiments, govern and/or manage permission to access/proxy data in a computer network, and track varying levels of trust between different machines and/or applications. The firewall can be any number of modules having any combination of hardware and/or software components able to enforce a predetermined set of access rights between a particular set of machines and applications, machines and machines, and/or applications and applications, for example, to regulate the flow of traffic and resource sharing between these varying entities. The firewall can additionally manage and/or have access to an access control list which details permissions including for example, the access and operation rights of an object by an individual, a machine, and/or an application, and the circumstances under which the permission rights stand.


Other network security functions can be performed or included in the functions of the firewall, can be, for example, but are not limited to, intrusion-prevention, intrusion detection, next-generation firewall, personal firewall, etc. without deviating from the novel art of this disclosure.


Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” As used herein, the terms “connected,” “coupled,” or any variant thereof, means any connection or coupling, either direct or indirect, between two or more elements; the coupling of connection between the elements can be physical, logical, or a combination thereof. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number can also include the plural or singular number respectively. The word “or,” in reference to a list of two or more items, covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.


The above detailed description of embodiments of the disclosure is not intended to be exhaustive or to limit the teachings to the precise form disclosed above. While specific embodiments of, and examples for, the disclosure are described above for illustrative purposes, various equivalent modifications are possible within the scope of the disclosure, as those skilled in the relevant art will recognize. For example, while processes or blocks are presented in a given order, alternative embodiments can perform routines having steps, or employ systems having blocks, in a different order, and some processes or blocks can be deleted, moved, added, subdivided, combined, and/or modified to provide alternative or subcombinations. Each of these processes or blocks can be implemented in a variety of different ways. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks can instead be performed in parallel, or can be performed at different times. Further, any specific numbers noted herein are only examples: alternative implementations can employ differing values or ranges.


The teachings of the disclosure provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various embodiments described above can be combined to provide further embodiments.


Any patents and applications and other references noted above, including any that can be listed in accompanying filing papers, are incorporated herein by reference. Aspects of the disclosure can be modified, if necessary, to employ the systems, functions, and concepts of the various references described above to provide yet further embodiments of the disclosure.


These and other changes can be made to the disclosure in light of the above Detailed Description. While the above description describes certain embodiments of the disclosure, and describes the best mode contemplated, no matter how detailed the above appears in text, the teachings can be practiced in many ways. Details of the system can vary considerably in its implementation details, while still being encompassed by the subject matter disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the disclosure should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the disclosure with which that terminology is associated. In general, the terms used in the following claims should not be construed to limit the disclosure to the specific embodiments disclosed in the specification, unless the above Detailed Description section explicitly defines such terms. Accordingly, the actual scope of the disclosure encompasses not only the disclosed embodiments, but also all equivalent ways of practicing or implementing the disclosure under the claims.


While certain aspects of the disclosure are presented below in certain claim forms, the inventors contemplate the various aspects of the disclosure in any number of claim forms. For example, while only one aspect of the disclosure is recited as a means-plus-function claim under 35 U.S.C. § 112, ¶6, other aspects can likewise be embodied as a means-plus-function claim, or in other forms, such as being embodied in a computer-readable medium. (Any claim intended to be treated under 35 U.S.C. § 112, ¶6 begins with the words “means for”.) Accordingly, the applicant reserves the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the disclosure.

Claims
  • 1. A method for resolving race conditions when updating synchronization clients with what occurred in a cloud-based platform, the method comprising: in response to receiving, at a synchronization client, an event which represents that a modification to an item has taken place on the cloud-based platform, identifying whether execution of the event is to violate any local file system rule;if the execution of the event is not to violate any local file system rule, executing the event, wherein executing the event includes: comparing a sequence identifier (ID) of the event with a current sequence ID of the item in the synchronization client,dropping the event in case the sequence ID of the event is lower than the current sequence ID of the item in the synchronization client,executing the event in case the sequence ID of the event is higher than the current sequence ID of the item in the synchronization client, wherein the executing further includes generating one or more events at the synchronization client to make a state of the item at the synchronization client the same as the state of the item indicated by the event; andif the execution of the event is to violate any local file system rule at the synchronization client, buffering the event at the synchronization client until a subsequent event arrives, wherein buffering the event further includes: discarding the event if the event remains buffered over a select amount of time,determining that the item is associated with a specified folder of a folder tree structure in the cloud-based platform, the folder-tree structure including multiple folders that are organized into multiple levels of hierarchy, andrequesting a partial scan of the folder-tree structure in the cloud-based platform when a specified folder is moved from a first path to a second path in the folder-tree structure, instead of a full scan, the partial scan generating a synchronization event for a lowest partially synchronized folder in:the first path that had the specified folder before the move, andthe second path that has the specified folder after the move.
  • 2. The method of claim 1, further comprising: identifying whether execution of an aggregate of the events is to violate any local file system rule; andif the execution of the aggregate of the events is to violate any local file system rule, buffering the subsequent event until another subsequent event arrives.
  • 3. The method of claim 2, further comprising: if the execution of the aggregate of the events is not to violate any local file system rule, executing the aggregate of the events.
  • 4. The method of claim 1, wherein buffering the event further includes: requesting the full scan to the cloud-based platform for correct updates on the item.
  • 5. The method of claim 1, wherein local file system rules include that the item cannot be added to a folder that does not exist.
  • 6. The method of claim 1, wherein local file system rules include that a name of the item cannot be the same as another item in a same folder.
  • 7. The method of claim 1, wherein local file system rules include that a non-empty folder cannot be deleted.
  • 8. The method of claim 1, further comprising: determining a difference between a state of the item as represented in the event and a current state of the item,wherein the identifications are based on the difference.
  • 9. The method of claim 8, wherein the state of the item includes one or more of: a name, a parent folder, or a checksum of the item.
  • 10. The method of claim 1, wherein the item is a file or a folder.
  • 11. The method of claim 1, wherein the platform is a collaboration environment shared among a user and collaborators of the user.
  • 12. A system for resolving race conditions when incrementally updating remote clients with what occurred in a cloud-based platform, the system comprising: a processor;a memory having stored thereon instructions which, when executed by the processor, cause the processor to: in response to receiving, at a synchronization client, an event which represents that a modification to an item has taken place on a cloud-based platform, identify whether execution of the event is to violate any local file system rule;if the execution of the event is not to violate any local file system rule, executing the event, wherein executing the event includes: comparing a sequence identifier (ID) of the event with a current sequence ID of the item in a synchronization client,dropping the event in case the sequence ID of the event is lower than the current sequence ID of the item in the synchronization client,executing the event in case the sequence ID of the event is higher than the current sequence ID of the item in the synchronization client, wherein the executing further includes generating one or more events at the synchronization client to make a state of the item at the synchronization client the same as the state of the item indicated by the event, andif the execution of the event is to violate any local file system rule at the synchronization client, buffer the event at the synchronization client until a subsequent event arrives, wherein buffering the event further includes: discarding the event if the event remains buffered over a select amount of time,determining that the item is associated with a specified folder of a folder tree structure in the cloud-based platform, the folder-tree structure including multiple folders that are organized into multiple levels of hierarchy, andrequesting a partial scan of the folder-tree structure in the cloud-based platform when a specified folder is moved from a first path to a second path in the folder-tree structure, instead of a full scan, the partial scan generating a synchronization event for a lowest partially synchronized folder in:the first path that had the specified folder before the move, andthe second path that has the specified folder after the move.
  • 13. The system of claim 12, wherein the processor is further caused to: identify whether execution of an aggregate of the events is to violate any local file system rule;if the execution of the aggregate of the events is to violate any local file system rule, buffer the subsequent event until another subsequent event arrives.
  • 14. The system of claim 13, wherein the processor is further caused to: if the execution of the aggregate of the events is not to violate any local file system rule, execute the aggregate of the events.
  • 15. The system of claim 12, wherein the processor is further caused to: request the full scan to the cloud-based platform for correct updates on the item.
  • 16. The system of claim 12, wherein local file system rules include that the item cannot be added to a folder that does not exist.
  • 17. The system of claim 12, wherein local file system rules include that a name of the item cannot be the same as another item in a same folder.
  • 18. The system of claim 12, wherein local file system rules include that a non-empty folder cannot be deleted.
  • 19. The system of claim 12, wherein the processor is further caused to: determine a difference between a state of the item as represented in the event and a current state of the item,wherein the identifications are based on the difference.
  • 20. The system of claim 19, wherein the state of the item includes one or more of: a name, a parent folder, or a checksum of the item.
  • 21. The system of claim 12, wherein the item is a file or a folder.
  • 22. The system of claim 12, wherein the platform is a collaboration environment shared among a user and collaborators of the user.
  • 23. A system, comprising: means for, in response to receiving, at a synchronization client, an event which represents that a modification to an item has taken place on a cloud-based platform, identifying whether execution of the event is to violate any local file system rule;means for, if the execution of the event is not to violate any local file system rule, executing the event, wherein executing the event includes: comparing a sequence identifier (ID) of the event with a current sequence ID of the item in the synchronization client,dropping the event in case the sequence ID of the event is lower than the current sequence ID of the item in the synchronization client, andexecuting the event in case the sequence ID of the event is higher than the current sequence ID of the item in the synchronization client, wherein the executing further includes generating one or more events at the synchronization client to make a state of the item at the synchronization client the same as the state of the item indicated by the event, andmeans for, if the execution of the event is to violate any local file system rule at the synchronization client, buffering the event at the synchronization client until a subsequent event arrives, wherein buffering the event further includes:discarding the event if the event remains buffered over a select amount of time,determining that the item is associated with a specified folder of a folder tree structure in the cloud-based platform, the folder-tree structure including multiple folders that are organized into multiple levels of hierarchy, andrequesting a partial scan of the folder-tree structure in the cloud-based platform when a specified folder is moved from a first path to a second path in the folder-tree structure, instead of a full scan, the partial scan generating a synchronization event for a lowest partially synchronized folder:the first path that had the specified folder before the move, andthe second path that has the specified folder after the move.
CROSS-REFERENCE TO RELATED APPLICATIONS AND EFFECTIVE FILING DATE ENTITLEMENT

This application is entitled to the benefit of and/or the right of priority to U.S. Provisional Application No. 61/750,474, entitled “FILE SYSTEM EVENT MONITOR AND EVENT FILTER PIPELINE FOR A CLOUD-BASED PLATFORM”, filed Jan. 9, 2013, which is hereby incorporated by reference in its entirety. This application is therefore entitled to an effective filing date of Jan. 9, 2013. This application is related to U.S. patent application Ser. No. 13/524,501, entitled “RESOURCE EFFECTIVE INCREMENTAL UPDATING OF A REMOTE CLIENT WITH EVENTS WHICH OCCURRED VIA A CLOUD-ENABLED PLATFORM”, filed Jun. 15, 2012; and to U.S. patent application Ser. No. 13/526,437, entitled “MANAGING UPDATES AT CLIENTS USED BY A USER TO ACCESS A CLOUD-BASED COLLABORATION SERVICE”, filed Jun. 18, 2012; both of which are hereby incorporated by reference in their entireties. This application is also related to U.S. patent application Ser. No. 14/146,658, entitled “RACE CONDITION HANDLING IN A SYSTEM WHICH INCREMENTALLY UPDATES CLIENTS WITH EVENTS THAT OCCURRED IN A CLOUD-BASED COLLABORATION PLATFORM”, filed Jan. 2, 2014, which claims priority to U.S. Provisional Application No. 61/748,399, entitled “HANDLING ACTION LOG FRAMEWORK RACE CONDITIONS FOR A SYNCHRONIZATION CLIENT TO A CLOUD-BASED ENVIRONMENT”, filed Jan. 2, 2013; both of which are hereby incorporated by reference in their entireties.

