Filled polymeric composites including short length fibers

Information

  • Patent Grant
  • 9752015
  • Patent Number
    9,752,015
  • Date Filed
    Tuesday, August 5, 2014
    10 years ago
  • Date Issued
    Tuesday, September 5, 2017
    7 years ago
Abstract
Polymeric composites and methods for preparing the composites are described herein. The polymeric composites can comprise a polymer, an inorganic filler, and a plurality of short length fibers. The polymer in the composites can include homopolymers and copolymers and can also include plastics, resins, elastomers, thermoplastics, thermosets, and hot melts. The inorganic filler can be fly ash. The short length fibers can have an average length of 650 μm or less. Methods for making the polymeric composites are also described.
Description
FIELD OF THE DISCLOSURE

This disclosure relates generally to filled polymers, more particularly, to the use of short length fibers in polymeric composites.


BACKGROUND OF THE DISCLOSURE

Organic-inorganic composite materials have become desirable for a variety of uses because of their excellent mechanical properties and weathering stability. In general, the superior properties of organic-inorganic composites are achieved through the use of the organic as a matrix material that acts as a glue with enhanced flexural properties or as a fibrous component providing reinforcement, improved tensile properties, and resistance to degradation from weathering of the composite when it is exposed to the environment. The inorganic material imparts various properties of rigidity, toughness, hardness, optical appearance and interaction with electromagnetic radiation, density, and many other physical and chemical attributes. Thus, organic-inorganic composite materials can be used in a variety of applications. Nevertheless, there is a continuing desire to improve the properties of filled composites.


SUMMARY OF THE DISCLOSURE

Polymeric composites and methods for preparing the composites are described herein. The polymeric composites can comprise a polymer, an inorganic filler, and a plurality of short length fibers. The polymer in the composites can include homopolymers and copolymers and can also include plastics, resins, elastomers, thermoplastics, thermosets, and hot melts.


The inorganic filler can be in an amount from 25% to 90% by weight of the polymeric composite. For example, the inorganic filler can be present in an amount from 50% to 80% by weight, based on the total weight of the composite. In some embodiments, the inorganic filler comprises fly ash.


The short length fibers can be any natural or synthetic fiber material, based on inorganic materials, organic materials, or combinations of both. Suitable short length fibers for use in the polymeric composites include mineral wool, cellulose, wood fiber, saw dust, wood shavings, cotton, lint, and combinations thereof. In some embodiments, the short length fiber is mineral wool. In some embodiments, the short length fibers are coated with an aminosilane. The short length fibers can be present in an amount of from 0.5% to 15% by weight, based on the total weight of the composite. The short length fibers can have an average length of 650 μm or less. For example, the short length fibers can have an average length of from 50 μm to 650 μm or from 100 μm to 250 μm. The short length fibers can have an average diameter of from 1 to 20 μm. The short length fibers can also be described by their average aspect ratio—the ratio of the length to the diameter. In some embodiments, the short length fibers in the polymeric composites can have an average aspect ratio of from 5:1 to 250:1 or from 8:1 to 250:1.


Suitable polymers for use in the polymeric composites include polyolefins, ethylene copolymers, polystyrenes, polyvinyl chlorides, polyvinylidene chlorides, polyvinyl acetates, polyacrylonitriles, polyamides, polyisobutylenes, polyacetals, chlorinated and fluorinated polymers, fluoroelastomers, fluorosilicones, polycarbonates, epoxies, phenolics, polyesters, acrylic polymers, acrylate polymers, polyurethanes, alkyds, silicones, styrene-butadiene copolymers, acrylonitrile-butadiene-styrene copolymers, nitrile rubbers, diallyl phthalates, melamines, polybutadienes, aramids, cellulosics, cellulose acetobutyrates, ionomers, parylenes, polyaryl ethers, polyaryl sulfones, polyarylene sulfides, polyethersulfones, polyallomers, polyimides, polyamideimides, polymethylpentenes, polyphenylene oxides, polyphenylene sulfides, polysulfones, polyetherketones, polyetherimides, polyaryleneketones, polychloroprenes, and blends thereof. The polymer can be present in an amount of from 10% to 60% by weight, based on the total weight of the composite.


In some embodiments, the polymer can be a polyurethane. The polyurethane can be formed by the reaction of at least one isocyanate selected from the group consisting of diisocyanates, polyisocyanates and mixtures thereof, and at least one polyol. The at least one polyol can comprise an aromatic polyester polyol. In some embodiments, the reaction can be in the presence of a catalyst.


The polymeric composites can further include a plurality of glass fibers having a minimum length of 1 mm (e.g., a minimum length of 3 mm). The glass fiber can be present in an amount from 0.5% to 10% by weight, based on the total weight of the composite.


Methods for making the polymeric composites are also described. The method can include mixing the inorganic filler, the short length fibers, and the polymer, to form a composite mixture. The composite mixture can have a viscosity of from 25 Pa·s to 250 Pa·s (e.g., from 80 Pa·s to 250 Pa·s). In some specific embodiments, where the polymer is a polyurethane, the method can include mixing an inorganic filler, at least one isocyanate selected from the group consisting of diisocyanates, polyisocyanates, and combinations thereof, at least one polyol, and the plurality of short length fibers to form the composite mixture. The method can further include allowing the at least one isocyanate and the at least one polyol to react in the presence of the inorganic filler, and the plurality of short length fibers to form the polymeric composite. In some embodiments, the composite mixture can further include a catalyst. In some embodiments, the composite mixture can also include a plurality of glass fibers having a minimum length of 1 mm (e.g., a minimum length of 3 mm).





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a graph showing the flexural strength of polyurethane composites with and without mineral wool, as a function of the composite's bulk density.



FIG. 2 is a graph showing the flexural strength of polyurethane composites with mineral wool, as a function of the composite's bulk density.



FIG. 3 is a graph showing the flexural strength of polyurethane composites with 7% mineral wool or 2% sand, as a function of the composite's bulk density.





DETAILED DESCRIPTION

Polymeric composites and methods for preparing the composites are described herein. The polymeric composites can comprise a polymer, an inorganic filler, and a plurality of short length fibers.


The polymer in the composites can include homopolymers and copolymers and can include plastics, resins, elastomers, thermoplastics, thermosets, and hot melts. Polymers suitable for use in the polymeric composite include polyolefins (e.g., polyethylene or polypropylene), ethylene copolymers (e.g., ethylene-acrylic copolymers and ethylene-vinyl acetate copolymers), polystyrenes, polyvinyl chlorides, polyvinylidene chlorides, polyvinyl acetates, polyacrylonitriles, polyamides (e.g., nylon), polyisobutylenes, polyacetals, chlorinated and fluorinated polymers (e.g., PTFE), fluoroelastomers, fluorosilicones, polycarbonates, epoxies, phenolics, polyesters, acrylic polymers, acrylate polymers, polyurethanes, alkyds, silicones, styrene-butadiene (SB) copolymers, acrylonitrilebutadiene-styrene (ABS) copolymers, nitrile rubbers, diallyl phthalates, melamines, polybutadienes, aramids, cellulosics, cellulose acetobutyrates, ionomers, parylenes, polyaryl ethers, polyaryl sulfones, polyarylene sulfides, polyethersulfones, polyallomers, polyimides, polyamideimides, polymethylpentenes, polyphenylene oxides, polyphenylene sulfides, polysulfones, polyetherketones, polyetherimides, polyaryleneketones, polychloroprenes, and blends thereof. In some embodiments, the polymer includes polyethylene, polypropylene, polyvinyl chloride, nylon, epoxy, phenolic, polyester, acrylic polymer, acrylate polymer, polyurethane, styrene butadiene copolymer, acrylonitrile-butadiene-styrene copolymer, or a blend thereof.


In some embodiments, the polymer in the polymeric composite can be a polyurethane. The polyurethane composites can be formed using highly reactive systems such as highly reactive polyols, isocyanates, or both. For example, the composites can be formed by the reaction of at least one isocyanate, selected from the group consisting of diisocyanates, polyisocyanates, and mixtures thereof, and at least one polyol, in the presence of an inorganic filler. In some embodiments, the reaction can be in the presence of a catalyst.


Isocyanates suitable for use in the polyurethane composite described herein include one or more monomeric or oligomeric poly- or di-isocyanates. The monomeric or oligomeric poly- or di-isocyanate include aromatic diisocyanates and polyisocyanates. The isocyanates can also be blocked isocyanates, or pre-polymer isocyanates (e.g., castor oil pre-polymer isocyanates and soy polyol pre-polymer isocyanates). An example of a useful diisocyanate is methylene diphenyl diisocyanate (MDI). Useful MDI's include MDI monomers, MDI oligomers, and mixtures thereof.


Further examples of useful isocyanates include those having NCO (i.e., the reactive group of an isocyanate) contents ranging from about 25% to about 35% by weight. Examples of useful isocyanates are found, for example, in Polyurethane Handbook: Chemistry, Raw Materials, Processing Application, Properties, 2nd Edition, Ed: Gunter Oertel; Hanser/Gardner Publications, Inc., Cincinnati, Ohio, which is herein incorporated by reference. Suitable examples of aromatic polyisocyanates include 2,4- or 2,6-toluene diisocyanate, including mixtures thereof; p-phenylene diisocyanate; tetramethylene and hexamethylene diisocyanates; 4,4-dicyclohexylmethane diisocyanate; isophorone diisocyanate; 4,4-phenylmethane diisocyanate; polymethylene polyphenylisocyanate; and mixtures thereof. In addition, triisocyanates may be used, for example, 4,4,4-triphenylmethane triisocyanate; 1,2,4-benzene triisocyanate; polymethylene polyphenyl polyisocyanate; methylene polyphenyl polyisocyanate; and mixtures thereof. Suitable blocked isocyanates are formed by the treatment of the isocyanates described herein with a blocking agent (e.g., diethyl malonate, 3,5-dimethylpyrazole, methylethylketoxime, and caprolactam). Isocyanates are commercially available, for example, from Bayer Corporation (Pittsburgh, Pa.) under the trademarks MONDUR and DESMODUR. Other examples of suitable isocyanates include MONDUR MR Light (Bayer Corporation; Pittsburgh, Pa.), PAPI 27 (Dow Chemical Company; Midland, Mich.), Lupranate M20 (BASF Corporation; Florham Park, N.J.), Lupranate M70L (BASF Corporation; Florham Park, N.J.), Rubinate M (Huntsman Polyurethanes; Geismar, La.), Econate 31 (Ecopur Industries), and derivatives thereof.


The average functionality of isocyanates useful with the composites described herein is between about 1.5 to about 5. Further, examples of useful isocyanates include isocyanates with an average functionality of about 2 to about 4.5, about 2.2 to about 4, about 2.4 to about 3.7, about 2.6 to about 3.4, and about 2.8 to about 3.2.


