The present invention relates to fluid containers and, more particularly, to a fluid container cap providing a valve for replenishing a fluid in the container.
It is a common practice for bicyclists to carry water or other beverages to rehydrate the body, and is particularly desirable for cyclists participating in competition events or long rides. A typical method of hydration for cyclists has been to drink from a water bottle that may be held in a cage on the bicycle, and that may periodically require replacement or refilling during an event. For example, stations along a race route may provide water bottles that the cyclist may mount to the bicycle in place of depleted bottles or that may be used to refill containers supported at one or more location on the bicycle, such as supported to a frame downtube, behind the seat or between the aero bars of the bicycle.
In order to facilitate refilling of containers mounted to the bicycle, various systems have been proposed that permit a cyclist to dispense the contents from a drink bottle into a container, such as by inserting a portion of the drink bottle through a membrane member provided as a lid over the container. For example, a membrane formed of a mesh or sponge material may be located over the opening of the container, and including a passage permitting a cyclist to dispense a drink into the container from a bottle held adjacent to the opening of the container.
In accordance with an aspect of the invention, an elastomeric fill cap for a drink container is provided. The fill cap is adapted for receiving an open end of a drink bottle having a bottle body with a bottle neck of reduced diameter, the bottle neck having a minor radially extending rib portion defining a thread for receiving a bottle cap and a major radially extending rib portion for engaging an end of the bottle cap located over the minor rib portion. The drink container includes an open end defined by an upper end having an inner perimeter and an outer perimeter. The fill cap comprises a cylindrical collar having an axial lower end and an axial upper end. An annular flange extends radially inwardly from the cylindrical collar, the annular flange having a radial outer edge connected to the axial upper end of the cylindrical collar and a radial inner edge. A valve structure is connected to and surrounded by the annular flange. The valve structure comprises a pair of generally planar lip members. Each lip member has an outer portion adjoining the inner edge of the flange and the lip members converge at an angle axially downwardly to inner edges where the lip members adjoin each other at a slit. A pair of opposing side walls extend from the inner edge of the flange to edges of the lip members located axially downwardly from the inner edge of the flange. The slit is configured to receive the bottle neck therethrough.
In accordance with another aspect of the invention, a fill cap is provided in combination with a drink container. The fill cap is formed of an elastomeric material and configured for receiving an open end of a drink bottle having a bottle body with a bottle neck of reduced diameter. The drink container includes an open end defined by an upper end having an inner perimeter and an outer perimeter. The fill cap comprises a cylindrical collar having an axial lower end and an axial upper end. An annular flange extends radially inwardly from the cylindrical collar. The annular flange has a radial outer edge connected to the axial upper end of the cylindrical collar and a radial inner edge. A valve structure is connected to and surrounded by the annular flange. The valve structure comprises a pair of generally planar lip members. Each lip member has an outer portion adjoining the inner edge of the flange and the lip members converging at an angle axially downwardly to inner edges where the lip members adjoin each other at a slit. A pair of opposing side walls extend from the inner edge of the flange to edges of the lip members located axially downwardly from the inner edge of the flange. An inner diameter of the collar, in an unstretched condition, is smaller than a diameter of the outer perimeter of the drink container, and the lip members are coupled to the collar via the annular flange to effect a predetermined opening of the slit when the collar is positioned over the upper end of the drink container.