US Referenced Citations (700)
Number Name Date Kind
858619 O'Farrell Jul 1907 A
5043876 Terry Aug 1991 A
5742905 Pepe et al. Apr 1998 A
5748735 Ganesan May 1998 A
5774717 Porcaro Jun 1998 A
5787175 Carter Jul 1998 A
5799320 Klug Aug 1998 A
5848415 Guck Dec 1998 A
5864870 Guck Jan 1999 A
5926816 Bauer et al. Jul 1999 A
5999908 Abelow Dec 1999 A
6016467 Newsted et al. Jan 2000 A
6034621 Kaufman Mar 2000 A
6055543 Christensen et al. Apr 2000 A
6073161 DeBoskey et al. Jun 2000 A
6098078 Gehani et al. Aug 2000 A
6226618 Downs et al. May 2001 B1
6233600 Salas et al. May 2001 B1
6260040 Kauffman et al. Jul 2001 B1
6279109 Brundridge Aug 2001 B1
6289345 Yasue Sep 2001 B1
6292803 Richardson et al. Sep 2001 B1
6336124 Alam et al. Jan 2002 B1
6342906 Kumar et al. Jan 2002 B1
6345386 Delo et al. Feb 2002 B1
6370543 Hoffert et al. Apr 2002 B2
6374260 Hoffert et al. Apr 2002 B1
6385606 Inohara et al. May 2002 B2
6396593 Laverty et al. May 2002 B1
6441641 Pang et al. Aug 2002 B1
6446091 Noren et al. Sep 2002 B1
6449622 LaRue Sep 2002 B1
6515681 Knight Feb 2003 B1
6539381 Prasad et al. Mar 2003 B1
6584466 Serbinis et al. Jun 2003 B1
6636872 Heath et al. Oct 2003 B1
6636897 Sherman et al. Oct 2003 B1
6654737 Nunez Nov 2003 B1
6662186 Esquibel et al. Dec 2003 B1
6687878 Eintracht et al. Feb 2004 B1
6714968 Prust Mar 2004 B1
6735623 Prust May 2004 B1
6742181 Koike et al. May 2004 B1
6760721 Chasen et al. Jul 2004 B1
6947162 Rosenberg et al. Sep 2005 B2
6952724 Prust Oct 2005 B2
6996768 Elo et al. Feb 2006 B1
7003667 Slick et al. Feb 2006 B1
7010752 Ly Mar 2006 B2
7020697 Goodman et al. Mar 2006 B1
7039806 Friedman et al. May 2006 B1
7069393 Miyata et al. Jun 2006 B2
7080104 Ring et al. Jul 2006 B2
7130831 Howard et al. Oct 2006 B2
7133834 Abelow Nov 2006 B1
7143136 Drenan et al. Nov 2006 B1
7149787 Mutalik et al. Dec 2006 B1
7152182 Ji et al. Dec 2006 B2
7155483 Friend et al. Dec 2006 B1
7165107 Pouyoul et al. Jan 2007 B2
7171468 Yeung et al. Jan 2007 B2
7178021 Hanna et al. Feb 2007 B1
7222078 Abelow May 2007 B2
7233997 Leveridge et al. Jun 2007 B1
7275244 Charles Bell et al. Sep 2007 B1
7296025 Kung et al. Nov 2007 B2
7310684 Patrick et al. Dec 2007 B2
7337193 Mills Feb 2008 B1
7346778 Guiter et al. Mar 2008 B1
7353252 Yang et al. Apr 2008 B1
7362868 Madoukh et al. Apr 2008 B2
7363330 Ellman et al. Apr 2008 B1
7370269 Prabhu et al. May 2008 B1
7380120 Garcia May 2008 B1
7386535 Kalucha et al. Jun 2008 B1
7401117 Dan et al. Jul 2008 B2
7543000 Castro et al. Jun 2009 B2
7581221 Lai et al. Aug 2009 B2
7620565 Abelow Nov 2009 B2
7647559 Yozell-Epstein et al. Jan 2010 B2
7650367 Arruza Jan 2010 B2
7653668 Shelat et al. Jan 2010 B1
7661088 Burke Feb 2010 B2
7665093 Maybee et al. Feb 2010 B2
7676542 Moser et al. Mar 2010 B2
7698363 Dan et al. Apr 2010 B2
7734600 Wise et al. Jun 2010 B1
7735144 Pravetz et al. Jun 2010 B2
7739411 Messer et al. Jun 2010 B2
7756843 Palmer Jul 2010 B1
7774412 Schnepel Aug 2010 B1
7814426 Huesken et al. Oct 2010 B2
7886295 Burger et al. Feb 2011 B2
7890964 Vogler-Ivashchanka et al. Feb 2011 B2
7937663 Parker et al. May 2011 B2
7958353 Matsuzaki et al. Jun 2011 B2
7958453 Taing Jun 2011 B1
7979296 Kruse et al. Jul 2011 B2
7996374 Jones et al. Aug 2011 B1
8027976 Ding et al. Sep 2011 B1
RE42904 Stephens, Jr. Nov 2011 E
8065739 Bruening et al. Nov 2011 B1
8090361 Hagan Jan 2012 B2
8103662 Eagan et al. Jan 2012 B2
8117261 Briere et al. Feb 2012 B2
8126848 Wagner Feb 2012 B2
8140513 Ghods et al. Mar 2012 B2
8151183 Chen et al. Apr 2012 B2
8185830 Saha et al. May 2012 B2
8200582 Zhu Jun 2012 B1
8201230 Day et al. Jun 2012 B2
8214747 Yankovich et al. Jul 2012 B1
8230348 Peters et al. Jul 2012 B2
8239918 Cohen Aug 2012 B1
8326814 Ghods et al. Dec 2012 B2
8347276 Schadow Jan 2013 B2
8358701 Chou et al. Jan 2013 B2
8370803 Holler et al. Feb 2013 B1
8429540 Yankovich et al. Apr 2013 B1
8447820 Gay May 2013 B1
8458128 Khosravy et al. Jun 2013 B2
8464161 Giles et al. Jun 2013 B2
8464167 Saund et al. Jun 2013 B2
8473775 Helmick et al. Jun 2013 B1
8515902 Savage Aug 2013 B2
8527549 Cidon Sep 2013 B2
8528087 Hsu et al. Sep 2013 B2
8549066 Donahue et al. Oct 2013 B1
8549511 Seki et al. Oct 2013 B2
8572022 Hagan et al. Oct 2013 B2
8582777 Urivskiy et al. Nov 2013 B2
8583619 Ghods et al. Nov 2013 B2
8650498 Mihovilovic Feb 2014 B1
8719445 Ko May 2014 B2
8719810 Oh May 2014 B2
8745267 Luecke et al. Jun 2014 B2
8782637 Khalid Jul 2014 B2
8819068 Knote et al. Aug 2014 B1
8825597 Houston et al. Sep 2014 B1
8849955 Prahlad et al. Sep 2014 B2
8868574 Kiang et al. Oct 2014 B2
8869235 Qureshi et al. Oct 2014 B2
8886925 Qureshi et al. Nov 2014 B2
8892679 Destagnol et al. Nov 2014 B1
8914856 Velummylum et al. Dec 2014 B1
8914900 Smith et al. Dec 2014 B2
8918387 Sokolov Dec 2014 B1
8949179 Besen et al. Feb 2015 B2
8949939 Peddada Feb 2015 B2
8955103 Kline, III et al. Feb 2015 B2
8956103 Gehring Feb 2015 B2
8959579 Barton et al. Feb 2015 B2
8966062 Giese et al. Feb 2015 B1
8990307 Barreto et al. Mar 2015 B2
8990955 Hymel et al. Mar 2015 B2
9015248 Barreto et al. Apr 2015 B2
9054919 Kiang et al. Jun 2015 B2
9239846 Besen et al. Jan 2016 B2
9244934 Besen et al. Jan 2016 B2
9268655 Chan et al. Feb 2016 B2
9396216 Barreto et al. Jul 2016 B2
9396245 Mackenzie et al. Jul 2016 B2
9407664 Banerjee Aug 2016 B1
9495434 Walton et al. Nov 2016 B1
9507795 Dorman et al. Nov 2016 B2
9535924 Mackenzie et al. Jan 2017 B2
9547658 Fan et al. Jan 2017 B2
9553758 Rexer Jan 2017 B2
9558202 Lockhart et al. Jan 2017 B2
9563517 Natanzon et al. Feb 2017 B1
9575981 Dorman et al. Feb 2017 B2
20010027492 Gupta Oct 2001 A1
20020029218 Bentley et al. Mar 2002 A1
20020091738 Rohrabaugh et al. Jul 2002 A1
20020099772 Deshpande et al. Jul 2002 A1
20020116544 Barnard et al. Aug 2002 A1
20020133509 Johnston et al. Sep 2002 A1
20020147770 Tang Oct 2002 A1
20020194177 Sherman et al. Dec 2002 A1
20030041095 Konda et al. Feb 2003 A1
20030073448 Ozeki et al. Apr 2003 A1
20030084306 Abburi et al. May 2003 A1
20030093404 Bader et al. May 2003 A1
20030097374 Himeno May 2003 A1
20030108052 Inoue et al. Jun 2003 A1
20030110264 Whidby et al. Jun 2003 A1
20030115326 Verma et al. Jun 2003 A1
20030135536 Lyons Jul 2003 A1
20030135565 Estrada Jul 2003 A1
20030154306 Perry Aug 2003 A1
20030204490 Kasriel Oct 2003 A1
20030217171 Von Stuermer et al. Nov 2003 A1
20030228015 Futa et al. Dec 2003 A1
20040003104 Boskovic et al. Jan 2004 A1
20040021686 Barberis Feb 2004 A1
20040076187 Peled Apr 2004 A1
20040088647 Miller et al. May 2004 A1
20040098361 Peng May 2004 A1
20040103147 Flesher et al. May 2004 A1
20040111415 Scardino et al. Jun 2004 A1
20040117438 Considine et al. Jun 2004 A1
20040122949 Zmudzinski et al. Jun 2004 A1
20040128359 Horvitz et al. Jul 2004 A1
20040162836 Aronoff et al. Aug 2004 A1
20040177138 Salle et al. Sep 2004 A1
20040181579 Huck et al. Sep 2004 A1
20040196307 Zak et al. Oct 2004 A1
20040201604 Kraenzel et al. Oct 2004 A1
20040218214 Kihara et al. Nov 2004 A1
20040230624 Frolund et al. Nov 2004 A1
20040230652 Estrada Nov 2004 A1
20040246532 Inada Dec 2004 A1
20040260977 Ji et al. Dec 2004 A1
20040267825 Novak Dec 2004 A1
20040267836 Armangau et al. Dec 2004 A1
20050005276 Morgan Jan 2005 A1
20050010860 Weiss et al. Jan 2005 A1
20050022175 Sliger et al. Jan 2005 A1
20050022229 Gabriel et al. Jan 2005 A1
20050028006 Leser et al. Feb 2005 A1
20050033777 Moraes et al. Feb 2005 A1
20050038831 Souder et al. Feb 2005 A1
20050038997 Kojima et al. Feb 2005 A1
20050050228 Perham et al. Mar 2005 A1
20050055306 Miller et al. Mar 2005 A1
20050063083 Dart et al. Mar 2005 A1
20050097061 Shapiro et al. May 2005 A1
20050097225 Glatt et al. May 2005 A1
20050097434 Storisteanu May 2005 A1
20050102328 Ring et al. May 2005 A1
20050108406 Lee et al. May 2005 A1
20050114305 Haynes et al. May 2005 A1
20050114378 Elien et al. May 2005 A1
20050138118 Banatwala et al. Jun 2005 A1
20050172284 Dandekar et al. Aug 2005 A1
20050182966 Pham et al. Aug 2005 A1
20050198299 Beck et al. Sep 2005 A1
20050198452 Watanabe Sep 2005 A1
20050234864 Shapiro Oct 2005 A1
20050234943 Clarke Oct 2005 A1
20050261933 Magnuson Nov 2005 A1