The at least one polyol for use in the polyurethane composite can include polyester polyols, polyether polyols, or combinations thereof. In some embodiments, the at least one polyol can include 50% or more of one or more highly reactive (i.e., first) polyols. For example, the at least one polyol can include greater than 55%, greater than 60%, greater than 65%, greater than 70%, greater than 75%, greater than 80%, greater than 85%, greater than 90%, greater than 95%, or 100% of one or more highly reactive polyols.


In some embodiments, the one or more highly reactive polyols can include polyols having a hydroxyl number of greater than 250. For example, the hydroxyl number can be greater than 275, greater than 300, greater than 325, greater than 350, greater than 375, greater than 400, greater than 425, greater than 450, greater than 475, greater than 500, greater than 525, greater than 550, greater than 575, greater than 600, greater than 625, greater than 650, greater than 675, greater than 700, greater than 725, or greater than 750.


In some embodiments, the one or more highly reactive polyols can include polyols having a primary hydroxyl number of greater than 250. As used herein, the primary hydroxyl number is defined as the hydroxyl number multiplied by the percentage of primary hydroxyl groups based on the total number of hydroxyl groups in the polyol. For example, the primary hydroxyl number can be greater than 255, greater than 260, greater than 265, greater than 270, greater than 275, greater than 280, greater than 285, greater than 290, or greater than 295.


In some embodiments, the one or more highly reactive polyols include a large number of primary hydroxyl groups (e.g., 75% or more) based on the total number of hydroxyl groups in the polyol. For example, the highly reactive polyols can include 80% or more, 85% or more, 90% or more, 95% or more, or 100% of primary hydroxyl groups. The number of primary hydroxyl groups can be determined using fluorine NMR spectroscopy as described in ASTM D4273, which is hereby incorporated by reference in its entirety.


In some embodiments, the one or more highly reactive polyols can include a Mannich polyol. Mannich polyols are the condensation product of a substituted or unsubstituted phenol, an alkanolamine, and formaldehyde. Mannich polyols can be prepared using methods known in the art. For example, Mannich polyols can be prepared by premixing the phenolic compound with a desired amount of the alkanolamine, and then slowly adding formaldehyde to the mixture at a temperature below the temperature of Novolak formation. At the end of the reaction, water is stripped from the reaction mixture to provide a Mannich base. See, for example, U.S. Pat. No. 4,883,826, which is incorporated herein by reference in its entirety. The Mannich base can then be alkoxylated to provide a Mannich polyol.


The substituted or unsubstituted phenol can include one or more phenolic hydroxyl group. In certain embodiments, the substituted or unsubstituted phenol includes a single hydroxyl group bound to a carbon in an aromatic ring. The phenol can be substituted with substituents which do not undesirably react under the conditions of the Mannich condensation reaction, a subsequent alkoxylation reaction (if performed), or the preparation of polyurethanes from the final product. Examples of suitable substituents include alkyl (e.g., a C1-C18 alkyl, or a C1-C12 alkyl), aryl, alkoxy, phenoxy, halogen, and nitro groups.


Examples of suitable substituted or unsubstituted phenols that can be used to form Mannich polyols include phenol, o-, p-, or m-cresols, ethylphenol, nonylphenol, dodecylphenol, p-phenylphenol, various bisphenols including 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), β-naphthol, β-hydroxyanthracene, p-chlorophenol, o-bromophenol, 2,6-dichlorophenol, p-nitrophenol, 4- or 2-nitro-6-phenylphenol, 2-nitro-6- or 4-methylphenol, 3,5-dimethylphenol, p-isopropylphenol, 2-bromo-6-cyclohexylphenol, and combinations thereof. In some embodiments, the Mannich polyol is derived from a phenol or a monoalkyl phenol (e.g., a para-alkyl phenol). In some embodiments, the Mannich polyol is derived from a substituted or unsubstituted phenol selected from the group consisting of phenol, para-n-nonylphenol, and combinations thereof.


The alkanolamine used to produce the Mannich polyol can include a monoalkanolamine, a dialkanolamine, or combinations thereof. Examples of suitable monoalkanolamines include methylethanolamine, ethylethanolamine, methylisopropanolamine, ethylisopropanolamine, methyl-2-hydroxybutylamine, phenylethanolamine, ethanolamine, isopropanolamine, and combinations thereof. Exemplary dialkanolamines include diisopropanolamine, ethanolisopropanolamine, ethanol-2-hydroxybutylamine, isopropanol-2-hydroxybutylamine, isopropanol-2-hydroxyhexylamine, ethanol-2-hydroxyhexylamine, and combinations thereof. In certain embodiments, the alkanolamine is selected from the group consisting of diethanolamine, diisopropanolamine, and combinations thereof.


Any suitable alkylene oxide or combination of alkylene oxides can be used to form the Mannich polyol. In some embodiments, the alkylene oxide is selected from the group consisting of ethylene oxide, propylene oxide, butylene oxide, and combinations thereof. In certain embodiments, the Mannich polyol is alkoxylated with from 100% to about 80% propylene oxide and from 0 to about 20 wt. % ethylene oxide.


Mannich polyols are known in the art, and include, for example, ethylene and propylene oxide-capped Mannich polyols sold under the trade names CARPOL® MX-425 and CARPOL® MX-470 (Carpenter Co., Richmond, Va.).


In some embodiments, the one or more first polyols can include an aromatic polyester, an aromatic polyether polyol, or a combination thereof. In some embodiments, the one or more first polyols include an aromatic polyester polyol such as those sold under the TEROL® trademark (e.g., TEROL® 198).


Examples of highly reactive polyols also include Pel-Soy 744 and Pel-Soy P-750, soybean oil based polyols commercially available from Pelron Corporation; Agrol Diamond, a soybean oil based polyol commercially available from BioBased Technologies; Ecopol 122, Ecopol 131 and Ecopol 132, soybean oil polyols formed using polyethylene terephthalate and commercially available from Ecopur Industries; Stepanpol PD-110 LV and PS 2352, polyols based on soybean oil, diethylene glycol and phthallic anhydride and commercially available from Stepan Company; Voranol 280, 360 and WR2000, polyether polyols commercially available from Dow Chemical Company; Honey Bee HB-530, a soybean oil-based polyol commercially available from MCPU Polymer Engineering; Renewpol, commercially available from Styrotech Industries (Brooklyn Park, Minn.); JeffAdd B 650, a 65% bio-based content (using ASTM D6866-06) additive based on soybean oil commercially available from Huntsman Polyurethanes; Jeffol SG 360, a sucrose and glycerin-based polyol commercially available from Huntsman Polyurethanes; and derivatives thereof. For example, Ecopol 131 is a highly reactive aromatic polyester polyol comprising 80% primary hydroxyl groups, a hydroxyl number of 360-380 mg KOH/g, i.e., and a primary hydroxyl number of 288-304 mg KOH/g.


The at least one polyol for use in the polyurethane composites can include one or more plant-based polyols or non plant-based polyols. In some embodiments, the plant-based polyols are highly reactive polyols. The one or more plant-based polyols useful in the polyurethane composites can include polyols containing ester groups that are derived from plant-based fats and oils. Accordingly, the one or more plant-based polyols can contain structural elements of fatty acids and fatty alcohols. Starting materials for the plant-based polyols of the polyurethane component can include fats and/or oils of plant-based origin with preferably unsaturated fatty acid residues. The one or more plant-based polyols useful with the polyurethane composites include, for example, castor oil, coconut oil, corn oil, cottonseed oil, lesquerella oil, linseed oil, olive oil, palm oil, palm kernel oil, peanut oil, sunflower oil, tall oil, and mixtures thereof.


In some embodiments, the one or more polyols include a less reactive polyol. For example, the polyurethane composite can be produced from one or more less reactive polyols in addition to one or more highly reactive polyols. Less reactive polyols can have lower hydroxyl numbers, lower numbers of primary hydroxyl groups and/or lower primary hydroxyl numbers than the highly reactive polyols. In some embodiments, the less reactive polyols can have hydroxyl numbers of less than 250, less than 225, less than 200, less than 175, less than 150, less than 125, less than 100, less than 80, less than 60, less than 40, or even less than 20. In some embodiments, the less reactive polyols have about 50% or less primary hydroxyl groups, about 40% or less primary hydroxyl groups, about 30% or less primary hydroxyl groups, about 20% or less primary hydroxyl groups, or even about 10% or less primary hydroxyl groups. In some embodiments, the less reactive polyols can have primary hydroxyl numbers of less than about 220, less than about 200, less than about 180, less than about 160, less than about 140, less than about 120, less than about 100, less than about 80, less than about 60, less than about 40, or even less than about 20. Suitable less reactive polyols include castor oil; Stepanpol PS-2052A (commercially available from the Stepan Company); Agrol 2.0, 3.6, 4.3, 5.6 and 7.0 (plant-based polyols commercially available from BioBased Technologies); Ecopol 123 and Ecopol 124, which are commercially available from Ecopur Industries; Honey Bee HB-150 and HB-230, soybean oil-based polyols commercially available from MCPU Polymer Engineering; Terol 1154, commercially available from Oxid (Houston, Tex.); Multranol 3900, Multranol 3901, Arcol 11-34, Arcol 24-32, Arcol 31-28, Arcol E-351, Arcol LHT-42, and Arcol LHT-112, commercially available from Bayer; and Voranol 220-028, 220-094, 220-110N, 222-056, 232-027, 232-034, and 232-035, commercially available from Dow.


The at least one polyol can include 50% or less of one or more less reactive polyols in addition to the one or more highly reactive polyols. For example, the at least one polyol can include less than 45%, less than 40%, less than 35%, less than 30%, less than 25%, less than 20%, less than 15%, less than 10%, or less than 5%, of one or more less reactive polyols.


The at least one polyol for use in the disclosure can have an average functionality of 1.5 to 8.0, 1.6 to 6.0, 1.8 to 4.0, 2.5 to 3.5, or 2.6 to 3.1. The average hydroxyl number values (as measured in units of mg KOH/g) for the at least one polyol can be from about 100 to 600, 150 to 550, 200 to 500, 250 to 440, 300 to 415, and 340 to 400.


The polyurethane composites can include more than one type of polyol. The one or more polyols can be combined in various percentages, e.g., 15-40% of a less reactive polyol and 60-85% of a highly reactive polyol.


The polyurethane systems used to form the composite materials described herein can include one or more additional isocyanate-reactive monomers in addition to the at least one polyol. The one or more additional isocyanate-reactive monomers can include, for example, amine and optionally hydroxyl groups.


