Claims
- 1. A method of modifying an existing nozzle head having a predetermined maximum diametral size in excess of a size accommodating efficaciously filling of a commercial can of reduced top opening size to one which accommodates filling of any of a plurality of commercial cans including said reduced sized cans having variously sized top openings, comprising the acts:
- removing from the existing nozzle head only distal beverage discharge structure having said predetermined maximum diametral size which comprise structure defining a radial array of outwardly directed diagonally disposed beverage dispensing flow pathways of a predetermined number and effluent discharge ports while retaining for use a proximal portion of the nozzle head comprising an upstream portion of said predetermined number of flow pathways;
- attaching and sealing a different distal adapter comprising a chamber into which all flow through the pathways is discharged and having a radial array of passageways therein the number of which is greater than the predetermined number of pathways, the chamber being superimposed above the pathways and having a maximum diametral size less than the predetermined maximum diametral size to the retained proximal portion of the existing nozzle head to provide a hybrid nozzle head in superposition over the upstream portion so that the flow pathways are not aligned with the passageways.
- 2. A method of covering a fill valve having a predetermined maximum diametral size in excess of a size accommodating efficaciously filling of a commercial can of reduced top opening size to one which accommodates filling of any of a plurality of commercial cans including said reduced sized cans having variously sized top openings, comprising the acts of:
- removing existing distal fill valve structure having said predetermined maximum diametral size thereby removing structure which define a radial array of outwardly directed diagonally disposed beverage dispensing flow pathways comprising a predetermined number and an equal number of effluent discharge ports but preserving a proximal portion thereof which comprises an upstream portion of said array of flow pathways;
- attaching and sealing a distal adapter having a maximum diametral size less than the predetermined maximum diametral size contiguous with the upstream portion to create a modified fill valve;
- installing the fill valve in automatic beverage dispensing machinery;
- causing beverage to flow through the modified fill valve, the flow comprising a stream through each of the predetermined number of flow paths, merging the predetermined number of streams into a single chamber interposed between the preserved proximal portion and the distal adapter, and distributing the flow through the chamber into a plurality of streams through the nozzle adapter.
- 3. A method according to claim 2 wherein the flow from the chamber is distributed as a circular array of streams flowing downwardly through the nozzle adapter, the number of streams being greater than the predetermined number of flow pathways.
- 4. A method according to claim 2 wherein the flow through the single chamber passes through a single screen located in the single chamber.
- 5. A method according to claim 2 wherein the nozzle adapter effluent streams merge distally in an annular cavity at the distal end of the nozzle adapter, beverage being discharged into the can from the annular cavity.
- 6. A method according to claim 5 wherein annular cavity is directed downwardly and outwardly whereby discharge of merged beverage into the can is against a side wall of the can near a top thereof.
Parent Case Info
This application is a continuation-in-part of U.S. patent application Ser. No. 08/419,625, filed Apr. 10, 1995, now U.S. Pat. No. 5,582,217 and a division of U.S. patent application Ser. No. 08/739,667, filed Oct. 31, 1996, now U.S. Pat. No. 5,954,100.
US Referenced Citations (8)
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
419625 |
Apr 1995 |
|