20060005163 Huesken et al. Jan 2006 A1
20060026502 Dutta Feb 2006 A1
20060026535 Hotelling et al. Feb 2006 A1
20060036568 Moore et al. Feb 2006 A1
20060041603 Paterson et al. Feb 2006 A1
20060041752 Tuvell et al. Feb 2006 A1
20060047804 Fredricksen et al. Mar 2006 A1
20060053088 Ali et al. Mar 2006 A1
20060053380 Spataro et al. Mar 2006 A1
20060070083 Brunswig et al. Mar 2006 A1
20060075071 Gillette Apr 2006 A1
20060117247 Fite et al. Jun 2006 A1
20060123062 Bobbitt et al. Jun 2006 A1
20060133340 Rybak et al. Jun 2006 A1
20060168550 Muller et al. Jul 2006 A1
20060173952 Coyle Aug 2006 A1
20060174051 Lordi et al. Aug 2006 A1
20060174054 Matsuki Aug 2006 A1
20060179070 George et al. Aug 2006 A1
20060179309 Cross et al. Aug 2006 A1
20060242204 Karas et al. Oct 2006 A1
20060242206 Brezak et al. Oct 2006 A1
20060259524 Horton Nov 2006 A1
20060265719 Astl et al. Nov 2006 A1
20060271510 Harward et al. Nov 2006 A1
20060288043 Novak et al. Dec 2006 A1
20070011469 Allison et al. Jan 2007 A1
20070016680 Burd et al. Jan 2007 A1
20070028291 Brennan et al. Feb 2007 A1
20070038934 Fellman Feb 2007 A1
20070067349 Jhaveri et al. Mar 2007 A1
20070079242 Jolley et al. Apr 2007 A1
20070100830 Beedubail et al. May 2007 A1
20070115845 Hochwarth et al. May 2007 A1
20070118598 Bedi et al. May 2007 A1
20070124460 McMullen et al. May 2007 A1
20070124737 Wensley et al. May 2007 A1
20070124781 Casey et al. May 2007 A1
20070126635 Houri Jun 2007 A1
20070130143 Zhang et al. Jun 2007 A1
20070130163 Perez et al. Jun 2007 A1
20070142039 Bushnell et al. Jun 2007 A1
20070157203 Lim Jul 2007 A1
20070162610 Un et al. Jul 2007 A1
20070179993 Arruza Aug 2007 A1
20070185885 Tamura Aug 2007 A1
20070195779 Judge et al. Aug 2007 A1
20070198609 Black et al. Aug 2007 A1
20070208878 Barnes-Leon et al. Sep 2007 A1
20070214180 Crawford Sep 2007 A1
20070220016 Estrada et al. Sep 2007 A1
20070220590 Rasmussen et al. Sep 2007 A1
20070240057 Satterfield et al. Oct 2007 A1
20070250762 Mansfield Oct 2007 A1
20070256065 Heishi et al. Nov 2007 A1
20070266304 Fletcher et al. Nov 2007 A1
20070282848 Kiilerich et al. Dec 2007 A1
20070283443 McPherson et al. Dec 2007 A1
20070288290 Motoyama et al. Dec 2007 A1
20080005135 Muthukrishnan et al. Jan 2008 A1
20080005195 Li Jan 2008 A1
20080016146 Gan et al. Jan 2008 A1
20080021959 Naghi et al. Jan 2008 A1
20080028323 Rosen et al. Jan 2008 A1
20080040173 Aleong et al. Feb 2008 A1
20080040503 Kleks et al. Feb 2008 A1
20080040560 Hall et al. Feb 2008 A1
20080046828 Bibliowicz et al. Feb 2008 A1
20080059474 Lim Mar 2008 A1
20080059656 Saliba et al. Mar 2008 A1
20080060080 Lim Mar 2008 A1
20080063210 Goodman et al. Mar 2008 A1
20080065881 Dawson et al. Mar 2008 A1
20080077631 Petri Mar 2008 A1
20080091763 Devonshire et al. Apr 2008 A1
20080091790 Beck Apr 2008 A1
20080104277 Tian May 2008 A1
20080114720 Smith et al. May 2008 A1
20080133674 Knauerhase et al. Jun 2008 A1
20080140732 Wilson et al. Jun 2008 A1
20080147790 Malaney et al. Jun 2008 A1
20080151817 Fitchett et al. Jun 2008 A1
20080154873 Redlich et al. Jun 2008 A1
20080182628 Lee et al. Jul 2008 A1
20080183467 Yuan et al. Jul 2008 A1
20080184130 Tien et al. Jul 2008 A1
20080194239 Hagan Aug 2008 A1
20080195673 Hamel et al. Aug 2008 A1
20080215883 Fok et al. Sep 2008 A1
20080222654 Xu et al. Sep 2008 A1
20080243846 Rasmussen Oct 2008 A1
20080243855 Prahlad et al. Oct 2008 A1
20080250333 Reeves et al. Oct 2008 A1
20080250348 Alimpich et al. Oct 2008 A1
20080263099 Brady-Kalnay et al. Oct 2008 A1
20080271095 Shafton Oct 2008 A1
20080276158 Lim et al. Nov 2008 A1
20080281972 Gupta et al. Nov 2008 A1
20080294899 Gazzetta et al. Nov 2008 A1
20080306900 Tamura Dec 2008 A1
20090015864 Hasegawa Jan 2009 A1
20090019093 Brodersen et al. Jan 2009 A1
20090019426 Baeumer et al. Jan 2009 A1
20090030710 Levine Jan 2009 A1
20090043848 Kordun Feb 2009 A1
20090044128 Baumgarten et al. Feb 2009 A1
20090049131 Lyle et al. Feb 2009 A1
20090097374 Shoji et al. Apr 2009 A1
20090119322 Mills et al. May 2009 A1
20090125469 McDonald et al. May 2009 A1
20090132651 Roger et al. May 2009 A1
20090138808 Moromisato May 2009 A1
20090150417 Ghods et al. Jun 2009 A1
20090150627 Benhase et al. Jun 2009 A1
20090158142 Arthursson et al. Jun 2009 A1
20090164438 Delacruz Jun 2009 A1
20090171983 Samji et al. Jul 2009 A1
20090172201 Carmel Jul 2009 A1
20090177754 Brezina et al. Jul 2009 A1
20090193107 Srinivasan et al. Jul 2009 A1
20090193345 Wensley et al. Jul 2009 A1
20090198772 Kim et al. Aug 2009 A1
20090210459 Nair Aug 2009 A1
20090214115 Kimura et al. Aug 2009 A1
20090235167 Boyer et al. Sep 2009 A1
20090235181 Saliba et al. Sep 2009 A1
20090235189 Aybes et al. Sep 2009 A1
20090249224 Davis et al. Oct 2009 A1
20090254589 Nair et al. Oct 2009 A1
20090260060 Smith et al. Oct 2009 A1
20090265430 Bechtel et al. Oct 2009 A1
20090271708 Peters et al. Oct 2009 A1
20090276771 Nickolov et al. Nov 2009 A1
20090282212 Peterson Nov 2009 A1
20090282483 Bennett Nov 2009 A1
20090300356 Crandell Dec 2009 A1
20090300527 Malcolm et al. Dec 2009 A1
20090327358 Lukiyanov et al. Dec 2009 A1
20090327405 FitzGerald et al. Dec 2009 A1
20090327961 De Vorchik et al. Dec 2009 A1
20100011292 Marinkovich et al. Jan 2010 A1
20100011447 Jothimani Jan 2010 A1
20100017262 Iyer et al. Jan 2010 A1
20100017619 Errico Jan 2010 A1
20100036929 Scherpa et al. Feb 2010 A1
20100042720 Stienhans et al. Feb 2010 A1
20100057560 Skudlark et al. Mar 2010 A1
20100057785 Khosravy et al. Mar 2010 A1
20100076946 Barker et al. Mar 2010 A1
20100082396 Caldwell et al. Apr 2010 A1
20100082534 Sagar Apr 2010 A1
20100082634 Leban Apr 2010 A1
20100083136 Komine et al. Apr 2010 A1
20100088150 Mazhar et al. Apr 2010 A1
20100092126 Kaliszek et al. Apr 2010 A1
20100093310 Gbadegesin et al. Apr 2010 A1
20100107225 Spencer et al. Apr 2010 A1
20100122184 Vonog et al. May 2010 A1
20100131868 Chawla et al. May 2010 A1
20100151431 Miller Jun 2010 A1
20100153835 Xiong et al. Jun 2010 A1
20100154025 Esteve Balducci et al. Jun 2010 A1
20100162365 Del Real Jun 2010 A1
20100162374 Nair Jun 2010 A1
20100179940 Gilder et al. Jul 2010 A1
20100185463 Noland et al. Jul 2010 A1
20100185932 Coffman et al. Jul 2010 A1
20100191689 Cortes et al. Jul 2010 A1
20100198783 Wang et al. Aug 2010 A1
20100198871 Stiegler et al. Aug 2010 A1
20100198944 Ho et al. Aug 2010 A1
20100205392 Schnapp et al. Aug 2010 A1
20100205537 Knighton et al. Aug 2010 A1
20100212010 Stringer et al. Aug 2010 A1
20100218237 Ferris et al. Aug 2010 A1
20100223378 Wei Sep 2010 A1
20100229085 Nelson et al. Sep 2010 A1
20100235526 Carter et al. Sep 2010 A1
20100235539 Carter et al. Sep 2010 A1
20100241611 Zuber Sep 2010 A1
20100241972 Spataro et al. Sep 2010 A1
20100242028 Weigert Sep 2010 A1
20100250120 Waupotitsch et al. Sep 2010 A1
20100251340 Martin et al. Sep 2010 A1
20100257457 De Goes Oct 2010 A1
20100262582 Garcia-Ascanio et al. Oct 2010 A1
20100262953 Barboni et al. Oct 2010 A1
20100267588 Nelson et al. Oct 2010 A1
20100269164 Sosnosky et al. Oct 2010 A1
20100274765 Murphy et al. Oct 2010 A1
20100274772 Samuels Oct 2010 A1
20100281118 Donahue et al. Nov 2010 A1
20100290623 Banks et al. Nov 2010 A1
20100306379 Ferris Dec 2010 A1
20100312615 Murphy et al. Dec 2010 A1
20100318893 Matthews et al. Dec 2010 A1
20100322252 Suganthi et al. Dec 2010 A1
20100325155 Skinner et al. Dec 2010 A1
20100325527 Estrada et al. Dec 2010 A1
20100325559 Westerinen et al. Dec 2010 A1
20100325655 Perez Dec 2010 A1
20100332401 Prahlad et al. Dec 2010 A1
20100332818 Prahlad et al. Dec 2010 A1
20100332962 Hammer et al. Dec 2010 A1
20100333116 Prahlad et al. Dec 2010 A1
20110001763 Murakami Jan 2011 A1
20110016409 Grosz et al. Jan 2011 A1
20110022559 Andersen et al. Jan 2011 A1
20110022812 van der Linden et al. Jan 2011 A1
20110029883 Lussier et al. Feb 2011 A1
20110040812 Phillips Feb 2011 A1
20110041083 Gabai et al. Feb 2011 A1
20110047413 McGill et al. Feb 2011 A1
20110047484 Mount et al. Feb 2011 A1
20110052155 Desmarais et al. Mar 2011 A1
20110054968 Galaviz Mar 2011 A1
20110055299 Phillips Mar 2011 A1
20110055721 Jain et al. Mar 2011 A1
20110061045 Phillips Mar 2011 A1