In some embodiments, the one or more additional isocyanate-reactive monomers can include a polyamine. The first isocyanate-reactive monomer can comprise a polyamine Any suitable polyamine can be used. Suitable polyamines can correspond to the polyols described herein (for example, a polyester polyol or a polyether polyol), with the exception that the terminal hydroxy groups are converted to amino groups, for example by amination or by reacting the hydroxy groups with a diisocyanate and subsequently hydrolyzing the terminal isocyanate group to an amino group. By way of example, the polyamine can be polyether polyamine, such as polyoxyalkylene diamine or polyoxyalkylene triamine. Polyether polyamines are known in the art, and can be prepared by methods including those described in U.S. Pat. No. 3,236,895 to Lee and Winfrey. Exemplary polyoxyalkylene diamines are commercially available, for example, from Huntsman Corporation under the trade names Jeffamine® D-230, Jeffamine® D-400 and Jeffamine® D-2000. Exemplary polyoxyalkylene triamines are commercially available, for example, from Huntsman Corporation under the trade names Jeffamine® T-403, Jeffamine® T-3000, and Jeffamine® T-5000.


In some embodiments, the additional isocyanate-reactive monomer can include an alkanolamine. The alkanolamine can be a dialkanolamine, a trialkanolamine, or a combination thereof. Suitable dialkanolamines include dialkanolamines which include two hydroxy-substituted C1-C12 alkyl groups (e.g., two hydroxy-substituted C1-C8 alkyl groups, or two hydroxy-substituted C1-C6 alkyl groups). The two hydroxy-substituted alkyl groups can be branched or linear, and can be of identical or different chemical composition. Examples of suitable dialkanolamines include diethanolamine, diisopropanolamine, ethanolisopropanolamine, ethanol-2-hydroxybutylamine, isopropanol-2-hydroxybutylamine, isopropanol-2-hydroxyhexylamine, ethanol-2-hydroxyhexylamine, and combinations thereof. Suitable trialkanolamines include trialkanolamines which include three hydroxy-substituted C1-C12 alkyl groups (e.g., three hydroxy-substituted C1-C8 alkyl groups, or three hydroxy-substituted C1-C6 alkyl groups). The three hydroxy-substituted alkyl groups can be branched or linear, and can be of identical or different chemical composition. Examples of suitable trialkanolamines include triisopropanolamine (TIPA), triethanolamine, N,N-bis(2-hydroxyethyl)-N-(2-hydroxypropyl)amine (DEIPA), N,N-bis(2-hydroxypropyl)-N-(hydroxyethyl)amine (EDIPA), tris(2-hydroxybutyl)amine, hydroxyethyl di(hydroxypropyl)amine, hydroxypropyl di(hydroxyethyl)amine, tri(hydroxypropyl)amine, hydroxyethyl di(hydroxy-n-butyl)amine, hydroxybutyl di(hydroxypropyl)amine, and combinations thereof.


In some embodiments, the additional isocyanate-reactive monomer can comprise an adduct of an alkanolamine described above with an alkylene oxide. The resulting amine-containing polyols can be referred to as alkylene oxide-capped alkanolamines Alkylene oxide-capped alkanolamines can be formed by reacting a suitable alkanolamine with a desired number of moles of an alkylene oxide. Any suitable alkylene oxide or combination of alkylene oxides can be used to cap the alkanolamine. In some embodiments, the alkylene oxide is selected from the group consisting of ethylene oxide, propylene oxide, butylene oxide, and combinations thereof. Alkylene oxide-capped alkanolamines are known in the art, and include, for example, propylene oxide-capped triethanolamine sold under the trade names CARPOL® TEAP-265 and CARPOL® TEAP-335 (Carpenter Co., Richmond, Va.).


In some embodiments, the additional isocyanate-reactive monomer can include an alkoxylated polyamine (i.e., alkylene oxide-capped polyamines) derived from a polyamine and an alkylene oxide. Alkoxylated polyamine can be formed by reacting a suitable polyamine with a desired number of moles of an alkylene oxide. Suitable polyamines include monomeric, oligomeric, and polymeric polyamines. In some cases, the polyamines has a molecular weight of less than 1000 g/mol (e.g., less than 800 g/mol, less than 750 g/mol, less than 500 g/mol, less than 250 g/mol, or less than 200 less than 200 g/mol). Examples of suitable polyamines that can be used to form alkoxylated polyamines include ethylenediamine, 1,3-diaminopropane, putrescine, cadaverine, hexamethylenediamine, 1,2-diaminopropane, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, spermidine, spermine, norspermidine, toluene diamine, 1,2-propane-diamine, diethylenetriamine, triethylenetetramine, tetraethylene-pentamine (TEPA), pentaethylenehexamine (PEHA), and combinations thereof.


Any suitable alkylene oxide or combination of alkylene oxides can be used to cap the polyamine. In some embodiments, the alkylene oxide is selected from the group consisting of ethylene oxide, propylene oxide, butylene oxide, and combinations thereof. Alkylene oxide-capped polyamines are known in the art, and include, for example, propylene oxide-capped ethylene diamine sold under the trade name CARPOL® EDAP-770 (Carpenter Co., Richmond, Va.) and ethylene and propylene oxide-capped ethylene diamine sold under the trade name CARPOL® EDAP-800 (Carpenter Co., Richmond, Va.).


The additional isocyanate-reactive monomer (when used) can be present in varying amounts relative the at least one polyol used to form the polyurethane. In some embodiments, the additional isocyanate-reactive monomer can be present in an amount of 30% or less, 25% or less, 20% or less, 15% or less, 10% or less, or 5% or less by weight based on the weight of the at least one polyol.


As indicated herein, in the polyurethane composites, an isocyanate is reacted with a polyol (and any additional isocyanate-reactive monomers) to produce the polyurethane formulation. In general, the ratio of isocyanate groups to the total isocyanate reactive groups, such as hydroxyl groups, water and amine groups, is in the range of about 0.5:1 to about 1.5:1, which when multiplied by 100 produces an isocyanate index between 50 and 150. Additionally, the isocyanate index can be from about 80 to about 120, from about 90 to about 120, from about 100 to about 115, or from about 105 to about 110. As used herein, an isocyanate may be selected to provide a reduced isocyanate index, which can be reduced without compromising the chemical or mechanical properties of the composite material.


One or more catalysts can be added to facilitate curing and can be used to control the curing time of the polyurethane matrix. Examples of useful catalysts include amine-containing catalysts (such as DABCO, tetramethylbutanediamine, and diethanolamine) and tin-, mercury-, and bismuth-containing catalysts. In some embodiments, 0.01 wt % to 2 wt % catalyst or catalyst system (e.g., 0.025 wt % to 1 wt %, 0.05 wt % to 0.5 wt %, or 0.1 wt % to about 0.25 wt %) can be used.


The polymer can be present in the polymeric composite in amounts from 10% to 60% based on the weight of polymeric composite. For example, the polymer can be included in an amount of 15% to 55% or 20% to 50% by weight, based on the weight of the polymer composite. In some embodiments, the polymer in the polymeric composites can be present in an amount of 10% or greater, 15% or greater, 20% or greater, 25% or greater, 30% or greater, 35% or greater, 40% or greater, 45% or greater, 50% or greater, or 55% or greater by weight, based on the weight of polymeric composite. In some embodiments, the polymer in the polymeric composites can be present in an amount of 60% or less, 55% or less, 50% or less, 45% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, or 15% or less by weight, based on the weight of polymeric composite.


As described herein, the polymeric composites include a polymer, an inorganic filler, and a plurality of short length fibers. The inorganic filler can be an ash, ground/recycled glass (e.g., window or bottle glass); milled glass; glass spheres; glass flakes; activated carbon; calcium carbonate; aluminum trihydrate (ATH); silica; sand; ground sand; silica fume; slate dust; crusher fines; red mud; amorphous carbon (e.g., carbon black); clays (e.g., kaolin); mica; talc; wollastonite; alumina; feldspar; bentonite; quartz; garnet; saponite; beidellite; granite; calcium oxide; calcium hydroxide; antimony trioxide; barium sulfate; magnesium oxide; titanium dioxide; zinc carbonate; zinc oxide; nepheline syenite; perlite; diatomite; pyrophillite; flue gas desulfurization (FGD) material; soda ash; trona; and mixtures thereof. The ash can be a coal ash or another type of ash such as those produced by firing fuels including industrial gases, petroleum coke, petroleum products, municipal solid waste, paper sludge, wood, sawdust, refuse derived fuels, switchgrass or other biomass material. The coal ash can be fly ash, bottom ash, or combinations thereof. In some examples, the inorganic filler used is fly ash. Fly ash is produced from the combustion of pulverized coal in electrical power generating plants. The fly ash useful with the composite materials described herein can be Class C fly ash, Class F fly ash, or a mixture thereof. Fly ash produced by coal-fueled power plants is suitable for incorporation in the composites described herein.


In some embodiments, the inorganic filler present in the polymeric composites can include sand. The sand can be present in the composites in amounts from 0.1% to 5% by weight. In some embodiments, the inorganic filler can include fly ash and sand.


The inorganic filler can be present in the polymeric composites described herein in amounts from 25% to 90% by weight. In some embodiments, the inorganic filler can be present in amounts from 40% to 85%, 45% to 85%, 50% to 85%, 55% to 85%, 60% to 85%, or 60% to 80% by weight. Examples of the amount of inorganic filler present in the composites described herein include 25%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%.


In addition to an inorganic filler, the composite can include an organic filler, such as a recycled polymeric material. Suitable examples include pulverized polymeric foam or recycled rubber material


The inclusion of fillers in the polyurethane composite as described herein can modify and/or improve the chemical and mechanical properties of the composite. For example, the optimization of various properties of the composite allows their use in building materials and other structural applications.


The polymeric composites can also include a plurality of short length fibers. The short length fibers can be any natural or synthetic fiber material, based on inorganic materials, organic materials, or combinations of both. Exemplary inorganic short length fibers that can be used in the polymeric composite include mineral wool fibers such as stone wool, slag wool, or ceramic fiber wool. The mineral wool fibers can be synthetic or can be obtained from molten mineral such as lava, rock or stone. Other suitable inorganic short length fibers include basalt fibers, wollastonite fibers, alumina silica fibers, aluminum oxide fibers, silica fibers, carbon fibers, metal fibers, and combinations thereof. Exemplary organic short length fibers that can be used in the polymeric composite include hemp fibers, sisal fibers, cotton fibers, straw, reeds, or other grasses, jute, bagasse fibers, abaca fibers, flax, southern pine fibers, wood fibers, cellulose, lint, vicose, leather fibers, and mixtures thereof. Other suitable organic short length fibers include synthetic fibers such as, Kevlar, viscose fibers, polyamide fibers, polyacrylonitrile fibers, Dralon® fibers, polyethylene fibers, polypropylene fibers, polyvinylalcohol fibers, aramid fibers, carbon fibers, or combinations thereof. In some embodiments, the polymeric composites can include a combination of fibers that break and fibers that do not break when the composite is fractured by external stress.


