The instant invention relates to fill valves. More specifically, it relates to water control valves for flush tanks associated with water closets.
The fill valve of the instant application is a pilot operated device that uses the hydraulic force of the supply water to open and close the main valve disc.
A float is used on this fill valve to sense the water height. As the water level increases, the float rises, pressure is transferred to the pilot orifice through the use of a lever and seat seal. As the pilot orifice closes a combination of pressure and area differential causes the main seal to close. Area differential assures the valve remains in the off condition.
The float is attached to a lever via an adjustable rod which allows for fine adjustment within a three inch window. The lever pivots about an axle. The axle in conjunction with the guide tube keep the float and seat in alignment. As the float rises detent water from the pilot orifice is directed via the lever and rod into a detent chamber on the top of the float (the weir style drain on the float provides uniform percentage of detent water over a large pressure range). As the float rises the seat is directed towards the pilot orifice. As the seat occludes the pilot orifice pressure rises in the upper disc chamber. The increase of pressure in the upper disc chamber causes the main disc (a flexible membrane) to migrate toward the double main seal located on the supply inlet of the body. As the double seal becomes occluded the area of the pressure field on the lower side of the main valve disc decreases which results in an area differential top to bottom and a net force acting upon the main valve disc in the off direction.
As the main flow of water shuts off and the detent water supplied by the pilot orifice decreases, the detent water drains from the detent chamber of the float through a weir. This provides additional buoyancy to the float which results in additional force acting upon the seat. This additional force applied to the pilot orifice assures positive shut off of the valve over a large pressure range.
When the water level drops, the float drops and causes the seat to move away from the pilot orifice. Pressure in the upper main valve disc chamber decreases due to an area differential between the filtered supply inlet to the upper chamber and the pilot orifice. Water flows out faster than it can flow into the main disc chamber due to area differential between the filtered inlet to the chamber and the pilot orifice exit causing pressure in the upper main disc chamber to drop to essentially zero. The supply water than provides the opening force to the main valve disc to turn the valve on.
The anti-siphon device on this fill valve aspirates air into the reseal tube when in the on condition. When off the venturi acts as a communication port with the atmosphere. When a negative pressure is drawn on the supply and if the main valve disc seal fails air is drawn into the supply through the venturi. This siphon break prevents water supply cross contamination with no additional parts.
The float 20 includes two inverted cup shaped structures 21, 22. The cup shaped structures 21, 22 are enclosed by side walls 23, 24. They are open at their bottom ends 25, 26 and closed at their tops by top walls 27, 28. The cup shaped structures 21, 22 are separated by two longitudinally extending slots 31, 35. Slot 35 is defined by side walls 23 and 24 and back wall 36. Slot 35 is sized to receive outlet tube 39. Float 20 slides vertically up and down on outlet tube 39 as the water level in the tank rises and falls.
A desired water level in the tank can be selected by preselecting the position of the float, i.e., moving or adjusting the position of the float up or down on the adjustment bar 80 within the tank relative to the valve head 40. The newly selected position of the float is retained by a bayonet locking system on the adjustment assembly that prevents unintentional readjustment of the float 20. The adjustment assembly comprises a vertical adjustment bar 80 having a row of vertically spaced locking teeth 82. The bar 80 is vertically adjustably mounted in slot 31 which is defined by side walls 23 and 24 and front wall 37 of the float 20 and is frictionally held by side tabs in slot 31. Bar 80 can be moved up or down in slot 31 upon application of force sufficient to overcome the frictional force holding bar 80 in slot 31 against vertical movement. A cross bar 90 formed integrally with walls 23 and 24 of float 20 and a bayonet lug 92 on cross bar 90 are fixedly mounted on the outside of opening of slot 31. Bayonet lug 92 is normally biased inwardly so that it is disposed in a space between adjacent teeth 82. When the lug 92 is pulled outwardly from its normal position in the space between adjacent teeth 82, as illustrated in
Float 20 is mechanically coupled to bar 80 so that, as the float 20 moves up or down, bar 80 will also move up or down over the same vertical distance. The bar 80 is mechanically coupled to a substantially horizontal pivoting lever 94 which is pivoted at 96. A pilot orifice seal 98 is mounted in one end of lever 94 and moves with lever 94. The pilot orifice seal 98 moves in a substantially vertical direction as the lever 94 pivots about its pivot point 96.