20110061046 Phillips Mar 2011 A1
20110065082 Gal et al. Mar 2011 A1
20110066951 Ward-Karet et al. Mar 2011 A1
20110078243 Carpenter et al. Mar 2011 A1
20110083167 Carpenter et al. Apr 2011 A1
20110093567 Jeon et al. Apr 2011 A1
20110099006 Sundararaman et al. Apr 2011 A1
20110107088 Eng et al. May 2011 A1
20110107205 Chow et al. May 2011 A1
20110113320 Neff et al. May 2011 A1
20110119313 Sung et al. May 2011 A1
20110125847 Cocheu et al. May 2011 A1
20110131299 Sardary Jun 2011 A1
20110137991 Russell Jun 2011 A1
20110138479 Jain et al. Jun 2011 A1
20110142410 Ishii Jun 2011 A1
20110145187 Himmelsbach et al. Jun 2011 A1
20110145282 Moore et al. Jun 2011 A1
20110145589 Camenisch et al. Jun 2011 A1
20110145744 Haynes et al. Jun 2011 A1
20110154180 Evanitsky et al. Jun 2011 A1
20110161289 Pei et al. Jun 2011 A1
20110167125 Achlioptas Jul 2011 A1
20110167353 Grosz et al. Jul 2011 A1
20110167435 Fang Jul 2011 A1
20110185292 Chawla et al. Jul 2011 A1
20110202424 Chun et al. Aug 2011 A1
20110202599 Yuan et al. Aug 2011 A1
20110208958 Stuedi et al. Aug 2011 A1
20110209064 Jorgensen et al. Aug 2011 A1
20110213765 Cui et al. Sep 2011 A1
20110218964 Hagan et al. Sep 2011 A1
20110219419 Reisman Sep 2011 A1
20110225417 Maharajh et al. Sep 2011 A1
20110238458 Purcell et al. Sep 2011 A1
20110238621 Agrawal Sep 2011 A1
20110238759 Spataro et al. Sep 2011 A1
20110239135 Spataro et al. Sep 2011 A1
20110246294 Robb et al. Oct 2011 A1
20110246950 Luna et al. Oct 2011 A1
20110252071 Cidon Oct 2011 A1
20110252312 Lemonik et al. Oct 2011 A1
20110252320 Arrasvuori et al. Oct 2011 A1
20110252339 Lemonik et al. Oct 2011 A1
20110258461 Bates Oct 2011 A1
20110258561 Ladouceur et al. Oct 2011 A1
20110264621 Burjoski Oct 2011 A1
20110276683 Goldschlag et al. Nov 2011 A1
20110277027 Hayton et al. Nov 2011 A1
20110282710 Akkiraju et al. Nov 2011 A1
20110289433 Whalin et al. Nov 2011 A1
20110295798 Shain Dec 2011 A1
20110296022 Ferris et al. Dec 2011 A1
20110313803 Friend et al. Dec 2011 A1
20110314145 Raleigh et al. Dec 2011 A1
20110320197 Conejero et al. Dec 2011 A1
20110320936 Mohan Dec 2011 A1
20120030187 Marano et al. Feb 2012 A1
20120036370 Lim et al. Feb 2012 A1
20120057696 Chew Mar 2012 A1
20120064879 Panei Mar 2012 A1
20120072436 Pierre et al. Mar 2012 A1
20120079095 Evans et al. Mar 2012 A1
20120089610 Agrawal et al. Apr 2012 A1
20120089659 Halevi et al. Apr 2012 A1
20120089710 Rakowski Apr 2012 A1
20120096521 Peddada Apr 2012 A1
20120101995 Agetsuma et al. Apr 2012 A1
20120108200 Rubin et al. May 2012 A1
20120110005 Kuo et al. May 2012 A1
20120110436 Adler, III et al. May 2012 A1
20120110443 Lemonik et al. May 2012 A1
20120117626 Yates et al. May 2012 A1
20120124306 Abercrombie et al. May 2012 A1
20120124547 Halbedel May 2012 A1
20120130900 Tang et al. May 2012 A1
20120134491 Liu May 2012 A1
20120136936 Quintuna May 2012 A1
20120143825 Boehm et al. Jun 2012 A1
20120144283 Hill et al. Jun 2012 A1
20120150888 Hyatt et al. Jun 2012 A1
20120151265 Bender et al. Jun 2012 A1
20120151551 Readshaw et al. Jun 2012 A1
20120158908 Luna et al. Jun 2012 A1
20120159178 Lin et al. Jun 2012 A1
20120159310 Chang et al. Jun 2012 A1
20120166516 Simmons et al. Jun 2012 A1
20120173612 Vegesna-Venkata et al. Jul 2012 A1
20120173625 Berger Jul 2012 A1
20120179802 Narasimhan et al. Jul 2012 A1
20120179981 Whalin et al. Jul 2012 A1
20120185355 Kilroy Jul 2012 A1
20120185913 Martinez et al. Jul 2012 A1
20120192055 Antebi et al. Jul 2012 A1
20120192086 Ghods et al. Jul 2012 A1
20120203670 Piersol Aug 2012 A1
20120203908 Beaty et al. Aug 2012 A1
20120204032 Wilkins et al. Aug 2012 A1
20120206653 Graves et al. Aug 2012 A1
20120207449 Angquist et al. Aug 2012 A1
20120209815 Carson et al. Aug 2012 A1
20120209889 Agnoli et al. Aug 2012 A1
20120214444 McBride et al. Aug 2012 A1
20120218885 Abel et al. Aug 2012 A1
20120221789 Felter Aug 2012 A1
20120224691 Purohit Sep 2012 A1
20120226767 Luna et al. Sep 2012 A1
20120233155 Gallmeier et al. Sep 2012 A1
20120233205 McDermott Sep 2012 A1
20120233543 Vagell et al. Sep 2012 A1
20120240061 Hillenius et al. Sep 2012 A1
20120240183 Sinha Sep 2012 A1
20120257249 Natarajan Oct 2012 A1
20120259964 Lin et al. Oct 2012 A1
20120263166 Cho et al. Oct 2012 A1
20120266203 Elhadad et al. Oct 2012 A1
20120284290 Keebler et al. Nov 2012 A1
20120284638 Cutler et al. Nov 2012 A1
20120284664 Zhao Nov 2012 A1
20120291011 Quine Nov 2012 A1
20120296790 Robb Nov 2012 A1
20120309540 Holme et al. Dec 2012 A1
20120311157 Erickson et al. Dec 2012 A1
20120311499 Dellinger et al. Dec 2012 A1
20120317239 Mulder et al. Dec 2012 A1
20120317487 Lieb et al. Dec 2012 A1
20120328259 Seibert, Jr. et al. Dec 2012 A1
20120331177 Jensen Dec 2012 A1
20120331441 Adamson Dec 2012 A1
20130007245 Malik et al. Jan 2013 A1
20130007471 Grab et al. Jan 2013 A1
20130007894 Dang et al. Jan 2013 A1
20130013560 Goldberg et al. Jan 2013 A1
20130014023 Lee et al. Jan 2013 A1
20130042106 Persaud et al. Feb 2013 A1
20130054634 Chakraborty et al. Feb 2013 A1
20130055127 Saito et al. Feb 2013 A1
20130067232 Cheung et al. Mar 2013 A1
20130073403 Tuchman et al. Mar 2013 A1
20130073621 Waddoups et al. Mar 2013 A1
20130080765 Mohanty et al. Mar 2013 A1
20130080919 Kiang et al. Mar 2013 A1
20130110565 Means, Jr. et al. May 2013 A1
20130110961 Jadhav May 2013 A1
20130117226 Jain et al. May 2013 A1
20130117337 Dunham May 2013 A1
20130117376 Filman et al. May 2013 A1
20130124458 Barreto et al. May 2013 A1
20130124638 Barreto et al. May 2013 A1
20130124984 Kuspa May 2013 A1
20130138608 Smith May 2013 A1
20130138615 Gupta et al. May 2013 A1
20130151690 Shah et al. Jun 2013 A1
20130159411 Bowen Jun 2013 A1
20130163289 Kim et al. Jun 2013 A1
20130167253 Seleznev et al. Jun 2013 A1
20130179947 Kline, III et al. Jul 2013 A1
20130185347 Romano Jul 2013 A1
20130185452 Burckart et al. Jul 2013 A1
20130185558 Seibert et al. Jul 2013 A1
20130191339 Haden Jul 2013 A1
20130198600 Lockhart et al. Aug 2013 A1
20130212067 Piasecki et al. Aug 2013 A1
20130212486 Joshi et al. Aug 2013 A1
20130218978 Weinstein et al. Aug 2013 A1
20130219176 Akella et al. Aug 2013 A1
20130226876 Gati et al. Aug 2013 A1
20130227522 Lerum et al. Aug 2013 A1
20130239049 Perrodin et al. Sep 2013 A1
20130246901 Massand Sep 2013 A1
20130246932 Zaveri et al. Sep 2013 A1
20130254699 Bashir et al. Sep 2013 A1
20130262210 Savage et al. Oct 2013 A1
20130262862 Hartley Oct 2013 A1
20130268480 Dorman Oct 2013 A1
20130268491 Chung et al. Oct 2013 A1
20130268999 Kiang et al. Oct 2013 A1
20130275398 Dorman et al. Oct 2013 A1
20130275429 York et al. Oct 2013 A1
20130275509 Micucci et al. Oct 2013 A1
20130282658 Besen et al. Oct 2013 A1
20130282830 Besen et al. Oct 2013 A1
20130283106 King et al. Oct 2013 A1
20130304679 Fleming et al. Nov 2013 A1
20130304694 Barreto et al. Nov 2013 A1
20130304697 Movida Nov 2013 A1
20130305039 Gauda Nov 2013 A1
20130325803 Akirav et al. Dec 2013 A1
20130326344 Masselle et al. Dec 2013 A1
20140006357 Davis et al. Jan 2014 A1
20140006465 Davis et al. Jan 2014 A1
20140007205 Oikonomou Jan 2014 A1
20140013112 Cidon et al. Jan 2014 A1
20140019497 Cidon et al. Jan 2014 A1
20140019498 Cidon et al. Jan 2014 A1
20140032489 Hebbar et al. Jan 2014 A1
20140032616 Nack Jan 2014 A1
20140033277 Xiao et al. Jan 2014 A1
20140033291 Liu Jan 2014 A1
20140033324 Kiang et al. Jan 2014 A1
20140040182 Gilder et al. Feb 2014 A1
20140040206 Ramakrishnan et al. Feb 2014 A1
20140047509 Bhogal et al. Feb 2014 A1
20140052939 Tseng et al. Feb 2014 A1
20140059002 Lockhart et al. Feb 2014 A1
20140059217 Pizurica Feb 2014 A1
20140068589 Barak Mar 2014 A1
20140074629 Rathod Mar 2014 A1
20140082071 Rexer Mar 2014 A1
20140149461 Wijayaratne et al. May 2014 A1
20140150023 Gudorf et al. May 2014 A1
20140156373 Roberts et al. Jun 2014 A1
20140172595 Beddow et al. Jun 2014 A1
20140172783 Suzuki et al. Jun 2014 A1
20140172799 Dorman Jun 2014 A1
20140188798 Mackenzie et al. Jul 2014 A1
20140201138 Dorman et al. Jul 2014 A1
20140201145 Dorman et al. Jul 2014 A1
20140215303 Grigorovitch et al. Jul 2014 A1
20140230011 Drewry et al. Aug 2014 A1
20140244600 Schmidt et al. Aug 2014 A1