The short length fibers in the polymeric composites can be from 50 μm to 650 μm in average (mean) length (i.e., can have an average length of from 50 μm to 650 μm). For example, the short length fibers can have an average length of 50 μm or greater, 60 μm or greater, 70 μm or greater, 80 μm or greater, 90 μm or greater, 100 μm or greater, 110 μm or greater, 120 μm or greater, 130 μm or greater, 140 μm or greater, 150 μm or greater, 160 μm or greater, 170 μm or greater, 180 μm or greater, 190 μm or greater, 200 μm or greater, 220 μm or greater, 240 μm or greater, 260 μm or greater, 280 μm or greater, 300 μm or greater, 320 μm or greater, or 350 μm or greater. In some embodiments, the short length fibers can have an average length of 650 μm or less, 600 μm or less, 550 μm or less, 500 μm or less, 450 μm or less, 400 μm or less, 350 μm or less, 300 μm or less, 290 μm or less, 280 μm or less, 270 μm or less, 260 μm or less, 250 μm or less, 240 μm or less, 230 μm or less, 220 μm or less, 210 μm or less, 200 μm or less, 190 μm or less, 180 μm or less, 170 μm or less, 160 μm or less, 150 μm or less, 140 μm or less, 130 μm or less, 120 μm or less, 110 μm or less, 100 μm or less, 90 μm or less, 80 μm or less, 70 μm or less, 60 μm or less, or 50 μm or less. In some examples, the short length fibers in the polymeric composites can have an average length of from 50 μm to 650 μm, 75 μm to 650 μm, 100 μm to 500 μm, 50 μm to 350 μm, or 100 μm or 250 μm. In some embodiments, the lengths of the short length fibers in the composite can be uniform (the lengths of all the fibers can be within 10% of the average length). In some embodiments, the lengths of the short length fibers in the composite can vary. For example, the fiber lengths can fall into two modes having an average length within the disclosed range. In some embodiments, all the short length fibers have a length of from 50 μm to 650 μm, from 50 μm to 500 μm, from 50 μm to 350 μm, or from 100 μm or 250 μm.


The short length fibers in the polymeric composites can have an average diameter of from 1 μm to 20 μm. For example, the short length fibers can be from 2 μm to 20 μm, 3 μm to 20 μm, 4 μm to 20 μm, 5 μm to 20 μm, 2 μm to 18 mμm, 3 μm to 18 μm, 4 μm to 18 μm, 5 μm to 18 μm, 2 μm to 15 μm, 3 μm to 15 μm, 4 μm to 15 μm, or 5 μm to 15 μm in average diameter. In some embodiments, the average diameter of the short length fibers can be 3 μm, 3.5 μm, 4 μm, 4.5 μm, 5 μm, 5.5 μm, 6 μm, 6.5 μm, 7 μm, 7.5 μm, 8 μm, 8.5 μm, 9 μm, 9.5 μm, or 10 μm. The diameter of the short length fibers in the composite can be uniform or varied.


The short length fibers can also be described by their aspect ratio. In some embodiments, the short length fibers in the polymeric composites can have an average aspect ratio of length to diameter of from 5:1 to 250:1. For example, the short length fibers can have an average aspect ratio of from 8:1 to 250:1, 10:1 to 250:1, 10:1 to 200:1, 10:1 to 150:1, 10:1 to 100:1, 10:1 to 75:1, 10:1 to 50:1, 10:1 to 40:1, or 10:1 to 30:1. In some embodiments, the short length fibers can have an average aspect ratio of length to diameter of from 10:1 or greater, 15:1 or greater, 20:1 or greater, 25:1 or greater, 30:1 or greater, or 40:1 or greater. In some embodiments, the short length fibers can have an average aspect ratio of length to diameter of from 200:1 or less, 150:1 or less, 100:1 or less, 75:1 or less, 50:1 or less, or 40:1 or less.


The short length fibers can be present in the polymeric composite in any suitable amount to confer a desirable property to the polymeric composite. The short length fibers can be present in the polymeric composites in amounts from 0.5% to 15% by weight, based on the total weight of the composite. For example, the short length fibers can be in amounts from 1% to 10%, 2% to 9%, or 3% to 8% by weight, based on the total weight of the composite. In some embodiments, the short length fibers can be present in the polymeric composites in amounts of 1% or greater, 2% or greater, 3% or greater, 4% or greater, 5% or greater, 6% or greater, 7% or greater, 8% or greater, 9% or greater, or 10% or greater, by weight, based on the total weight of the composite. In some embodiments, the short length fibers can be present in the polymeric composites in amounts of 15% or less, 12% or less, 10% or less, 9% or less, 8% or less, 7% or less, 6% or less, or 5% or less by weight, based on the total weight of the composite. In some embodiments, the short length fibers are present in the polymeric composites in an effective amount to increase the flexural strength and/or compressive strength of the composite, compared to a composite without the same.


In some embodiments, the fibers can be coated with a composition to modify the reactivity of the fibers. For example, the fibers can be coated with a sizing agent such as a coupling agent (compatibilizer). In some embodiments, the short length fibers can be coated with a composition for promoting adhesion. U.S. Pat. No. 5,064,876 to Hamada et al. and U.S. Pat. No. 5,082,738 to Swofford, for example, disclose compositions for promoting adhesion. In some embodiments, the short length fibers are surface coated with a composition comprising a silane compound such as aminosilane. U.S. Pat. No. 4,062,999 to Kondo et al. and U.S. Pat. No. 6,602,379 to Li et al. describe suitable aminosilane compounds for coating fibers. In some embodiments, the polymeric composites can include a combination of coated and uncoated fibers.


Incorporation of the short length fibers in the polymeric composites can confer advantageous properties such as increased flexural strength, increased compressive strength, low thermal conductivity, decreased density, and/or decreased viscosity, compared to a polymeric composite without the same. The advantageous properties conferred by the short length fibers can be selected based on the concentration and/or the length of the short length fibers in the composite. For example, the orientation of the short length fibers in the polymeric composites may be characterized as being isotropic in nature, that is, the fiber orientation occurs in three dimensions rather than being limited essentially to a planar dispersion. Said another way, referencing the orthogonal axes of a Cartesian coordinate system in which the x and y axes define the laminar dimensions of the composite and the z axis the cross laminar dimension, the short length fibers can exhibit substantial orientation along both the x-y axes and the z-axis. Thus, for thin articles, such as for example, an article about 6 mm thick, the short length fibers are capable of reinforcing the article along the z-direction as well as in the x-y plane.


The polymeric composites can further comprise glass fibers. “Glass fibers” as used herein, refers to fibrous glass derived from a combination of minerals, recycled materials, and virgin materials such as sand, soda ash, and lime. Glass fibers can include fibrous glass such as E-glass, C-glass, S-glass, and AR-glass fibers. The glass fibers can be from 1 mm to 50 mm in average length. In some examples, the glass fibers are from 1 mm to 20 mm, from 2 mm to 20 mm, from 3 mm to 20 mm, or from 3 mm to 15 mm in average length. In some examples, the average length of the glass fibers in the polymeric composites can be 1 mm or greater, 1.5 mm or greater, 2 mm or greater, 3 mm or greater, 4 mm or greater, 5 mm or greater, or 6 mm or greater. In some embodiments, the average length of the glass fibers can be 50 mm or less, 40 mm or less, 30 mm or less, 20 mm or less, 15 mm or less, 12 mm or less, or 10 mm or less. The glass fibers can be provided in a random orientation or can be axially oriented. The glass fibers can be coated with a sizing agent to modify their reactivity.


The glass fibers in the polymeric composites can have any dimension of from 1 μm to 30 μm in average diameter. For example, the average diameter of the glass fibers can be 2 μm to 25 μm, 3 μm to 20 μm, 4 μm to 18 μm, or 5 μm to 15 μm in average diameter. In some examples, the average diameter of the glass fibers in the polymeric composites can be 1 mm or greater, 3 mm or greater, 5 mm or greater, 6 mm or greater, 7 mm or greater, 8 mm or greater, 9 mm or greater, or 10 mm or greater. In some embodiments, the glass fibers in the polymeric composites can have a narrow distribution of diameters. For example, the glass can have a distribution wherein 95% or more of the fibers have a diameter that is within 10% of the average diameter.


The glass fibers (when used) can be present in the polymeric composites in amounts from 0.5% to 10% by weight, based on the weight of polymeric composite. For example, the glass fibers can be present in amounts from 1% to 9%, 2% to 8%, 2.5% to 7.5%, or 3% to 7% by weight, based on the weight of the polymeric composite.


The glass fibers can provide increased strength, stiffness or toughness to the polymeric composites. In some examples, fire resistant or retardant glass fibers can be included to impart fire resistance or retarding properties to the polymeric composites.


Additional components useful with the composite materials include foaming agents, blowing agents, surfactants, chain-extenders, crosslinkers, coupling agents, UV stabilizers, fire retardants, antimicrobials, anti-oxidants, and pigments. Though the use of such components is well known to those of skill in the art, some of these additional additives are further described herein.


Chemical foaming agents include azodicarbonamides (e.g., Celogen manufactured by Lion Copolymer Geismar); and other materials that react at the reaction temperature to form gases such as carbon dioxide. Water is an exemplary foaming agent. In some embodiments, water may be present in the mixture in an amount of from greater than 0% to 5% by weight or less, based on the weight of the mixture. In some embodiments, water may be present in the mixture in an amount of from 0.02%, 0.03%, 0.04%, 0.05%, 0.10%, 0.15%, 0.2%, 0.25%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 1.2%, 1.5%, or 1.6%, 1.7%, 1.8%, 1.9%, or 2%, by weight, based on the weight of the mixture. For example, the water can be present in a range of 0.02% to 4%, 0.05% to 3%, 0.1% to 2%, or 0.2% to 1% by weight, based on the weight of the mixture. In some embodiments, the water is present from 0.04% to 2% or from 0.02% to 0.5% by weight, based on the weight of the mixture.


Surfactants can be used as wetting agents and to assist in mixing and dispersing the materials in the composite. Surfactants can be used, for example, in amounts below about 0.5 wt % based on the total weight of the mixture. Examples of surfactants useful with the polymers described herein include anionic, non-ionic and cationic surfactants. For example, silicone surfactants such as DC-197 and DC-193 (Air Products; Allentown, Pa.) can be used. Coupling agents and other surface treatments such as viscosity reducers, flow control agents, or dispersing agents can be added directly to the filler or short length fibers, or incorporated prior to, during, and/or after the mixing and reaction of the composite materials. Coupling agents can allow higher filler loadings of an inorganic filler such as fly ash and may be used in small quantities. For example, the composite may comprise about 0.01 wt % to about 0.5 wt % of a coupling agent. Examples of coupling agents useful with the composite materials described herein include Ken-React LICA 38 and KEN-React KR 55 (Kenrich Petrochemicals; Bayonne, N.J.). Examples of dispersing agents useful with the composite materials described herein include JEFFSPERSE X3202, JEFFSPERSE X3202RF, and JEFFSPERSE X3204 (Huntsman Polyurethanes; Geismar, La.).