The float 20 has a detent chamber 29 at the top of the float 20. Water from the pilot valve orifice 66 flows into the detent chamber 29 which is open at its top 30. The detent chamber 29 has two drains for draining the water out of the detent chamber 29. One drain 32 is located at the bottom of detent chamber 29. It is normally submerged, that is, it is below water level in the tank. The second drain 33 is a weir type drain located in the side wall of detent chamber 29 near its top. Weir type drain 33 is wide at its top 33A and narrows toward its bottom 33B. Thus, the more water in the detent chamber 29 and, therefore, the higher the water level in the detent chamber 29, the quicker the outflow of water through drain 33. Conversely, the lower the water level in the detent chamber 29 the slower the outflow of water through drain 33.
As the flow of water from the pilot orifice 66, which is the source of water for detent chamber 29, decreases or stops, the detent water drains from the detent chamber 29 through the two drains 32, 33. This provides additional buoyancy to the float 20 which results in additional force acting upon lever 94 and, therefore, pilot orifice seal 98. This additional force applied to the pilot orifice seal 98 ensures positive shut-off of the pilot orifice 66 and, consequently, of the valve over a large pressure range.
The valve head 40 contains the main valve mechanism. The main valve mechanism includes a body section 42 and a cap 43. A flexible diaphragm 72 is peripherally held between the body section 42 and the cap 43. Due to the fact that the diaphragm 72 is held peripherally by the body section 42 and cap 43, the central bottom section 73 of the diaphragm 72 is free to move upwardly off of or downwardly against valve seat 44.
The diaphragm 72 contains a generally flat bottom side 74 which contacts valve seat 44 and a contoured top side 75. The top side 75 is contoured to increase its surface area and, therefore, increase the water pressure acting on the top side 75 of the diaphragm and forcing the diaphragm to move downwardly against valve seat 44. Diaphragm 72 includes upwardly and downwardly extending ridges 76 around its periphery. These ridges 76 are adapted to fit into correspondingly shaped peripheral grooves 45, 46 in the body 42 and cap 43 whereby the diaphragm 72 is held peripherally by body 42 and cap 43.
Diaphragm 72 has two downwardly extending flexible flaps 77, 78 at its two opposite sides. The two flaps 77, 78 cooperate with windows 47, 48 in body section 42 to form an antisiphon valve. When the interior outlet passages 50, 51 are pressurized the two flaps 77, 78 are pushed against the windows 46, 48. Flaps 77, 78, being larger than windows 46, 48, completely close and seal windows 46, 48 and keep air from entering the interior of the valve head. If there exists a negative pressure in the water supply line, and therefore, the pressure inside the valve head is less than the pressure outside body section 42, the flaps 77, 78 are moved inwardly, thereby breaking the seal with windows 47, 48 and allowing air to be drawn into the valve head and to the supply inlets.
In an alternate embodiment as illustrated in
Water enters the valve head 40 through water supply inlet tube 100 which communicates with and, as shown in
A filter 83 is removably disposed in water inlet extension tube 60. The filter serves to filter out particulate matter and keep it from entering aperture 62 and the pilot valve. The filter 83, as seen in
An annular support member 34 is disposed in body section 42 of the valve head 40 as illustrated in
A well known and conventional duck bill 152 is disposed adjacent aperture 64 and prevents backflow in a conventional and well known manner. A cover cap 150 can be mounted over the pilot valve as seen in
The operation of the fill valve will now be described. When an external handle on the exterior of the flush tank is pulled to flush the toilet bowl, water in the flush tank is released into the toilet bowl through a conventional and well known flush valve in the bottom of the tank. The water level in the tank drops and the float 20 moves downwardly as the water level drops. The downward movement of float 20 causes a corresponding downward movement of adjustment bar 80, which is mechanically coupled, as illustrated in
This outflow of water from pilot valve cavity 57 reduces the pressure on the upper side 75 of flexible diaphragm 72, thereby allowing the incoming water from the water inlet tube 100 and water inlet extension tube 60 to flow into valve seat tube 53 and lift the central bottom section 73 of flexible diaphragm 72 off of the valve seat 44.