20140258350 Duval et al. Sep 2014 A1
20140280605 Zhang Sep 2014 A1
20140337291 Dorman et al. Nov 2014 A1
20140337482 Houston Nov 2014 A1
20140337491 Barreto et al. Nov 2014 A1
20140344456 Buzbee et al. Nov 2014 A1
20140359085 Chen Dec 2014 A1
20140359286 Wen et al. Dec 2014 A1
20140372376 Smith et al. Dec 2014 A1
20140379647 Smith et al. Dec 2014 A1
20140379760 Martin et al. Dec 2014 A1
20150019723 Kweon et al. Jan 2015 A1
20150039556 Mackenzie et al. Feb 2015 A1
20150154156 Meyers, Jr. et al. Jun 2015 A1
20150186668 Whaley et al. Jul 2015 A1
20150237406 Ochoa et al. Aug 2015 A1
20150339113 Dorman et al. Nov 2015 A1
20160065672 Savage et al. Mar 2016 A1
20160350326 Simonetti Dec 2016 A1
Foreign Referenced Citations (43)
Number Date Country
2724521 Nov 2009 CA
101997924 Mar 2011 CN
102264063 Nov 2011 CN
0348614 Jan 1990 EP
0921661 Jun 1999 EP
1349088 Oct 2003 EP
1528746 May 2005 EP
1933242 Jun 2008 EP
2372574 Oct 2011 EP
2610776 Jul 2013 EP
2453924 Apr 2009 GB
2471282 Dec 2010 GB
09-101937 Apr 1997 JP
11-025059 Jan 1999 JP
2003273912 Sep 2003 JP
2004310272 Nov 2004 JP
09-269925 Oct 2007 JP
2008250944 Oct 2008 JP
20020017444 Mar 2002 KR
20040028036 Apr 2004 KR
20050017674 Feb 2005 KR
20060070306 Jun 2006 KR
20060114871 Nov 2006 KR
20070043353 Apr 2007 KR
20070100477 Oct 2007 KR
20100118836 Nov 2010 KR
20110074096 Jun 2011 KR
20110076831 Jul 2011 KR
WO-0007104 Feb 2000 WO
WO-2002019128 Mar 2002 WO
WO-2004097681 Nov 2004 WO
WO-2006028850 Mar 2006 WO
WO-2007024438 Mar 2007 WO
WO-2007035637 Mar 2007 WO
WO-2007113573 Oct 2007 WO
WO-2008011142 Jan 2008 WO
WO-2008076520 Jun 2008 WO
WO-2011109416 Sep 2011 WO
WO-2012167272 Dec 2012 WO
WO-2013009328 Jan 2013 WO
WO-2013013217 Jan 2013 WO
WO-2013041763 Mar 2013 WO
WO-2013166520 Nov 2013 WO
Non-Patent Literature Citations (278)
Entry
Exam Report for GB1317393.5 Applicant: Box, Inc. dated Nov. 7, 2014, 6 pages.
Exam Report for GB1311417.8 Applicant: Box, Inc. dated Nov. 7, 2014, 2 pages.
Exam Report for GB1311421.0 Applicant: Box, Inc. dated Nov. 7, 2014, 4 pages.
Exam Report for GB1316682.2 Applicant: Box, Inc. dated Nov. 19, 2014, 6 pages.
Exam Report for GB1312095.1 Applicant: Box, Inc. dated Nov. 19, 2014, 5 pages.
Exam Report for GB1313559.5 Applicant: Box, Inc. dated Nov. 4, 2014, 2 pages.
User's Guide for SMART Board Software for Windows, published Dec. 2004, 90 pages.
Zambonini et al., “Automated Measuring of Interaction with User Interfaces,” Published as WO2007113573 Oct. 2007, 19 pages.
Exam Report for GB1311459.0 Applicant: Box, Inc. dated Aug. 19, 2013, 6 pages.
“Dropbox: Sync only specific folders,” posted on Feb. 9, 2012, available online at http://www.tech-recipes.com/rx/20865/dropbox-sync-only-specific-folders/, 4 pages.
Exam Report for GB1220644.7 Applicant: Box, Inc. dated May 1, 2015, 4 pages.
Invens, “Using and Troubleshooting Offline Files,” Jun. 23, 2002, Windows IT Pro, pp. 1-5.
Invens, “Using and Troubleshooting Offline Files,” Jun. 23, 2002, Windows IT Pro, Figures 1 and 2, 2 pages.
“How-to Geek, How to Sync Specific Folders With Dropbox,” originally written on Jun. 20, 2010 and archived version retrieved from WaybackMachine as published online on Jun. 4, 2010 at http://www.howtogeek.com/howto/18285/sync-specific-folders-with-dropbox, 7 pages.
“Conceptboard”, One-Step Solution for Online Collaboration, retrieved from websites http://conceptboard.com and https://www.youtube.com/user/ConceptboardApp?feature=watch, printed on Jun. 13, 2013, 9 pages.
“How-to Geek, How to Sync Specific Folders With Dropbox,” downloaded from the internet http://www.howtogeek.com, Apr. 23, 2013, 5 pages.
“Microsoft Office SharePoint 2007 User Guide,” Feb. 16, 2010, pp. 1-48.
“PaperPort Professional 14,” PC Mag. Com review, published Feb. 2012, Ziff Davis, Inc., 8 pages.
“PaperPort,” Wikipedia article (old revision), published May 19, 2012, Wikipedia Foundation, 2 pages.
“Quickoffice Enhances Android Mobile office Application for Improved Productivity on latest Smartphone and Table Devices,” QuickOffice Press Release, Nov. 21, 2011, QuickOffice Inc., 2 pages.
“QuickOffice,” Wikipedia Article (old revision), published May 9, 2012, Wikipedia Foundation, 2 pages.
“Understanding Metadata,” National Information Standards Organization, NISO Press, 2004, 20 pages.
Cisco, “FTP Load Balancing on ACE in Routed Mode Configuration Example,” DocWiki, Jun. 2011, 7 pages.
Conner, “Google Apps: The Missing Manual,” published by O'Reilly Media, May 27, 2008, 24 pages.
Exam Report for EP13158415.3, Applicant: Box, Inc. dated Jun. 4, 2013, 8 pages.
Exam Report for EP13168784.0, Applicant: Box, Inc. dated Nov. 21, 2013, 7 pages.
Exam Report for GB1300188.8, Applicant: Box, Inc. dated May 31, 2013, 8 pages.
Exam Report for GB1306011.6, Applicant: Box, Inc. dated Apr. 18, 2013, 8 pages.
Exam Report for GB1309209.3, Applicant: Box, Inc. dated Oct. 30, 2013, 11 pages.
Exam Report for GB1310666.1, Applicant: Box, Inc. dated Aug. 30, 2013, 10 pages.
Exam Report for GB1311417.8, Applicant: Box, Inc. dated Dec. 20, 2013, 5 pages.
Exam Report for GB1312095.1, Applicant: Box, Inc. dated Dec. 12, 2013, 7 pages.
Exam Report for GB1312874.9, Applicant: Box, Inc. dated Dec. 20, 2013, 11 pages.
Exam Report for GB1313559.5, Applicant: Box, Inc., dated Aug. 22, 2013, 19 pages.
Exam Report for GB1316532.9, Applicant: Box, Inc. dated Oct. 31, 2013, 10 pages.
Exam Report for GB1316533.7, Applicant: Box, Inc. dated Oct. 8, 2013, 9 pages.
Exam Report for GB1316971.9, Applicant: Box, Inc. dated Nov. 26, 2013, 10 pages.
Exam Report for GB1317600.3, Applicant: Box, Inc. dated Nov. 21, 2013, 8 pages.
Exam Report for GB1318373.6, Applicant: Box, Inc. dated Dec. 17, 2013, 4 pages.
Exam Report for GB1320902.8, Applicant: Box, Inc. dated Dec. 20, 2013, 4 pages.
Gedymin, “Cloud computing with an emphasis on Google App Engine,” Master Final Project, Sep. 2011, 146 pages.
Google Docs, http://web.Archive.org/web/20100413105758/http://en.wikipedia.org/wiki/Google_docs, Apr. 13, 2010, 6 pages.
International Search Report and Written Opinion for PCT/US2008/012973 dated Apr. 30, 2009, pp. 1-11.
International Search Report and Written Opinion for PCT/US2011/039126 dated Oct. 6, 2011, pp. 1-13.
International Search Report and Written Opinion for PCT/US2011/041308 dated Jul. 2, 2012, pp. 1-16.
International Search Report and Written Opinion for PCT/US2011/056472 dated Jun. 22, 2012, pp. 1-12.
International Search Report and Written Opinion for PCT/US2011/057938, Applicant: Box, Inc., dated Mar. 29, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2011/060875 dated Oct. 30, 2012, pp. 1-10.
International Search Report and Written Opinion for PCT/US2012/056955, Applicant: Box, Inc., dated Mar. 27, 2013, pp. 1-11.
International Search Report and Written Opinion for PCT/US2012/063041, Applicant: Box, Inc., dated Mar. 29, 2013, 12 pages.
International Search Report and Written Opinion for PCT/US2012/065617, Applicant: Box, Inc., dated Mar. 29, 2013, 9 pages.
International Search Report and Written Opinion for PCT/US2012/067126, Applicant: Box, Inc., dated Mar. 29, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2012/070366, Applicant: Box, Inc., dated Apr. 24, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2013/020267, Applicant: Box, Inc., dated May 7, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2013/023889, Applicant: Box, Inc., dated Jun. 24, 2013, 13 pages.
International Search Report and Written Opinion for PCT/US2013/029520, Applicant: Box, Inc., dated Jun. 26, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2013/034662, Applicant: Box, Inc., dated May 31, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2013/035404, Applicant: Box, Inc., dated Jun. 26, 2013, 13 pages.
International Search Report and Written Opinion for PCT/US2013/039782, Applicant: Box, Inc., dated Aug. 28, 2013, 15 pages.
Internet Forums, http://web.archive.org/web/20100528195550/http://en.wikipedia.org/wiki/Internet_forums, Wikipedia, May 30, 2010, pp. 1-20.
Langfeld L. et al., “Microsoft SharePoint 2003 Unleashed,” Chapters 11 and 15, Jun. 2004, pp. 403-404, 557-561, 578-581.