Ultraviolet light stabilizers, such as UV absorbers, can be added to the composite. Examples of UV light stabilizers include hindered amine type stabilizers and opaque pigments like carbon black powder. Fire retardants can be included to increase the flame or fire resistance of the composite material. Antimicrobials can be used to limit the growth of mildew and other organisms on the surface of the composite. Antioxidants, such as phenolic antioxidants, can also be added. Antioxidants provide increased UV protection, as well as thermal oxidation protection. Pigments or dyes can optionally be added to the composite materials described herein. An example of a pigment is iron oxide, which can be added in amounts ranging from about 2 wt % to about 7 wt %, based on the total weight of the composite material.


The polymeric composite can be produced by mixing the polymer, the inorganic filler, and the plurality of short length fibers, in a mixing apparatus such as a high speed mixer or an extruder. In some embodiments, mixing can be conducted in an extruder. The materials can be added in any suitable order. For example, in some embodiments, the mixing stage of the method used to prepare the polymeric composite includes: (1) mixing the short length fibers with the inorganic filler and the polymer, and (2) mixing the inorganic filler with the polymer and short length fibers. As discussed herein, in some embodiments, the polymer is a polyurethane formed by a reaction of at least one isocyanate and at least one polyol, optionally in the presence of a catalyst. Thus, in some embodiments, the mixing stage of the method used to prepare the polyurethane composite includes: (1) mixing the polyol, short length fibers, and inorganic filler; (2) mixing the isocyanate with the polyol, short length fibers, and the inorganic filler; and optionally (3) mixing the catalyst with the isocyanate, the polyol, the short length fibers, and the inorganic filler.


An ultrasonic device can be used for enhanced mixing and/or wetting of the various components of the composite. The ultrasonic device produces an ultrasound of a certain frequency that can be varied during the mixing and/or extrusion process. The ultrasonic device useful in the preparation of composite materials described herein can be attached to or adjacent to an extruder and/or mixer. For example, the ultrasonic device can be attached to a die or nozzle or to the port of an extruder or mixer. An ultrasonic device may provide de-aeration of undesired gas bubbles and better mixing for the other components, such as blowing agents, surfactants, and catalysts.


The mixture can then be extruded into a mold cavity of a mold, the mold cavity formed by at least an interior mold surface. The mold can be a continuous forming system such as a belt molding system or can include individual batch molds. The belt molding system can include a mold cavity formed at least in part by opposing surfaces of two opposed belts. A molded article can then be formed followed by removal of the article from the mold.


The polymer may be processed at an elevated temperature (e.g., 200-500 F.) to form a melt and to allow the polymer to have a workable viscosity. In some embodiments, the inorganic filler is heated before mixing with the polymer. The molten filled polymer (that is, the polymer, the inorganic filler, and the short length fibers) can have a workable viscosity of 25 Pa·s as to 250 Pa·s. Incorporation of the short length fibers into the filled polymer mixture can increase the viscosity of the mixture. In some embodiments, it is desirable that the composite mixture has a viscosity below a particular threshold at the desired loadings so it can be effectively processed. In some embodiments, the short length fibers can be present in the composite mixture in amounts to produce a workable viscosity of from 25 Pa·s to 250 Pa·s. For example, the short length fiber in the composite mixture can be in amounts to produce a workable viscosity from 50 Pa·s to 250 Pa·s, 65 Pa·s to 250 Pa·s, or 80 Pa·s to 250 Pa·s. In some embodiments, the working viscosity can be less than 250 Pa·s, less than 225 Pa·s, less than 200 Pa·s, less than 175 Pa·s, or less than 150 Pa·s. The viscosity of the composite mixture can be measured using a Thermo Electron Corporation Haake Viscometer.


The polymeric composites preferably have a sufficiently high flexural strength. Incorporation of the short length fibers in the polymeric composites can increase the flexural strength of the composite by at least 8%, compared to a composite without short length fibers. In some embodiments, the flexural strength of the polymeric composites is at least 10%, for example, 15% or greater, 20% or greater, 25% or greater, 30% or greater, 35% or greater, 50% or greater, 75% or greater, or even 100% or greater, compared to a composite without short length fibers.


The polymeric composites can be formed into shaped articles and used in various applications including building materials. Examples of such building materials include siding material, roof coatings, roof tiles, roofing material, carpet backing, flexible or rigid foams such as automotive foams (e.g., for dashboard, seats or roofing), component coating, and other shaped articles. Examples of shaped articles made using composite described herein include roofing material such as roof tile shingles; siding material; trim boards; carpet backing; synthetic lumber; building panels; scaffolding; cast molded products; decking materials; fencing materials; marine lumber; doors; door parts; moldings; sills; stone; masonry; brick products; posts; signs; guard rails; retaining walls; park benches; tables; slats; and railroad ties. The composites described herein further can be used as reinforcement of composite structural members including building materials such as doors; windows; furniture; and cabinets and for well and concrete repair. The composites described herein also can be used to fill gaps, particularly to increase the strength of solid surface articles and/or structural components. The composites can be flexible, semi-rigid or rigid foams. In some embodiments, the flexible foam is reversibly deformable (i.e., resilient) and can include open cells. A 8″×1″×1″ piece of a flexible foam can generally wrap around a 1″ diameter mandrel at room temperature without rupture or fracture. Flexible foams also generally have a density of less than 5 lb/ft3 (e.g., 1 to 5 lb/ft3). In some embodiments, the rigid foam is irreversibly deformable and can be highly crosslinked and/or can include closed cells. Rigid foams generally have a density of 5 lb/ft3 or greater (e.g., 5 to 60 lb/ft3, 20 to 55 lb/ft3, or 30 to 50 lb/ft3). In some embodiments, the overall density of the molded article can be 5 lb/ft3 or greater. For example, the overall density of the molded article can be 5 lb/ft3 to 80 lb/ft3, 10 lb/ft3 to 70 lb/ft3, 15 lb/ft3 to 65 lb/ft3, 20 lb/ft3 to 60 lb/ft3, 25 lb/ft3 to 55 lb/ft3, or 30 lb/ft3 to 50 lb/ft3.


EXPERIMENTAL

The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how the composites, articles, and/or methods claimed herein are made and evaluated, and are intended to be purely exemplary of the composites disclosed herein. Unless indicated otherwise, parts are parts by weight, temperature is in ° C. or is at ambient temperature, and pressure is at or near atmospheric.


Analysis of the Flow Properties, Densities, and Flexural Strengths of Polyurethane Composites


Polyurethane composites were prepared using six different fiber compositions (Table 1, samples 1-6). The compositions were mixed with a rotor operating at high rate of about 3000 rpm to impart high shear to the mixture. The flow properties, densities, and flexural strengths of the polyurethane composites are shown in Table 1.


Analysis of the Flow Properties and Viscosities of Polyurethane Composites


Polyurethane composites were prepared using nineteen different fiber compositions (Table 2, samples 7-25). Again, the compositions were mixed with a rotor operating at high rate of about 3000 rpm. The flow properties (under gravitation force) and viscosities of the polyurethane composites are shown in Table 2. The dimensions of the fibers are the same as described in Table 1.









TABLE 1







Effect of fiber composition on the physical properties of polyurethane composites









Sample ID














1
2
3
4
5
6

















Polyurethane, wt %
27.0
27.0
27.0
27.0
27.0
27.0


Glass Fiber 3075, 3.175 mm length ×
0.0
2.0
4.0


2.0


13 μm diameter, wt %


Mineral Wool PLM, 150 μm length ×



4.0

2.0


6 μm diameter, wt %


Mineral Wool RF825, 150 μm length ×




4.0


5.5 μm diameter, aminosilane


coated, wt %


Class C Fly Ash, Scherer, wt %
73.0
71.0
69.0
69.0
69.0
69.0


Flow Property
Flowable
Semi-flowable
Not flowable
Flowable
Flowable
Semi-flowable


Density, pcf
48.6
48.0
48.6
48.5
47.7
48.2


Flexural Strength, psi
1919
2270
2190
2070
2610
2260


% Increase in Flex Strength over
N/A
18.3%
14.1%
7.8%
36.0%
17.8%


Control Mix ID 1


Normalized Flexural Strength, psi/pcf
39
47
45
43
54.7
47


% Increase in normalized Flex
N/A
19.9%
14.5%
8.2%
38.6%
18.8%


Strength over Mix ID 1
















TABLE 2







Effect of fiber composition on the physical properties of polyurethane composites

















Glass
Mineral
Mineral
Class C Fly
Fiber Size,





Poly
Fiber
Wool
Wool
Ash,
Length (μm) ×


Mix
MDI,
3075,
PLM,
RF825,
Scherer,
Diameter
Viscosity1
Flow


ID
wt %
wt %
wt %
wt %
wt %
(μm)
Pa · s
Property


















7
27.0



73.0
N/A
86.7
Flowable


8
27.0

1.0

72.0
150 × 6
90.4
Flowable


9
27.0

2.0

71.0
150 × 6
104.1
Flowable


10
27.0

3.0

70.0
150 × 6
123.4
Flowable


11
27.0

4.0

69.0
150 × 6
127.5
Flowable


12
27.0

5.0

68.0
150 × 6
158.4
Flowable


13
27.0

6.0

67.0
150 × 6
145.6
Flowable


14
27.0


1.0
72.0
  150 × 5.5
99.7
Flowable


15
27.0


2.0
71.0
  150 × 5.5
100.6
Flowable


16
27.0


3.0
70.0
  150 × 5.5
105.9
Flowable


17
27.0


4.0
69.0
  150 × 5.5
114.7
Flowable


18
27.0


5.0
68.0
  150 × 5.5
140.5
Flowable


19
27.0


6.0
67.0
  150 × 5.5
152.0
Flowable


20
27.0
0.6


72.4
3175 × 13
210.6
Flowable


21
27.0
0.8


72.2
3175 × 13
232.8
Flowable


22
27.0
1.0


72.0
3175 × 13
272.4
Semi-










flowable


23
27.0
1.5


71.5
3175 × 13
442.6
Semi-










flowable


24
27.0
2.0


71.0
3175 × 13
529.9
Semi-










flowable


25
27.0
3.0


70.0
3175 × 13
634.0
Not










flowable






1Viscosity measured with Thermo Electron Corporation Haake Viscometer 7 Plus.








Analysis of the Densities and Flexural Strengths of Polyurethane Composites


Polyurethane composites were prepared, in duplicate, using five different mineral wool RF825 compositions (as described in Table 3). The densities and viscosities of the polyurethane composites are shown in Table 3.


The flexural strength of the composites was plotted as a function of the density (FIGS. 1 and 2). The mineral wool provided an increase of about 20% in flexural strength to the polymeric composites.