In accordance with a further aspect of the invention, a method of using a fill cap to fill a drink container from a drink bottle is provided. The drink bottle has a bottle body with a bottle neck of reduced diameter. The bottle neck has a minor radially extending rib portion defining a thread for receiving a bottle cap and a major radially extending rib portion for engaging an end of the bottle cap located over the minor rib portion. The fill cap comprises a cylindrical collar positioned over an open upper end of the drink container, and an annular flange having a radial outer edge connected to the cylindrical collar and a radial inner edge. A valve structure is connected to and is surrounded by the annular flange. The valve structure comprises a pair of generally planar lip members, each lip member having an outer portion adjoining the inner edge of the flange. The lip members converge at an angle axially downwardly to inner edges where the lip members adjoin each other at a slit. A pair of opposing side walls extend from the inner edge of the flange to edges of the lip members located axially downwardly from the inner edge of the flange to define a cup area above the lip members and at least partially surrounded by the side walls. The method comprises: inserting the drink bottle into the cup area with at least the portion of the bottle neck including the minor rib portion positioned extending through the slit; providing a flow of fluid transferring the fluid from the drink bottle into the drink container; and providing a flow of air through predetermined openings formed between the lip members and the bottle neck at opposing ends of the slit when the bottle neck is positioned through the slit to effect a release of air pressure from the drink container as the fluid is transferred from the drink bottle to the drink container.
While the specification concludes with claims particularly pointing out and distinctly claiming the present invention, it is believed that the present invention will be better understood from the following description in conjunction with the accompanying Drawing Figures, in which like reference numerals identify like elements, and wherein:
In the following detailed description of the preferred embodiment, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration, and not by way of limitation, a specific preferred embodiment in which the invention may be practiced. It is to be understood that other embodiments may be utilized and that changes may be made without departing from the spirit and scope of the present invention.
Referring to
It should be noted that the present description uses terms such as “upper”, “lower”, “upwardly”, “downwardly”, “inner” and “outer”, or similar terms, to describe elements of the invention relative to each other are used for purposes of illustration with reference to an embodiment and usage of the invention. However, these terms are not intended to imply a limitation with reference to particular orientations in which the structure of the invention may be used.
Referring to
As may be seen in
In accordance with an aspect of the invention, the fill cap 14 is provided as an interface member between the drink container 12 and the drink bottle 16 in order to facilitate use of the drink bottle 16 and its contents to replenish a fluid supply stored in the drink container 12. As is described in greater detail below, the fill cap 14 forms a closure structure for retaining fluid in the drink container 12, and for releasably receiving and retaining the drink bottle 16 during refilling of the drink container 12.
Referring to
As seen in
The valve structure 56 further includes a pair of opposing side walls 66 extending axially downwardly from the inner edge 54 of the annular flange 46 and joined to outer edges 68 of the lip members 58 that are located axially downwardly from the lower surface 48 of the flange 46. The side walls 66 locate and provide support to the lip members 58, substantially maintaining the slit 64 formed by the lip members 58 in a position comprising a generally closed state when the fill cap 14 is in an unstretched condition. The slit 64 has a length that is less than an inner diameter defined by the side walls 66. Hence, diametrically opposing sections of the junction between the lip members 58 comprise solid or unslit end portions 64a, 64b (
As seen in
In accordance with an aspect of the invention, the above described elements of the fill cap 14 are preferably formed as a unitary molded structure. Further, the fill cap 14 may be formed of a molded thermoplastic material, such as SANTOPRENE®, or a similar thermoplastic material. In addition, the material of the fill cap 14 preferably has a material hardness in the range of about 60-80 Durometer Shore A in order to provide a material stiffness capable of holding the drink bottle 16 in engagement with the fill cap 14 during a use of the hydration system 10, as is described further below.
As described above, the lip members 58 are oriented in converging relation to each other. In particular, the lip members 58 are configured with an angle that places the slit 64 at a predetermined location or distance Ds from a plane 76 defined at an outermost location 78 on the outer end portion 74 of the annular ridge 69, as seen in
In accordance with an aspect of the invention, in the fully inserted position, the major rib portion 34 of the drink bottle 16 is positioned in engagement with the inner lip edges 62 at a lower side 80 of the lip members 58. That is, an upwardly facing side 82 of the major rib portion 34 is located at an engagement position for contact with the inner lip edges 62 at the lip member's lower side 80, which engagement position provides a substantial resistance to extraction of the drink bottle from the cup area 75 of the fill cap 14. In particular, movement of the drink bottle upwardly out of the cup area 75 will tend to bias the inner lip edges 62 toward the bottle neck 28, tending to reduce a passage area for the major rib portion 34. Further, the stiffness of the material of the fill cap 14 facilitates maintaining the lip members 58 in engagement with the bottle neck 28 with limited flexure of the lip members 58.