Lars, “35 Very Useful Online Tools for Improving your project Management and Team Collaboration,” Apr. 31, 2010, tripwiremagazine.com, pp. 1-32.
Palmer, “Load Balancing FTP Servers,” BlogNav, Oct. 2008, 2 pages.
Parr, “Google Docs Improves Commenting, Adds E-mail Notifications,” Apr. 16, 2011, mashable.com, pp. 1-6.
Partial International Search Report for PCT/US2011/041308 dated Feb. 27, 2012, pp. 1-2.
Patent Court Document of Approved Judgment for GB0602349.3 and GB0623571.7; Mar. 3, 2009, 17 pages.
Supplementary European Search Report European Application No. EP 08 85 8563 dated Jun. 20, 2011 pp. 1-5.
Wayback, “Wayback machine,” Wayback, Jun. 1, 2011, 1 page.
Wiki, http://web.archive.org/web/20100213004936/http://en.wikipedia.org/wiki/Wiki, Feb. 13, 2010, pp. 1-16.
Yahoo! Groups, http://web.archive.org/web/20090320101529/http://en.wikipedia.org/wiki/Yahoo!_Groups, Wikipedia, Mar. 20, 2009, pp. 1-6.
Ivens, “Using and Troubleshooting Offline Files,” Jun. 23, 2002, Windows IT Pro, Figure 1.
Ivens, “Configuring Offline Files,” Apr. 21, 2002, Windows IT Pro, pp. 1-5.
U.S. Appl. No. 60/992,656, filed Dec. 5, 2007 Methods and Systems for Open Source Collaboration in an Application Service Provider Environment.
U.S. Appl. No. 61/055,901, filed May 23, 2008 Methods and Systems for Open Source Integration.
U.S. Appl. No. 12/260,533 (U.S. Pat. No. 8,326,814) filed Oct. 29, 2008 (Dec. 4, 2012) Methods and Systems for Open Source Integration.
U.S. Appl. No. 13/030,090 (U.S. Pat. No. 8,140,513) filed Feb. 17, 2011 (Mar. 20, 2012) Methods and Systems for Open Source Collaboration in an Application Service Provider Environment.
U.S. Appl. No. 13/412,549 (U.S. Pat. No. 8,583,619) filed Mar. 5, 2012 (Nov. 12, 2013) Methods and Systems for Open Source Collaboration in an Application Service Provider Environment.
U.S. Appl. No. 13/646,339, filed Oct. 5, 2012 File Management System and Collaboration Service and Integration Capabilities With Third Party Applications.
U.S. Appl. No. 14/073,502, filed Nov. 6, 2013 Methods and Systems for Open Source Collaboration in an Application Service Provider Environment.
U.S. Appl. No. 61/434,810, filed Jan. 20, 2011 Real Time Notifications of Activity and Real-Time Collaboration in a Cloud-Based Environment With Applications in Enterprise Settings.
U.S. Appl. No. 13/152,982, filed Jun. 3, 2011 Real Time Notification of Activities that Occur in a Web-Based Collaboration Environment.
U.S. Appl. No. 13/166,733, filed Jun. 22, 2011 Multimedia Content Preview Rendering in a Cloud Content Management System.
U.S. Appl. No. 61/551,894, filed Oct. 26, 2011 Enhanced Multimedia Content Preview Rendering in a Cloud Content Management System.
U.S. Appl. No. 13/590,012, filed Aug. 20, 2012 Preview Pre-Generation Based on Heuristics and Algorithmic Prediction/Assessment of Predicted User Behavior for Enhancement of User Experience.
U.S. Appl. No. 13/297,230, filed Nov. 15, 2011 Enhanced Multimedia Content Preview Rendering in a Cloud Content Management.
U.S. Appl. No. 61/592,567, filed Jan. 30, 2012 Preview Pre-Generation Based on Heuristics and Algorithmic Prediction/Assessment of Predicted User Behavior for Enhancement of User Experience.
U.S. Appl. No. 61/506,013, filed Jul. 8, 2011 Collaboration Sessions in a Workspace on a Cloud-Based Content Management System.
U.S. Appl. No. 13/208,615, filed Aug. 12, 2011 Collaboration Sessions in a Workspace on a Cloud-Based Content Management System.
U.S. Appl. No. 61/592,394, filed Jan. 30, 2012 Extended Applications of Multimedia Content Previews in the Cloud-Based Content Management System.
U.S. Appl. No. 13/588,356, filed Aug. 17, 2012 Extended Applications of Multimedia Content Previews in the Cloud-Based Content Management System.
U.S. Appl. No. 13/274,268 (U.S. Pat. No. 8,515,902) filed Oct. 14, 2011 (Aug. 20, 2013) Automatic and Semi-Automatic Tagging Features of Work Items in a Shared Workspace for Metadata Tracking in a Cloud-Based Content Management System With Selective or Optional User Contribution.
U.S. Appl. No. 13/968,357, filed Aug. 15, 2013 Automatic and Semi-Automatic Tagging Features of Work Items in a Shared Workspace for Metadata Tracking in a Cloud-Based Content Management System With Selective or Optional User Contribution.
U.S. Appl. No. 61/538,782, filed Sep. 23, 2011 Central Management and Control of User-Contributed Content in a Web-Based Collaboration Environment and Management Console Thereof.
U.S. Appl. No. 13/547,264, filed Jul. 12, 2012 Central Management and Control of User-Contributed Content in a Web-Based Collaboration Environment and Management Console Thereof.
U.S. Appl. No. 13/165,725, filed Jun. 21, 2011 Batch Uploading of Content to a Web-Based Collaboration Environment.
U.S. Appl. No. 61/505,999, filed Jul. 11, 2011 Desktop Application for Access and Interaction With Workspaces in a Cloud-Based Content Management System and Synchronization Mechanisms Thereof.
U.S. Appl. No. 13/282,427, filed Oct. 26, 2011 Desktop Application for Access and Interaction with Workspaces in a Cloud-Based Content Management System and Synchronization Mechanisms Thereof.
U.S. Appl. No. 61/554,450, filed Nov. 1, 2011 Platform and Application Independent Method for Document Editing and Version Tracking Via a Web Browser.
U.S. Appl. No. 13/332,319, filed Dec. 20, 2011 Platform and Application Independent System and Method for Networked File Access and Editing.
U.S. Appl. No. 13/414,480, filed Mar. 7, 2012 Universal File Type Preview for Mobile Devices.
U.S. Appl. No. 61/564,425, filed Nov. 29, 2011 Mobile Platform Folder Synchronization and Offline Synchronization.
U.S. Appl. No. 61/568,430, filed Dec. 8, 2011 Mobile Platform File and Folder Selection Functionalities for Offline Access and Synchronization.
U.S. Appl. No. 13/689,544, filed Nov. 29, 2012 Mobile Platform File and Folder Selection Functionalities for Offline Access and Synchronization.
U.S. Appl. No. 13/345,502, filed Jan. 6, 2012 System and Method for Actionable Event Generation for Task Delegation and Management Via a Discussion Forum in a Web-Based Collaboration Environment.
U.S. Appl. No. 13/619,439, filed Sep. 14, 2012 Batching Notifications of Activities That Occur in a Web-Based Collaboration Environment.
U.S. Appl. No. 61/560,685, filed Nov. 16, 2011 Temporal and Spatial Processing for Asynchronous Delivery in an Ordered Fashion.
U.S. Appl. No. 13/524,501, filed Jun. 15, 2012 Resource Effective Incremental Updating of a Remote Client With Events Which Occurred Via a Cloud-Enabled Platform.
U.S. Appl. No. 13/526,437, filed Jun. 18, 2012 Managing Updates at Clients Used by a User to Access a Cloud-Based Collaboration Service.
U.S. Appl. No. 61/579,551, filed Dec. 22, 2011 System Status Monitoring and Data Health Checking in a Collaborative Environment.
U.S. Appl. No. 13/464,813, filed Apr. 4, 2012 Health Check Services for Web-Based Collaboration Environments.
U.S. Appl. No. 13/405,164, filed Feb. 24, 2012 System and Method for Promoting Enterprise Adoption of a Web-Based Collaboration Environment.
U.S. Appl. No. 13/431,645, filed Mar. 27, 2012 Cloud Service or Storage Use Promotion Via Partnership Driven Automatic Account Upgrades.
U.S. Appl. No. 61/620,554, filed Apr. 5, 2012 Device Pinning Capability for Enterprise Cloud Service and Storage Accounts.
U.S. Appl. No. 13/493,922, filed Jun. 11, 2012 Device Pinning Capability for Enterprise Cloud Service and Storage Accounts.
U.S. Appl. No. 61/649,869, filed Mar. 21, 2012 Selective Application Access Control Via a Cloud-Based Service for Security Enhancement.
U.S. Appl. No. 13/493,783, filed Jun. 11, 2012 Security Enhancement Through Application Access Control.
U.S. Appl. No. 61/702,948, filed Sep. 19, 2012 Cloud-Based Platform Enabled With Media Content Indexed for Text-Based Searches and/or Metadata Extraction.
U.S. Appl. No. 13/829,663, filed Mar. 14, 2013 Cloud-Based Platform Enabled With Media Content Indexed for Text-Based Searches and/or Metadata Extraction.
U.S. Appl. No. 61/702,662, filed Sep. 18, 2012 Sandboxing Individual Applications to Specific User Folders in a Cloud-Based Service.
U.S. Appl. No. 13/830,016, filed Mar. 14, 2013 Sandboxing Individual Applications to Specific User Folders in a Cloud-Based Service.
U.S. Appl. No. 61/620,568, filed Apr. 5, 2012 Synchronization Client Selective Subfolder Syncing in a Cloud-Based Environment.
U.S. Appl. No. 13/856,607, filed Apr. 4, 2013 Method and Apparatus for Selective Subfolder Synchronization in a Cloud-Based Environment.
U.S. Appl. No. 61/622,868, filed Apr. 11, 2012 Web and Desktop Client Synchronization of Mac Packages With a Cloud-Based Platform.
U.S. Appl. No. 13/618,993, filed Sep. 14, 2012 Cloud Service Enabled to Handle a Set of Files Depicted to a User as a Single File in a Native Operating System.
U.S. Appl. No. 61/643,116, filed May 4, 2012 Hbase Redundancy Implementation for Action Log Framework.
U.S. Appl. No. 13/890,172, filed May 8, 2013 Repository Redundancy Implementation of a System Which Incrementally Updates Clients With Events That Occurred Via a Cloud-Enabled Platform.
U.S. Appl. No. 13/888,308, filed May 6, 2013 Repository Redundancy Implementation of a System Which Incrementally Updates Clients With Events That Occurred Via a Cloud-Enabled Platform.
U.S. Appl. No. 61/693,521, filed Aug. 27, 2012 Backend Implementation of Synchronization Client Selective Subfolder Syncing in a Cloud-Based Environment.
U.S. Appl. No. 14/010,851, filed Aug. 27, 2013 Server Side Techniques for Reducing Database Workload in Implementing Selective Subfolder Synchronization in a Cloud-Based Environment.
U.S. Appl. No. 61/641,824, filed May 2, 2012 Platform and Application Agnostic Method for Seamless File Access in a Mobile Environment.
U.S. Appl. No. 61/650,840, filed May 23, 2012 Platform and Application Agnostic Method for Seamless File Access in a Mobile Environment.