TABLE 3







Effect of mineral wool fiber on the physical properties of


polyurethane composites










Content in Percent by Weight

Average














Mineral


Average

Flexural
Stdev


Wool


Density
Stdev
Strength
Flexural


Fiber
PUR
Fly Ash
pcf
Density
psi
Strength
















6.3
53.6
40.2
18.3
0.28
701
16.1


6.3
53.6
40.2
21.7
0.50
870
104.6


10.3
51.3
38.5
25.7
1.09
1189
122.3


6.3
53.6
40.2
25.6
0.20
1098
43.6


1.9
56.1
42.1
24.7
0.42
1000
27.8


1.9
56.1
42.1
18.4
0.46
666
95.6


10.3
51.3
38.5
17.7
0.32
641
74.5


0.0
57.1
42.9
22.0
0.78
628
52.8


4.1
54.8
41.1
22.7
0.49
904
37.3










Analysis of the Densities and Flexural Strengths of Polyurethane Composites


Six polyurethane composites were prepared, using varying compositions of mineral wool RF825, sand, filler, and polyurethane (as described in Table 4). The densities and flexural strengths of the polyurethane composites are shown in Table 4.


The flexural strength of the composites was plotted as a function of the density (FIG. 3).









TABLE 4







Effect of mineral wool fiber on the physical properties of polyurethane


composites














Mineral



Flexural



Sample
Wool,
Sand,
Polyurethane,
Fly
Strength,
Density,


Name
%
%
%
Ash, %
psi
pcf
















1
7
0
53.5
39.5
1252
26.28


2
7
0
53.8
39.2
947
22.08


3
7
0
54.1
38.9
646
17.98


4
0
2
51.2
46.8
1028
26.51


5
0
2
51.3
46.7
762
22.24


6
0
2
51.7
46.3
564
18.20









The compositions and methods of the appended claims are not limited in scope by the specific compositions and methods described herein, which are intended as illustrations of a few aspects of the claims and any compositions and methods that are functionally equivalent are intended to fall within the scope of the claims. Various modifications of the compositions and methods in addition to those shown and described herein are intended to fall within the scope of the appended claims. Further, while only certain representative materials and method steps disclosed herein are specifically described, other combinations of the materials and method steps also are intended to fall within the scope of the appended claims, even if not specifically recited. Thus, a combination of steps, elements, components, or constituents may be explicitly mentioned herein; however, other combinations of steps, elements, components, and constituents are included, even though not explicitly stated. The term “comprising” and variations thereof as used herein is used synonymously with the term “including” and variations thereof and are open, non-limiting terms. Although the terms “comprising” and “including” have been used herein to describe various embodiments, the terms “consisting essentially of” and “consisting of” can be used in place of “comprising” and “including” to provide for more specific embodiments and are also disclosed. As used in this disclosure and in the appended claims, the singular forms “a”, “an”, “the”, include plural referents unless the context clearly dictates otherwise.