It should be noted that the lip members 58 are formed with a taper that facilities insertion of the bottle neck 28, and particularly the major rib portion 34, through the slit 64 while also providing a required rigidity, facilitated by the predetermined material hardness, requiring a predetermined force for removal of the bottle neck 28 from the slit 64. That is, the lip members 58 have a tapering thickness that decreases from the annular flange 46 to the inner lip edges 62. For example, the thickness of lip members 58 may taper from the annular flange 46 to the inner lip edges 62 at a ratio that may lie within a range of about 3 to 1 to about 4 to 1. The reduced thickness of the lip members 58 near the inner lip edges 62 provides an increased flexibility to permit separating or opening movement of the inner lip edges 62 during passage of the major rib portion 34 through the slit 64, both during insertion and removal, i.e., with application of a predetermined removal force.
It may also be noted that the length of the slit 64 is formed to be greater than the diameter dimension of the major rib portion 34, such that the area of the slit 64 is substantially greater than the diameter dimension of the bottle neck 28 that is positioned therethrough. For example, the length of the slit 64 may be about 1.5 inches, as compared to a diametric dimension of the major rib portion 34 of the drink bottle 16 of about 1.1 inches. The larger length dimension of the slit 64 facilitates passage of the major rib portion 34, providing a reduced stress at the unslit end portions 64a, 64b, and further provides intentionally unsealed vent passage areas 84a, 84b, i.e., triangular openings, adjacent to the unslit end portions 64a, 64b, as seen in
The fill cap 14 is mounted to the drink container 12 with a structure that ensures that the fill cap 14 may remain substantially stationary relative to the drink container 12 during application of forces from the drink bottle 16 as the drink bottle is both inserted to and removed from the fill cap 14. Referring to
In order to facilitate removal of the fill cap 14 from the drink container 12, such as may be required for cleaning of the drink container 12, a flange extension 94 is provided extending from the annular flange 46, radially outwardly from the annular collar 36. The flange extension 94 provides a grip location for a user to bias the outer edge of the fill cap 14 upwardly from the drink container 12.
It should be noted that the slit 64 may comprise a substantially closed slit 64 when the fill cap 14 is in an unstretched condition or state, i.e., prior to mounting on the drink container 12. However, when the fill cap 14 is mounted to the drink container 12, stretching the collar 36, the inner lip edges 62 are moved apart slightly to open the slit 64 a predetermined small amount, as is illustrated by the inner lip edges 62 in
In a use of the hydration system 10 described herein, the drink container 12 may be mounted to location on a bicycle (not shown), such as to the bicycle frame or between aero bars of the bicycle, with the fill cap 14 positioned over the upper end 18 of the drink container 12. During a cycling event, a cyclist may grasp a drink bottle 16 while passing a water station and locate the drink bottle 16 in an inverted position within the cup area 75 of the fill cap 14, pushing the neck 28 of the drink bottle 16 through the slit 64. With the bottle neck 28 positioned such that the major rib portion 34 is located below the lip members 58, the lip members 58 may apply an axially inwardly directed biasing force on the drink bottle 16. It may be noted that the predetermined converging angle formed by the lip members 58, as described above, provides a control of a predetermined biasing force applied against the bottle neck 28 to retain the drink bottle 16 in position.