U.S. Appl. No. 61/653,876, filed May 31, 2012 Platform and Application Agnostic Method for Seamless File Access in a Mobile Environment.
U.S. Appl. No. 13/886,147, filed May 2, 2013 System and Method for a Third-Party Application to Access Content Within a Cloud-Based Platform.
U.S. Appl. No. 13/897,421, filed May 19, 2013 Methods, Architectures and Security Mechanisms for a Third-Party Application to Access Content in a Cloud-Based Platform.
U.S. Appl. No. 13/898,200, filed May 20, 2013 Metadata Enabled Third-Party Application Access of Content at a Cloud-Based Platform Via a Native Client to the Cloud-Based Platform.
U.S. Appl. No. 13/898,242, filed May 20, 2013 Identification Verification Mechanisms for a Third-Party Application to Access Content in a Cloud-Based Platform.
U.S. Appl. No. 61/677,909, filed Jul. 3, 2012 Highly Available Ftp Servers for a Cloud-Based Service.
U.S. Appl. No. 13/565,136, filed Aug. 2, 2012 Load Balancing Secure Ftp Connections Among Multiple Ftp Servers.
U.S. Appl. No. 13/649,784 (U.S. Pat. No. 8,179,445) filed Oct. 11, 2012 (May 6, 2014) Highly Available Ftp Servers for a Cloud-Based Service.
U.S. Appl. No. 61/668,626, filed Jul. 6, 2012 Online Shard Migration.
U.S. Appl. No. 13/937,060, filed Jul. 8, 2013 System and Method for Performing Shard Migration to Support Functions of a Cloud-Based Service.
U.S. Appl. No. 61/668,698, filed Jul. 6, 2012 Identification of People as Search Results From Key-Word Based Searches of Content.
U.S. Appl. No. 13/937,101, filed Jul. 8, 2013 Identification of People as Search Results From Key-Word Based Searches of Content in a Cloud-Based Environment.
U.S. Appl. No. 61/668,791, filed Jul. 6, 2012 Systems and Methods for Specifying User and Item Identifiers Within an Email Address for Securely Submitting Comments Via Email.
U.S. Appl. No. 13/937,124, filed Jul. 8, 2013 Systems and Methods for Securely Submitting Comments Among Users Via External Messaging Applications in a Cloud-Based Platform.
U.S. Appl. No. 61/673,671, filed Jul. 19, 2012 Data Loss Prevention Methods and Architectures in a Cloud Service.
U.S. Appl. No. 13/944,184, filed Jul. 17, 2013 Data Loss Prevention (Dlp) Methods and Architectures by a Cloud Service.
U.S. Appl. No. 13/944,241, filed Jul. 17, 2013 Data Loss Prevention (Dlp) Methods by a Cloud Service Including Third Party Integration Architectures.
U.S. Appl. No. 61/694,492, filed Aug. 29, 2012 Method of Streaming File Encryption and Decryption to/From a Collaborative Cloud.
U.S. Appl. No. 13/975,827, filed Aug. 26, 2013 Method of Streaming File Encryption and Decryption to/From a Collaborative Cloud.
U.S. Appl. No. 61/701,823, filed Sep. 17, 2012 Use of a Status Bar Interface Element as a Handle for Revealing Additional Details.
U.S. Appl. No. 13/737,577, filed Jan. 9, 2013 System and Method of a Manipulative Handle in an Interactive Mobile User Interface.
U.S. Appl. No. 61/697,437, filed Sep. 6, 2012 Secure File Portability Between Mobile Applications Using a Server-Based Key Generation Service.
U.S. Appl. No. 13/776,358, filed Feb. 25, 2013 Secure File Portability Between Mobile Applications Using a Server-Based Key Generation Service.
U.S. Appl. No. 61/697,469, filed Sep. 6, 2012 Force Upgrade of a Mobile Application Via Server Side Configuration Files.
U.S. Appl. No. 13/776,467, filed Feb. 25, 2013 Force Upgrade of a Mobile Application Via Server Side Configuration File.
U.S. Appl. No. 61/697,477, filed Sep. 6, 2012 Disabling the Self-Referential Appearance of a Mobile Application in an Intent Via a Background Registration.
U.S. Appl. No. 13/794,401, filed Mar. 11, 2013 Disabling the Self-Referential Appearance of a Mobile Application in an Intent Via A Background Registration.
U.S. Appl. No. 61/697,511, filed Sep. 6, 2012 Channel for Opening and Editing Files From a Cloud Service Provider Based on Intents.
U.S. Appl. No. 13/776,535, filed Feb. 25, 2013 System and Method for Creating a Secure Channel for Inter-Application Communication Based on Intents.
U.S. Appl. No. 61/694,466, filed Aug. 12, 2012 Optimizations for Client and/or Server Feedback Information Enabled Real Time or Near Real Time Enhancement of Upload/Download Performance.
U.S. Appl. No. 61/702,154, filed Sep. 17, 2012 Optimizations for Client and/or Server Feedback Information Enabled Real Time or Near Real Time Enhancement of Upload/Download Performance.
U.S. Appl. No. 61/703,699, filed Sep. 20, 2012 Optimizations for Client and/or Server Feedback Information Enabled Real Time or Near Real Time Enhancement of Upload/Download Performance.
U.S. Appl. No. 13/969,474 (U.S. Pat. No. 8,745,267) filed Aug. 16, 2013 (Jun. 3, 2014) Client-Server Fast Upload and Download Feedback Optimizers.
U.S. Appl. No. 14/293,685, filed Jun. 2, 2014 Enhancement of Upload and/or Download Performance Based on Client and/or Server Feedback Information.
U.S. Appl. No. 61/751,578, filed Jan. 11, 2013 Functionalities, Features, and User Interface of a Synchronization Client to a Cloud-Based Environment.
U.S. Appl. No. 14/153,726, filed Jan. 13, 2014 Functionalities, Features, and User Interface of a Synchronization Client to a Cloud-Based Environment.
U.S. Appl. No. 61/715,208, filed Oct. 17, 2012 Adaptive Architectures for Encryption Key Management in a Cloud-Based Environment.
U.S. Appl. No. 14/056,899, filed Oct. 17, 2013 Remote Key Management in a Cloud-Based Environment.
U.S. Appl. No. 61/709,086, filed Oct. 2, 2012 Visibility, Access Control, Advanced Reporting Api, and Enhanced Data Protection and Security Mechanisms for Administrators in an Enterprise.
U.S. Appl. No. 14/044,261, filed Oct. 2, 2013 System and Method for Enhanced Security and Management Mechanisms for Enterprise Administrators in a Cloud-Based Environment.
U.S. Appl. No. 61/709,653, filed Oct. 4, 2012 Corporate User Discovery and Identification of Recommended Collaborators in a Cloud Platform.
U.S. Appl. No. 14/046,294, filed Oct. 4, 2013 Corporate User Discovery and Identification of Recommended Collaborators in a Cloud Platform.
U.S. Appl. No. 61/709,866, filed Oct. 4, 2012 Enhanced Quick Search Features, Low-Barrier Commenting/Interactive Features in a Collaboration Platform.
U.S. Appl. No. 14/046,523, filed Oct. 4, 2013 Enhanced Quick Search Features, Low-Barrier Commenting/Interactive Features in a Collaboration Platform.
U.S. Appl. No. 61/709,407, filed Oct. 4, 2012 Seamless Access, Editing, and Creation of Files in a Web Interface or Mobile Interface to a Cloud Platform.
U.S. Appl. No. 14/046,726, filed Oct. 4, 2013 Seamless Access, Editing, and Creation of Files in a Web Interface or Mobile Interface to a Collaborative Cloud Platform.
U.S. Appl. No. 61/710,182, filed Oct. 5, 2012 Embedded Html Folder Widget for Accessing a Cloud Collaboration Platform and Content From Any Site.
U.S. Appl. No. 14/047,223, filed Oct. 7, 2013 System and Method for Generating Embeddable Widgets Which Enable Access to a Cloud-Based Collaboration Platform.
U.S. Appl. No. 61/750,474, filed Jan. 9, 2013 File System Event Monitor and Event Filter Pipeline for a Cloud-Based Platform.
U.S. Appl. No. 61/753,761 Conflict Resolution, Retry Condition Management, and Handling of Problem Files for the Synchronization Client to a Cloud-Based Platform.
U.S. Appl. No. 14/158,626 Conflict Resolution, Retry Condition Management, and Handling of Problem Files for the Synchronization Client to a Cloud-Based Platform.
U.S. Appl. No. 61/739,296, filed Dec. 19, 2012 Synchronization of Read-Only Files/Folders by a Synchronization Client With a Cloud-Based Platform.
U.S. Appl. No. 14/135,311, filed Dec. 19, 2013 Method and Apparatus for Synchronization of Items With Read-Only Permissions in a Cloud-Based Environment.
U.S. Appl. No. 61/748,399, filed Jan. 2, 2013 Handling Action Log Framework Race Conditions for a Synchronization Client to a Cloud-Based Environment.
U.S. Appl. No. 14/146,658, filed Jan. 2, 2014 Race Condition Handling in a System Which Incrementally Updates Clients With Events That Occurred in a Cloud-Based Collaboration Platform.
U.S. Appl. No. 61/822,170, filed May 10, 2013 Identification and Handling of Items to Be Ignored for Synchronization With a Cloud-Based Platform by a Synchronization Client.
U.S. Appl. No. 14/275,890, filed May 13, 2014 Identification and Handling of Items to Be Ignored for Synchronization With a Cloud-Based Platform by a Synchronization Client.
U.S. Appl. No. 61/822,191, filed May 10, 2013 Systems and Methods for Depicting Item Synchronization With a Cloud-Based Platform by a Synchronization Client.
U.S. Appl. No. 14/275,401, filed May 12, 2014 Top Down Delete or Unsynchronization on Delete of and Depiction of Item Synchronization With a Synchronization Client to a Cloud-Based Platform.
U.S. Appl. No. 61/834,756, filed Jun. 13, 2013 Systems and Methods for Event Building, Collapsing, or Monitoring by a Synchronization Client of a Cloud-Based Platform.
U.S. Appl. No. 14/304,038, filed Jun. 13, 2014 Systems and Methods for Synchronization Event Building and/or Collapsing by a Synchronization Component of a Cloud-Based Platform.
U.S. Appl. No. 61/838,176, filed Jun. 21, 2013 Maintaining and Updating File System Shadows on a Local Device by a Synchronization Client of a Cloud-Based Platform.
U.S. Appl. No. 14/312,482, filed Jun. 23, 2014 Maintaining and Updating File System Shadows on a Local Device by a Synchronization Client of a Cloud-Based Platform.
U.S. Appl. No. 61/839,325, filed Jun. 23, 2013 Systems and Methods for Improving Performance of a Cloud-Based Platform.
U.S. Appl. No. 14/314,887, filed Jun. 25, 2014 Systems and Methods for Managing Upgrades, Migration of User Data and Improving Performance of a Cloud-Based Platform.
U.S. Appl. No. 61/839,331, filed Jun. 25, 2013 Systems and Methods for Providing Shell Communication in a Cloud-Based Platform.
U.S. Appl. No. 14/314,677, filed Jun. 25, 2014 Systems and Methods for Providing Shell Communication in a Cloud-Based Platform.
U.S. Appl. No. 13/954,680, filed Jul. 30, 2013 System and Method for Advanced Control Tools for Administrators in a Cloud-Based Service.