Claims
  • 1. A composite comprising: (a) a polymer;(b) from 25% to 90% by weight of an inorganic filler comprising fly ash; and(c) a plurality of short length fibers having an average length of 650 μm or less.
  • 2. The composite of claim 1, wherein the short length fibers have an average aspect ratio of length to diameter of 5:1 to 250:1.
  • 3. A composite comprising: (a) a polymer;(b) from 25% to 90% by weight of an inorganic filler; and(c) a plurality of short length fibers having an average aspect ratio of length to diameter of 8:1 to 250:1, wherein the short length fibers are selected from the group consisting of mineral wool, cellulose, wood fiber, saw dust, wood shavings, cotton, lint, and combinations thereof.
  • 4. The composite of claim 1, wherein the short length fibers are selected from the group consisting of mineral wool, cellulose, wood fiber, saw dust, wood shavings, cotton, lint, and combinations thereof.
  • 5. The composite of claim 3, wherein the short length fibers have an average length of from 50 μm to 650 μm.
  • 6. The composite of claim 1, wherein the short length fibers have an average length of from 100 μm to 250 μm.
  • 7. The composite of claim 1, wherein the short length fibers have an average diameter of from 1 to 20 μm.
  • 8. The composite of claim 1, wherein the short length fibers are present in an amount from 0.5% to 15% by weight, based on the total weight of the composite.
  • 9. The composite of claim 1, wherein the inorganic filler is present in an amount from 50% to 80% by weight, based on the total weight of the composite.
  • 10. The composite of claim 1, further comprising a plurality of glass fibers having a minimum length of 1 mm.
  • 11. The composite of claim 10, wherein the glass fiber is present in an amount from 0.5% to 10% by weight, based on the total weight of the composite.
  • 12. The composite of claim 1, wherein the polymer is selected from the group consisting of polyolefins, ethylene copolymers, polystyrenes, polyvinyl chlorides, polyvinylidene chlorides, polyvinyl acetates, polyacrylonitriles, polyamides, polyisobutylenes, polyacetals, chlorinated and fluorinated polymers, fluoroelastomers, fluorosilicones, polycarbonates, epoxies, phenolics, polyesters, acrylic polymers, acrylate polymers, polyurethanes, alkyds, silicones, styrene-butadiene copolymers, acrylonitrile-butadiene-styrene copolymers, nitrile rubbers, diallyl phthalates, melamines, polybutadienes, aramids, cellulosics, cellulose acetobutyrates, ionomers, parylenes, polyaryl ethers, polyaryl sulfones, polyarylene sulfides, polyethersulfones, polyallomers, polyimides, polyamideimides, polymethylpentenes, polyphenylene oxides, polyphenylene sulfides, polysulfones, polyetherketones, polyetherimides, polyaryleneketones, polychloroprenes, and blends thereof.
  • 13. The composite of claim 1, wherein the polymer is a polyurethane formed by the reaction of at least one isocyanate selected from the group consisting of diisocyanates, polyisocyanates and mixtures thereof, and at least one polyol.
  • 14. The composite of claim 1, wherein the composite has a density of 20 lb/ft3 to 60 lb/ft3.
  • 15. A building material comprising the composite of claim 1.
  • 16. A method of preparing a polyurethane composite, comprising: (a) mixing (1) 25% to 90% by weight of an inorganic filler based on the total weight of the composite;(2) at least one isocyanate selected from the group consisting of diisocyanates, polyisocyanates, and combinations thereof;(3) at least one polyol;(4) a plurality of short length fibers having a length of 650 μm or less; and(5) a catalyst; and(b) allowing the at least one isocyanate and the at least one polyol to react in the presence of the inorganic filler, and the plurality of short length fibers to form the polyurethane composite.
  • 17. The method of claim 16, wherein the short length fibers are selected from the group consisting of mineral wool, cellulose, wood fiber, saw dust, wood shavings, cotton, lint, and combinations thereof.
  • 18. The composite of claim 3, wherein the inorganic filler comprises fly ash.
  • 19. A composite comprising: (a) a polymer;(b) from 25% to 90% by weight of an inorganic filler;(c) a plurality of short length fibers having an average length of 650 μm or less; and(d) a plurality of glass fibers having a minimum length of 1 mm.
  • 20. The composite of claim 19, wherein the glass fibers are present in an amount from 0.5% to 10% by weight, based on the total weight of the composite.
  • 21. A composite comprising: (a) a polymer;(b) from 25% to 90% by weight of an inorganic filler;(c) a plurality of short length fibers having an average length of 650 μm or less; and(d) a plurality of glass fibers, wherein the glass fibers are present in an amount from 0.5% to 10% by weight, based on the total weight of the composite.
  • 22. A composite comprising: (a) a polymer;(b) from 25% to 90% by weight of an inorganic filler;(c) a plurality of short length fibers having an average length of 650 μm or less;
  • 23. A method of preparing a polyurethane composite, comprising: (a) mixing (1) 25% to 90% by weight of an inorganic filler based on the total weight of the composite;(2) at least one isocyanate selected from the group consisting of diisocyanates, polyisocyanates, and combinations thereof;(3) at least one polyol; and(4) a plurality of short length fibers having a length of 650 μm or less, wherein the short length fibers are selected from the group consisting of mineral wool, cellulose, wood fiber, saw dust, wood shavings, cotton, lint, and combinations thereof; and(b) allowing the at least one isocyanate and the at least one polyol to react in the presence of the inorganic filler, and the plurality of short length fibers to form the polyurethane composite.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2014/049735 8/5/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2016/022103 2/11/2016 WO A
US Referenced Citations (512)
Number Name Date Kind
529535 Smith Nov 1894 A
529538 Vaughan Nov 1894 A
2526033 Lyon Oct 1950 A
2817875 Harris et al. Dec 1957 A
2902388 Szukiewicz Sep 1959 A
2983693 Sievers May 1961 A
3065500 Berner Nov 1962 A
3071297 Lee Jan 1963 A
3078512 De Haven Feb 1963 A
3223027 Soda et al. Dec 1965 A
3262151 Oxel Jul 1966 A
3269961 Bruson et al. Aug 1966 A
3308218 Wiegand et al. Mar 1967 A
3466705 Richie Sep 1969 A
3499848 Weisman Mar 1970 A
3528126 Ernst et al. Sep 1970 A
3566448 Ernst Mar 1971 A
3619268 Robertson et al. Nov 1971 A
3642964 Rausch et al. Feb 1972 A
3644168 Bonk et al. Feb 1972 A
3698731 Jost et al. Oct 1972 A
3726624 Schwarz Apr 1973 A
3736081 Yovanvich May 1973 A
3738895 Paymal Jun 1973 A
3764247 Garrett et al. Oct 1973 A
3768937 Haga et al. Oct 1973 A
3774428 Derry et al. Nov 1973 A
3802582 Brock Apr 1974 A
3816043 Snelling et al. Jun 1974 A
3819574 Brown et al. Jun 1974 A
3824057 Kornylak et al. Jul 1974 A
3830776 Carlson et al. Aug 1974 A
3832429 Charpentier et al. Aug 1974 A
3841390 DiBenedetto et al. Oct 1974 A
3843757 Ehrenfreund et al. Oct 1974 A
3852387 Bortnick et al. Dec 1974 A
3867494 Rood et al. Feb 1975 A
3878027 Troutner Apr 1975 A
3890077 Holman Jun 1975 A
3910179 Troutner Oct 1975 A
3917547 Massey Nov 1975 A
3917774 Sagane et al. Nov 1975 A
3928258 Alexander Dec 1975 A
3963679 Ullrich et al. Jun 1976 A
3981654 Rood et al. Sep 1976 A
3991005 Wallace Nov 1976 A
3999230 Bruning et al. Dec 1976 A
3999320 Zaubzer Dec 1976 A
4005035 Deaver Jan 1977 A
4042314 Bruning et al. Aug 1977 A
4051742 Johansson et al. Oct 1977 A
4060579 Schmitzer et al. Nov 1977 A
4065410 Schäfer et al. Dec 1977 A
4073840 Saidla Feb 1978 A
4078032 Wenner Mar 1978 A
4092276 Narayan May 1978 A
4104094 Peterson Aug 1978 A
4107248 Schlieckmann Aug 1978 A
4120626 Keller Oct 1978 A
4127040 Moore et al. Nov 1978 A
4128369 Kemerer et al. Dec 1978 A
4137200 Wood et al. Jan 1979 A
4137265 Edwards et al. Jan 1979 A
4141662 Hepper et al. Feb 1979 A
4141862 Raden et al. Feb 1979 A
4143759 Paradis Mar 1979 A
4149840 Tippman Apr 1979 A
4153766 Koide et al. May 1979 A
4153768 Blount May 1979 A
4160749 Schneider et al. Jul 1979 A
4160853 Ammons Jul 1979 A
4163824 Saidla Aug 1979 A
4164439 Coonrod Aug 1979 A
4164526 Clay et al. Aug 1979 A
4165414 Narayan et al. Aug 1979 A
4180538 Morikawa et al. Dec 1979 A
4200699 Treadwell Apr 1980 A
4209605 Hoy et al. Jun 1980 A
4210572 Herman et al. Jul 1980 A
4214864 Tabler Jul 1980 A
4221877 Cuscurida et al. Sep 1980 A
4240950 Von Bonin et al. Dec 1980 A
4241131 Bailey Dec 1980 A
4243755 Marx et al. Jan 1981 A
4247656 Janssen Jan 1981 A
4248957 Sander et al. Feb 1981 A
4248975 Satterly Feb 1981 A
4251428 Recker et al. Feb 1981 A
4254002 Sperling et al. Mar 1981 A
4254176 Müller et al. Mar 1981 A
4256846 Ohashi et al. Mar 1981 A
4260538 Iseler et al. Apr 1981 A
4261946 Goyert et al. Apr 1981 A
4272377 Gerlach et al. Jun 1981 A
4275033 Schulte et al. Jun 1981 A
4276337 Coonrod Jun 1981 A
4282988 Hulbert, Jr. Aug 1981 A
4284826 Aelony Aug 1981 A
4290248 Kemerer et al. Sep 1981 A
4300776 Taubenmann Nov 1981 A
4330494 Iwata et al. May 1982 A
4330634 Rodaway May 1982 A
4331726 Cleary May 1982 A
4338422 Jackson, Jr. et al. Jul 1982 A
4339366 Blount Jul 1982 A
4342847 Goyert et al. Aug 1982 A
4344873 Wick Aug 1982 A
4347281 Futcher et al. Aug 1982 A
4359359 Gerlach et al. Nov 1982 A
4359548 Blount Nov 1982 A
4366204 Briggs Dec 1982 A
4367259 Fulmer et al. Jan 1983 A
4376171 Blount Mar 1983 A
4378171 Schmidt Mar 1983 A
4381352 McBrayer Apr 1983 A
4382056 Coonrod May 1983 A
4383818 Swannell May 1983 A
4390581 Cogswell et al. Jun 1983 A
4395214 Phipps et al. Jul 1983 A
4396791 Mazzoni Aug 1983 A
4397983 Hill et al. Aug 1983 A
4412033 LaBelle et al. Oct 1983 A
4421871 Korczak et al. Dec 1983 A
4439548 Weisman Mar 1984 A
4450133 Cafarelli May 1984 A
4460737 Evans et al. Jul 1984 A
4465500 Motsinger et al. Aug 1984 A
4483727 Eickman et al. Nov 1984 A
4489023 Proksa Dec 1984 A
4512942 Babbin et al. Apr 1985 A
4514162 Schulz Apr 1985 A
4521428 Nisato et al. Jun 1985 A
4532098 Campbell et al. Jul 1985 A
4540357 Campbell et al. Sep 1985 A
4546120 Peerman et al. Oct 1985 A
4568702 Mascioli Feb 1986 A
4576718 Reischl et al. Mar 1986 A
4581186 Larson Apr 1986 A
4595709 Reischl Jun 1986 A
4597927 Zeitler et al. Jul 1986 A
4600311 Mourrier et al. Jul 1986 A
4604410 Altenberg Aug 1986 A
4649162 Roche et al. Mar 1987 A
4661533 Stobby Apr 1987 A
4667157 Ciammaichella et al. May 1987 A
4677157 Jacobs Jun 1987 A
4680214 Frisch et al. Jul 1987 A
4714778 Burgoyne, Jr. et al. Dec 1987 A
4717027 Laure et al. Jan 1988 A
4728287 Niems Mar 1988 A
4728288 Niems Mar 1988 A
4737524 Ako et al. Apr 1988 A
4757095 Galan et al. Jul 1988 A
4758602 Trowell Jul 1988 A
4780484 Schubert et al. Oct 1988 A
4780498 Goerrissen et al. Oct 1988 A
4795763 Gluck et al. Jan 1989 A
4802769 Tanaka Feb 1989 A
4823195 Ito Apr 1989 A
4826429 Niems May 1989 A
4826944 Hoefer et al. May 1989 A
4835195 Rayfield et al. May 1989 A
4855184 Klun et al. Aug 1989 A
4892891 Close Jan 1990 A
4895352 Stumpf Jan 1990 A
4948859 Echols et al. Aug 1990 A