Water entering the valve seat tube 53 flows through filter 83, where it is filtered, and through constricted aperture 64. Water also flows into pilot valve cavity 57 through the aperture 62 in the top of the wall of the water inlet extension tube and through the through hole 71 in insert 70 which is mounted in pilot valve cavity inlet aperture 79 in the flexible diaphragm. However, the outflow capacity of water from the pilot valve cavity 57 through pilot valve orifice 66 exceeds the inflow capacity of water into the pilot valve cavity 57, thereby keeping the water pressure in the pilot valve cavity 57, which acts on the upper side 75 of diaphragm 72, less than the water pressure in the valve seat tube 53, which acts on the bottom side 74 of diaphragm 72. Thus, as long as the pilot valve orifice 66 is open the diaphragm 72 will be flexed upwardly off of valve seat 44 at the top of valve seat tube 53.
Water now flows out of the valve seat tube 53 and into interior outlet passages 50, 51 in body section 42, and thence through outlet tube 39 into the tank. This is the main water supply to the tank for the refill operation.
A drop in the water level in the tank and the resultant drop of float 20 will result in a corresponding drop of bar 80. The drop of bar 80 will pivot lever 94 in a clockwise direction as shown in
This refill water, combined with that already in the tank, results in a more complete and improved flushing of the toilet bowl.
As the water within the tank rises, the float 20 will also rise with a corresponding rise in the bar 80. The rise of bar 80 causes lever 94 to pivot in a counterclockwise direction as illustrated in
Water also flows through refill tube 59 and an associated hose or the like (not shown) to the toilet bowl to refill the toilet bowl.
The fill valve of the instant invention is modular and can be mounted anywhere within the tank. It can, for example, as illustrated in
The vertical plate 116 has a cut out tongue 119 which is relatively flexible so that the U-shaped structure of hook 110 can be mounted on walls of different thickness. The lower leg 114 has a barb thereon to prevent accidental withdrawal from slot 122.
The water inlet tube 100 is connected to the water inlet extension tube 60 of valve body section 42 by collar 103, connector 104, and clamp 105.
The instant fill valve is modular. That is to say it can be attached to water supply sources other than water inlet tube 100 and with different outlet tubes other than outlet tube 39.
Body section 42 of valve head 40 has a circumferential flange 49. Cap 43 has a circumferential flange 54. As illustrated in
This application is a continuation of U.S. application Ser. No. 09/421,037, filed Oct. 20, 1999, now abandoned. This application claims priority from U.S. Provisional Application No. 60/104,919 filed on Oct. 20, 1998.
Number | Name | Date | Kind |
---|---|---|---|
2235304 | Toussaint | Mar 1941 | A |
2328323 | Bowers et al. | Aug 1943 | A |
2833300 | Sirotek | May 1958 | A |
3194258 | Grant | Jul 1965 | A |
3669138 | Schoepe et al. | Jun 1972 | A |
3693649 | Gordon et al. | Sep 1972 | A |
3895645 | Johnson | Jul 1975 | A |
4100928 | Schoepe | Jul 1978 | A |
4295488 | Book | Oct 1981 | A |
4338964 | Schoepe | Jul 1982 | A |
4573495 | Rothe et al. | Mar 1986 | A |
4883254 | Whiteside | Nov 1989 | A |
5421361 | Johnson | Jun 1995 | A |
5490659 | Whiteside | Feb 1996 | A |
5582205 | McCarthy et al. | Dec 1996 | A |
5715859 | Nichols-Roy | Feb 1998 | A |
5738141 | Blanke et al. | Apr 1998 | A |
5887848 | Wilson | Mar 1999 | A |
5967182 | Wilson | Oct 1999 | A |
Number | Date | Country |
---|---|---|
0369404 | May 1990 | EP |
Number | Date | Country | |
---|---|---|---|
20030106587 A1 | Jun 2003 | US |
Number | Date | Country | |
---|---|---|---|
60104919 | Oct 1998 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09421037 | Oct 1999 | US |
Child | 10113273 | US |