U.S. Appl. No. 61/860,050, filed Jul. 30, 2013 Scalability Improvement in a System Which Incrementally Updates Clients With Events That Occurred in a Cloud-Based Collaboration Platform.
U.S. Appl. No. 14/194,091, filed Feb. 28, 2014 Scalability Improvement in a System Which Incrementally Updates Clients With Events That Occurred in a Cloud-Based Collaboration Platform.
U.S. Appl. No. 13/953,668, filed Jul. 29, 2013 System and Method for Advanced Search and Filtering Mechanisms for Enterprise Administrators in a Cloud-Based Environment.
U.S. Appl. No. 14/026,674, filed Sep. 13, 2013 Configurable Event-Based Automation Architecture for Cloud-Based Collaboration Platforms.
U.S. Appl. No. 61/877,917, filed Sep. 13, 2013 Systems and Methods for Configuring Event-Based Automation in Cloud-Based Collaboration Platforms.
U.S. Appl. No. 14/075,849, filed Nov. 8, 2013 Systems and Methods for Configuring Event-Based Automation in Cloud-Based Collaboration Platforms.
U.S. Appl. No. 14/027,149, filed Sep. 13, 2013 Simultaneous Editing/Accessing of Content by Collaborator Invitation Through a Web-Based or Mobile Application to a Cloud-Based Collaboration Platform.
U.S. Appl. No. 14/042,473, filed Sep. 30, 2013 Simultaneous Editing/Accessing of Content by Collaborator Invitation Through a Web-Based or Mobile Application to a Cloud-Based Collaboration Platform.
U.S. Appl. No. 14/026,837, filed Sep. 13, 2013 Mobile Device, Methods and User Interfaces Thereof in a Mobile Device Platform Featuring Multifunctional Access and Engagement in a Collaborative Environment Provided by a Cloud-Based Platform.
U.S. Appl. No. 14/166,414, filed Jan. 28, 2014 System and Method of a Multi-Functional Managing User Interface for Accessing a Cloud-Based Platform Via Mobile Devices.
U.S. Appl. No. 14/027,147, filed Sep. 13, 2013 System and Method for Rendering Document in Web Browser or Mobile Device Regardless of Third-Party Plug-In Software.
U.S. Appl. No. 61/877,938, filed Sep. 13, 2013 High Availability Architecture for a Cloud-Based Concurrent-Access Collaboration Platform.
U.S. Appl. No. 14/474,507, filed Sep. 2, 2014 High Availability Architecture for a Cloud-Based Concurrent-Access Collaboration Platform.
U.S. Appl. No. 61/894,340, filed Oct. 22, 2013 Desktop Application for Accessing a Cloud Collaboration Platform.
U.S. Appl. No. 14/521,134, filed Oct. 22, 2014 Desktop Application for Accessing a Cloud Collaboration Platform.
U.S. Appl. No. 14/472,540, filed Aug. 29, 2014 Enhanced Remote Key Management for an Enterprise in a Cloud-Based Environment.
U.S. Appl. No. 14/474,008, filed Aug. 28, 2014 Configurable Metadata-Based Automation and Content Classification Architecture for Cloud-Based Collaboration Platforms.
Exam Report for GB1316532.9, Applicant: Box, Inc. dated Mar. 27, 2015, 6 pages.
Burney, “How to Move Document from Your Computer to Your iPad and Back Again,” May 31, 2011, 3 pages.
Exam Report for GB1413461.3; Applicant: Box, Inc. dated Aug. 21, 2015, 6 pages.
Fu et al., “Efficient and Fine-Grained Sharing of Encrypted Files,” Quality of Service (IWQos), 2010 18th International Workshop on year 2010, pp. 1-2.
Exam Report for GB1309209.3, Applicant: Box, Inc. dated Jan. 19, 2015, 6 pages.
“Agilewords—How to Request Approval,” YouTube, http://www.youtube.com/watch?v=3-Ov3DYNN3Q, Jan. 31, 2011, 2 pages.
“Agilewords—Features, Powerful Features Yet Simple,” Jun. 1, 2011, http://web.archive.org/web/20110601223756/http://agilewords.com/product/features, 3 pages.
Conner, “Google Apps: The Missing Manual,” published by O'Reilly Media, May 27, 2008, 42 pages.
Exam Report for EP 13177108.1, Applicant: Box, Inc. dated Feb. 17, 2015, 6 pages.
Exam Report for GB1312264.3, Applicant: Box, Inc. dated Jan. 30, 2015, 5 pages.
Exam Report for GB1312874.9, Applicant: Box, Inc. dated Feb. 10, 2015, 7 pages.
Exam Report for GB1316685.5, Applicant: Box, Inc. dated Feb. 17, 2015, 5 pages.
Exam Report for EP 13185269.1, Applicant: Box, Inc. dated Feb. 13, 2015, 8 pages.
Exam Report for GB1410569.6 Applicant: Box, Inc. dated Jul. 11, 2014, 9 pages.
Sommerer, “Presentable Document Format: Improved On-demand PDF to HTML Conversion,” retrieved from the internet, http://research.microsoft.com, Nov. 2004, 8 pages.
Extended Search Report for EP131832800, Applicant: Box, Inc. dated Aug. 25, 2014, 7 pages.
Extended Search Report for EP141509422, Applicant: Box, Inc. dated Aug. 26, 2014, 12pages.
Search Report for EP 13189144.2 Applicant: Box, Inc. dated Sep. 1, 2014, 9 pages.
Exam Report for GB1312874.9 Applicant: Box, Inc. dated Sep. 26, 2014, 2 pages.
Exam Report for GB1415126.0 Applicant: Box, Inc. dated Oct. 2, 2014, 8 pages.
Exam Report for GB1415314.2 Applicant: Box, Inc. dated Oct. 7, 2014, 6 pages.
Exam Report for GB1309209.3 Applicant: Box, Inc. dated Oct. 7, 2014, 3 pages.
Exam Report for GB1315232.7 Applicant: Box, Inc. dated Oct. 9, 2014, 5 pages.
Exam Report for GB1318789.3 Applicant: Box, Inc. dated Oct. 30, 2014, 6 pages.
Microsoft Windows XP Professional Product Documentation: How Inheritance Affects File and Folder Permissions, Apr. 11, 2014, 2 pages.
“Average Conversion Time for a D60 RAW file?” http://www.dpreview.com, Jul. 22, 2002, 4 pages.
“Revolving sync conflicts; frequently asked questions,” Microsoft Tech Support, Jul. 16, 2012, retrieved from the Internet: http://web.archive.org/web, 2 pages.
“Troubleshoot sync problems,” Microsoft Tech Support: May 2, 2012, retrieved from the internet, http://web. Archive.org/web, 3 pages.
“Tulsa TechFest 2012—Agenda,” retrieved from the website, http://web.archive.org, Oct. 2, 2012, 2 pages.
Burns, “Developing Secure Mobile Applications for Android,” Oct. 2008, Version 1.0, 1-28 pages.
Cohen, “Debating the Definition of Cloud Computing Platforms,” retrieved from the internet, http://forbes.com, Feb. 3, 2014, 7 pages.
Comes, “MediaXchange User's Manual,” Version 1.15.15, Feb. 1, 2009, pp. 1-90.
Delendik, “Evolving with Web Standards—The Story of PDF.JS,” retrieved from the internet, http://people.mozilla.org, Oct. 12, 2012, 36 pages.
Delendik, “My PDF.js talk slides from Tulsa TechFest,” retrieved from the internet, http://twitter.com, Oct. 12, 2012, 2 pages.
Duffy, “The Best File-Syncing Services,” pcmag.com, retrieved from the internet: http://www.pcmag.com, Sep. 28, 2012, 7 pages.
Exam Report for EP13177108.1, Applicant: Box, Inc. dated May 26, 2014, 6 pages.
Exam Report for EP13185269.1, Applicant: Box, Inc. dated Jan. 28, 7 pages.
Exam Report for GB1308842.2, Applicant: Box, Inc. dated Mar. 10, 2014, 4 pages.
Exam Report for GB1312264.3, Applicant: Box, Inc. dated Mar. 24, 2014, 7 pages.
Exam Report for GB1314771.5, Applicant: Box, Inc. dated Feb. 17, 2014, 7 pages.
Exam Report for GB1318792.7, Applicant: Box, Inc. dated May 22, 2014, 2 pages.
International Search Report and Written Opinion for PCT/US2013/034765, Applicant: Box, Inc., dated Jan. 20, 2014, 15 pages.
John et al., “Always Sync Support Forums—View topic—Allway sync funny behavior,” Allway Sync Support Forum at http://sync-center.com, Mar. 28, 2011, XP055109680, 2 pages.
Partial Search Report for EP131832800, Applicant: Box, Inc. dated May 8, 2014, 5 pages.
Pyle et al., “How to enable Event logging for Offline Files (Client Side Caching) in Windows Vista,” Feb. 18, 2009, retrieved from the internet: http://blogs.technet.com, 3 pages.
Rao, “Box Acquires Crocodoc to Add HTML5 Document Converter and Sleek Content Viewing Experience to Cloud Storage Platform,” retrieved from the internet, http://techcrunch.com, May 9, 2013, 8 pages.
Search Report for EP 11729851.3, Applicant: Box, Inc. dated Feb. 7, 2014, 9 pages.
Search Report for EP13187217.8, Applicant: Box, Inc. dated Apr. 15, 2014, 12 pages.
Search Report for EP141509422, Applicant: Box, Inc. dated May 8, 2014, 7 pages.
Search Report for EP14151588.2, Applicant: Box, Inc. dated Apr. 15, 2014, 12 pages.
Search Report for EP14153783.7, Applicant: Box, Inc. dated Mar. 24, 2014, 7 pages.
Sommerer, “Presentable Document Format: Improved On-demand PDF to HTML Conversion,” retrieved from the internet, http://research.microsoft.com, 8 pages.
Tulloch et al., “Windows Vista Resource Kit,” Apr. 8, 2007, Microsoft Press, XP055113067, 6 pages.
Walker, “PDF.js project meeting notes,” retrieved from the internet, http://groups.google.com, May 15, 2014, 1 page.
Exam Report for GB1316532.9; Applicant: Box, Inc., dated Mar. 8, 2016, 3 pages.
Cicnavi, “Offline Files in XP,” Nov. 29, 2010, UtilizeWindows, pp. 1-6.
Kretzschmar et al., “Functional Components for a Security Manager within Future Inter-Cloud environments,” Copyright 2011 IEEE, 5 pages.
Li et al., “CloudVO: Building a Secure Virtual Organization for Multiple Clouds Collaboration,” Copyright 2010 IEEE, 6 pages.
Mont et al., “Risk Assessment and Decision Support for Security Policies and Related Enterprise Operational Processes,” Copyright 2011 IEEE, 4 pages.
TaheriMonfared et al., “Monitoring Intrusions and Security Breaches in Highly Distributed Cloud Environments,” Copyright 2011 IEEE, 6 pages.
Vimercati et al., “Managing and Accessing Data in the Cloud: Privacy Risks and Approaches,” Copyright 2012 CRiSIS, 9 pages.
Wang et al., “Data Leakage Mitigation for Discretionary Access Control in Collaboration Clouds,” Copyright 2011 ACM, 10 pages.
Related Publications (1)
Number Date Country
20140195485 A1 Jul 2014 US
Provisional Applications (1)
Number Date Country
61750474 Jan 2013 US