The drink bottle 16 will be maintained in a stationary substantially vertical orientation by engagement with the annular ridge 69 and the cyclist may release their grasp on the drink bottle 16. The drink bottle 16 may remain in engagement with the fill cap 14 as its contents are drained into the drink container 12. Subsequently, the cyclist may grasp the drink bottle 16 and apply a sufficient force to overcome the retention force of the lip members 58, and flex the relatively thinner end portions of the lip members 58, to withdraw the bottle neck 28 from the slit 64.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
2436291 | Daniel | Feb 1948 | A |
2957501 | Holmes | Oct 1960 | A |
D194794 | Rahr | Mar 1963 | S |
3734149 | Hansel | May 1973 | A |
3903942 | Vest | Sep 1975 | A |
4360119 | Olivo | Nov 1982 | A |
4515752 | Miramanda | May 1985 | A |
D281581 | MacEwen | Dec 1985 | S |
D281758 | Trombly | Dec 1985 | S |
D287919 | Clements | Jan 1987 | S |
4760933 | Christner et al. | Aug 1988 | A |
4782982 | Ellison | Nov 1988 | A |
5202093 | Cloyd | Apr 1993 | A |
5244117 | Lombardo | Sep 1993 | A |
5297599 | Bucheli | Mar 1994 | A |
5431205 | Gebhard | Jul 1995 | A |
D363665 | Goto et al. | Oct 1995 | S |
5456294 | Tsao et al. | Oct 1995 | A |
D371485 | Hickey | Jul 1996 | S |
5803328 | Nakahara | Sep 1998 | A |
D415651 | Trombly | Oct 1999 | S |
5971181 | Niedospial et al. | Oct 1999 | A |
D416436 | Miller | Nov 1999 | S |
D417360 | Bickert et al. | Dec 1999 | S |
D437223 | Coy et al. | Feb 2001 | S |
6206058 | Nagel et al. | Mar 2001 | B1 |
D458508 | Thonis et al. | Jun 2002 | S |
6418987 | Colasacco | Jul 2002 | B1 |
6568439 | Se et al. | May 2003 | B1 |
6578224 | Lawson et al. | Jun 2003 | B1 |
D488376 | Chung | Apr 2004 | S |
D507181 | Malik | Jul 2005 | S |
D525826 | Kugler | Aug 2006 | S |
D570213 | Newman | Jun 2008 | S |
D589747 | Wong | Apr 2009 | S |
D631348 | Weiss et al. | Jan 2011 | S |
D647753 | Lin | Nov 2011 | S |
D655160 | Daniel | Mar 2012 | S |
D666052 | Trombly | Aug 2012 | S |
D679940 | Paige et al. | Apr 2013 | S |
8459312 | Manera et al. | Jun 2013 | B2 |
8540691 | Hasegawa et al. | Sep 2013 | B2 |
20010013381 | Nagel et al. | Aug 2001 | A1 |
20020079286 | Haynes et al. | Jun 2002 | A1 |
20020162602 | Nagel et al. | Nov 2002 | A1 |
20030034084 | Nagel et al. | Feb 2003 | A1 |
20040007287 | Nagel et al. | Jan 2004 | A1 |
20040261902 | Eddins et al. | Dec 2004 | A1 |
20050065495 | Zambaux | Mar 2005 | A1 |
20050263523 | Moss | Dec 2005 | A1 |
20060163284 | Karl et al. | Jul 2006 | A1 |
20070131725 | Friedman | Jun 2007 | A1 |
20070243348 | Yang et al. | Oct 2007 | A1 |
20070277902 | Dieudonat et al. | Dec 2007 | A1 |
20080054497 | Bradley et al. | Mar 2008 | A1 |
20100176152 | Johnson | Jul 2010 | A1 |
20110011908 | Dietterle et al. | Jan 2011 | A1 |
20110152051 | Murray | Jun 2011 | A1 |
20120216909 | Levy | Aug 2012 | A1 |
20130042940 | Paige et al. | Feb 2013 | A1 |
20130146174 | Zinn et al. | Jun 2013 | A1 |
20130181015 | Cason | Jul 2013 | A1 |
20140091121 | Lombard et al. | Apr 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20130042940 A1 | Feb 2013 | US |