4995801 Hehl Feb 1991 A
5001165 Canaday et al. Mar 1991 A
5010112 Glicksman et al. Apr 1991 A
5028648 Famili et al. Jul 1991 A
5033860 Nakamura Jul 1991 A
5047495 Kolycheck Sep 1991 A
5051222 Marten et al. Sep 1991 A
5053274 Jonas Oct 1991 A
5064293 Nakamura Nov 1991 A
5075417 Trowell et al. Dec 1991 A
5091436 Frisch et al. Feb 1992 A
5094798 Hewitt Mar 1992 A
5096993 Smith et al. Mar 1992 A
5102918 Moriya Apr 1992 A
5102969 Scheffler et al. Apr 1992 A
5114630 Newman et al. May 1992 A
5128379 Stone Jul 1992 A
5149722 Soukup Sep 1992 A
5149739 Lee Sep 1992 A
5159012 Doesburg et al. Oct 1992 A
5166301 Jacobs Nov 1992 A
5167899 Jezic Dec 1992 A
5185420 Smith et al. Feb 1993 A
5186539 Manser et al. Feb 1993 A
5229138 Carotti Jul 1993 A
5252697 Jacobs et al. Oct 1993 A
5271699 Barre et al. Dec 1993 A
5278195 Volkert et al. Jan 1994 A
5295545 Passamaneck Mar 1994 A
5296545 Heise Mar 1994 A
5296546 Kishida et al. Mar 1994 A
5300531 Weaver Apr 1994 A
5302634 Mushovic Apr 1994 A
5330341 Kemerer et al. Jul 1994 A
5331044 Lausberg et al. Jul 1994 A
5340300 Saeki et al. Aug 1994 A
5344490 Roosen et al. Sep 1994 A
5361945 Johanson Nov 1994 A
5369147 Mushovic Nov 1994 A
5375988 Klahre Dec 1994 A
5401785 Kumagai et al. Mar 1995 A
5424013 Lieberman Jun 1995 A
5424014 Glorioso et al. Jun 1995 A
5432204 Farkas Jul 1995 A
5439711 Vu et al. Aug 1995 A
5451615 Birch Sep 1995 A
5453231 Douglas Sep 1995 A
5455312 Heidingsfeld et al. Oct 1995 A
5458477 Kemerer et al. Oct 1995 A
5489646 Tatman et al. Feb 1996 A
5491174 Grier et al. Feb 1996 A
5495640 Mullet et al. Mar 1996 A
5505599 Kemerer et al. Apr 1996 A
5508315 Mushovic Apr 1996 A
5512319 Cook et al. Apr 1996 A
5514430 Andersen et al. May 1996 A
5522446 Mullet et al. Jun 1996 A
5527172 Graham, Jr. Jun 1996 A
5532065 Gubitz et al. Jul 1996 A
5536781 Heidingsfeld et al. Jul 1996 A
5554713 Freeland Sep 1996 A
5556458 Brook et al. Sep 1996 A
5562141 Mullet et al. Oct 1996 A
5565497 Godbey et al. Oct 1996 A
5566740 Mullet et al. Oct 1996 A
5567791 Br auer et al. Oct 1996 A
5569713 Lieberman Oct 1996 A
5582840 Pauw et al. Dec 1996 A
5582849 Lupke Dec 1996 A
5604266 Mushovic Feb 1997 A
5611976 Klier et al. Mar 1997 A
5621024 Eberhardt et al. Apr 1997 A
5631103 Eschbach et al. May 1997 A
5631319 Reese et al. May 1997 A
5634953 Wissmann Jun 1997 A
5643516 Raza et al. Jul 1997 A
5681915 Lechner et al. Oct 1997 A
5688890 Ishiguro et al. Nov 1997 A
5700495 Kemerer et al. Dec 1997 A
5710231 Fogg et al. Jan 1998 A
5721699 DeVilbiss Feb 1998 A
5723506 Glorioso et al. Mar 1998 A
5728337 Yoshikawa et al. Mar 1998 A
5759695 Primeaux, II Jun 1998 A
5760133 Heidingsfeld et al. Jun 1998 A
5769281 Bates Jun 1998 A
5782283 Kendall Jul 1998 A
5783125 Bastone et al. Jul 1998 A
5783629 Srinivasan et al. Jul 1998 A
5791085 Szmidt et al. Aug 1998 A
5795949 Daute et al. Aug 1998 A
5798533 Fishback et al. Aug 1998 A
5811506 Slagel Sep 1998 A
5817402 Miyake et al. Oct 1998 A
5836499 Mullet et al. Nov 1998 A
5844015 Steilen et al. Dec 1998 A
5862144 Lee et al. Jan 1999 A
5908573 Chiles et al. Jun 1999 A
5908701 Jennings et al. Jun 1999 A
5929153 Mori et al. Jul 1999 A
5934352 Morgan Aug 1999 A
5945460 Ekart et al. Aug 1999 A
5952053 Colby Sep 1999 A
5962144 Primeaux, II Oct 1999 A
5981655 Heidingsfeld et al. Nov 1999 A
6000102 Lychou Dec 1999 A
6019269 Mullet et al. Feb 2000 A
6020387 Downey et al. Feb 2000 A
6040381 Jennings et al. Mar 2000 A
6044512 Hornby et al. Apr 2000 A
6051634 Laas et al. Apr 2000 A
6055781 Johanson May 2000 A
6060531 Horn et al. May 2000 A
6062719 Busby et al. May 2000 A
6086802 Levera et al. Jul 2000 A
6096401 Jenkines Aug 2000 A
6103340 Kubo et al. Aug 2000 A
6107355 Horn et al. Aug 2000 A
6107433 Petrovic et al. Aug 2000 A
6120905 Figovsky Sep 2000 A
6136246 Rauwendaal et al. Oct 2000 A
6136870 Triolo et al. Oct 2000 A
6140381 Rosthauser et al. Oct 2000 A
6166109 Spitler et al. Dec 2000 A
6177232 Melisaris et al. Jan 2001 B1
6180192 Smith et al. Jan 2001 B1
6180686 Kurth Jan 2001 B1
RE37095 Glorioso et al. Mar 2001 E
6204312 Taylor Mar 2001 B1
6211259 Borden et al. Apr 2001 B1
6220745 Kobayashi et al. Apr 2001 B1
6224797 Franzen et al. May 2001 B1
6234777 Sperry et al. May 2001 B1
6252031 Tsutsumi et al. Jun 2001 B1
6257643 Young Jul 2001 B1
6257644 Young Jul 2001 B1
6258310 Sardanopoli et al. Jul 2001 B1
6258917 Slagel Jul 2001 B1
6264462 Gallagher Jul 2001 B1
6271276 Gribble et al. Aug 2001 B1
6284841 Friesner Sep 2001 B1
6294637 Braüer et al. Sep 2001 B1
6297321 Onder et al. Oct 2001 B1
6309507 Morikawa et al. Oct 2001 B1
6312244 Levera et al. Nov 2001 B1
6321904 Mitchell Nov 2001 B1
6329448 Gutsche et al. Dec 2001 B1
6331577 Volkert et al. Dec 2001 B1
6343924 Klepsch Feb 2002 B1
6348514 Calabrese et al. Feb 2002 B1
6362252 Prutkin Mar 2002 B1
6383599 Bell et al. May 2002 B1
6387504 Mushovic May 2002 B1
6409949 Tanaka et al. Jun 2002 B1
6422926 McLain et al. Jul 2002 B1
6429257 Buxton et al. Aug 2002 B1
6432335 Ladang et al. Aug 2002 B1
6433032 Hamilton Aug 2002 B1
6433121 Petrovic et al. Aug 2002 B1
6455605 Giorgini et al. Sep 2002 B1
6455606 Kaku et al. Sep 2002 B1
6458866 Oppermann et al. Oct 2002 B1
6465569 Kurth Oct 2002 B1
6467610 MacLachlan Oct 2002 B1
6469667 Fox et al. Oct 2002 B2
6485665 Hermanutz et al. Nov 2002 B1
6486224 Lin et al. Nov 2002 B2
6495772 Anstrom et al. Dec 2002 B2
6534617 Batt et al. Mar 2003 B1
6541534 Allen et al. Apr 2003 B2
6552660 Lisowski Apr 2003 B1
6555199 Jenkines Apr 2003 B1
6571935 Campbell et al. Jun 2003 B1
6573309 Reitenbach et al. Jun 2003 B1
6573354 Petrovic et al. Jun 2003 B1
6578619 Wright Jun 2003 B2
6579932 Schipper et al. Jun 2003 B1
6586490 Dietrich et al. Jul 2003 B1
6604848 Tanaka et al. Aug 2003 B2
6605343 Motoi et al. Aug 2003 B1
6609638 Lott Aug 2003 B1
6613823 Battiste et al. Sep 2003 B1
6613827 Lundgard et al. Sep 2003 B2
6616886 Peterson et al. Sep 2003 B2
6617009 Chen et al. Sep 2003 B1
6624244 Kurth Sep 2003 B2
6641384 Bosler et al. Nov 2003 B2
6641658 Dubey Nov 2003 B1
6649084 Morikawa et al. Nov 2003 B2
6649667 Clatty Nov 2003 B2
6686435 Petrovic et al. Feb 2004 B1
6695902 Hemmings et al. Feb 2004 B2
6706774 Münzenberger et al. Mar 2004 B2
6767399 Peev et al. Jul 2004 B2
6769220 Friesner Aug 2004 B2
6832430 Ogawa et al. Dec 2004 B1
6841111 Rickner et al. Jan 2005 B2
6849676 Shibano et al. Feb 2005 B1
6855844 Geiger et al. Feb 2005 B1
6864296 Kurth Mar 2005 B2
6867239 Kurth Mar 2005 B2
6871457 Quintero-Flores et al. Mar 2005 B2
6881763 Kurth Apr 2005 B2
6881764 Doesburg et al. Apr 2005 B2
6903156 Müller et al. Jun 2005 B2
6908573 Hossan Jun 2005 B2
6916863 Hemmings et al. Jul 2005 B2
6958365 Dontula et al. Oct 2005 B2
6962636 Kurth et al. Nov 2005 B2
6971495 Hedrick et al. Dec 2005 B2
6979477 Kurth et al. Dec 2005 B2
6979704 Mayer et al. Dec 2005 B1
6989123 Lee et al. Jan 2006 B2
6997346 Landers et al. Feb 2006 B2
7063877 Kurth et al. Jun 2006 B2
7132459 Buchel Nov 2006 B1
7160976 Lühmann et al. Jan 2007 B2
7188992 Mattingly, Jr. Mar 2007 B2
7196124 Parker et al. Mar 2007 B2
7211206 Brown et al. May 2007 B2
7267288 Wheeler, Jr. et al. Sep 2007 B2
7316559 Taylor Jan 2008 B2
7316659 Lofberg Jan 2008 B2
7491351 Taylor et al. Feb 2009 B2
7579068 Allen et al. Aug 2009 B2
7651645 Taylor Jan 2010 B2
7763341 Brown Jul 2010 B2
7776934 Lekovic et al. Aug 2010 B2
7794224 Butteriss Sep 2010 B2
7794817 Brown Sep 2010 B2
8024818 Davenport Sep 2011 B1
8030364 Kim et al. Oct 2011 B2
8088217 Francis Jan 2012 B2
8114267 Nordlinder Feb 2012 B2
8177909 Constantz et al. May 2012 B2
8227656 Svetlik Jul 2012 B2
8313802 Riman et al. Nov 2012 B2
20010009683 Kithama et al. Jul 2001 A1
20020034598 Bonk et al. Mar 2002 A1
20020040071 Lin et al. Apr 2002 A1
20020045048 Bonk et al. Apr 2002 A1
20020048643 Bonk et al. Apr 2002 A1
20020086913 Roels et al. Jul 2002 A1
20020098362 Mushovic Jul 2002 A1
20020119300 Taylor Aug 2002 A1
20020122929 Simpson et al. Sep 2002 A1
20020171164 Halterbaum et al. Nov 2002 A1
20020192456 Mashburn et al. Dec 2002 A1
20030004232 Ruede Jan 2003 A1
20030021915 Rohatgi et al. Jan 2003 A1
20030047836 Rickner et al. Mar 2003 A1
20030065045 Falke et al. Apr 2003 A1
20030083394 Clatty May 2003 A1
20030090016 Petrovic et al. May 2003 A1
20030143910 Mashburn et al. Jul 2003 A1
20030158365 Brauer et al. Aug 2003 A1
20030166735 Clatty Sep 2003 A1
20030232933 Lagneaux et al. Dec 2003 A1
20040014830 Wiese et al. Jan 2004 A1
20040048055 Branca Mar 2004 A1
20040049002 Andrews et al. Mar 2004 A1
20040121161 Shugert et al. Jun 2004 A1
20040122119 Burgess et al. Jun 2004 A1
20040144287 Tardif et al. Jul 2004 A1
20040162360 Kiso et al. Aug 2004 A1
20040176486 Glorioso et al. Sep 2004 A1
20040198900 Madaj Oct 2004 A1
20040247857 Schroeder et al. Dec 2004 A1
20040266993 Evans Dec 2004 A1
20050011159 Standal et al. Jan 2005 A1
20050013793 Beckman et al. Jan 2005 A1
20050031578 Deslauriers et al. Feb 2005 A1
20050032925 Kaplan Feb 2005 A1
20050070620 Herrington et al. Mar 2005 A1
20050079339 Riddle Apr 2005 A1
20050131092 Kurth et al. Jun 2005 A1
20050131093 Kurth et al. Jun 2005 A1
20050161855 Brown Jul 2005 A1
20050163939 Moehl et al. Jul 2005 A1
20050163969 Brown Jul 2005 A1
20050171243 Hemmings et al. Aug 2005 A1
20050182228 Kurth Aug 2005 A1
20050197413 Grimm et al. Sep 2005 A1
20050208167 You et al. Sep 2005 A1
20050222303 Cernohous et al. Oct 2005 A1
20050260351 Kurth et al. Nov 2005 A1
20050281999 Hofmann et al. Dec 2005 A1
20050287238 Taylor Dec 2005 A1
20060003042 Inoue et al. Jan 2006 A1
20060011159 Bloms et al. Jan 2006 A1
20060014891 Yang et al. Jan 2006 A1
20060041155 Casper Feb 2006 A1
20060041156 Casper et al. Feb 2006 A1
20060045899 Sarangapani et al. Mar 2006 A1
20060071369 Butteriss Apr 2006 A1
20060105145 Brown May 2006 A1
20060115625 Brown Jun 2006 A1
20060131791 Nakamura et al. Jun 2006 A1
20060186571 Brown Aug 2006 A1
20060186572 Brown Aug 2006 A1
20060217517 Daly Sep 2006 A1
20060235100 Kaushiva et al. Oct 2006 A1
20060270747 Griggs Nov 2006 A1
20060273486 Taylor et al. Dec 2006 A1
20070022106 Brandt et al. Jan 2007 A1
20070027227 Shutov Feb 2007 A1
20070037953 Geiger et al. Feb 2007 A1
20070052128 Taylor Mar 2007 A1
20070056875 Hlady et al. Mar 2007 A1
20070066697 Gilder et al. Mar 2007 A1
20070197672 Lekovic et al. Aug 2007 A1
20070222105 Brown Sep 2007 A1
20070222106 Brown Sep 2007 A1
20070225391 Brown Sep 2007 A1
20070225419 Brown Sep 2007 A1
20070261947 Geerlings et al. Nov 2007 A1
20080029925 Brown Feb 2008 A1
20080119578 Prince et al. May 2008 A1
20080132611 Brown Jun 2008 A1
20080237914 Lustiger et al. Oct 2008 A1
20080241458 Jenkines Oct 2008 A1
20090069117 Kennedy et al. Mar 2009 A1
20090198036 Duffy Aug 2009 A1
20090295021 Brown Dec 2009 A1
20100022717 Honma Jan 2010 A1
20100025882 Taylor et al. Feb 2010 A1
20100201014 Taylor Aug 2010 A1
20100230852 Brown Sep 2010 A1
20100264559 Brown Oct 2010 A1
20100292397 Brown Nov 2010 A1
20100296361 Brown Nov 2010 A1
20110059319 Raday Mar 2011 A1
20110086933 Herrington et al. Apr 2011 A1
20110086934 Herrington et al. Apr 2011 A1
20110182799 Riman et al. Jul 2011 A1
20110303156 Sikka et al. Dec 2011 A1
20120029145 Brown Feb 2012 A1
20120085264 Zhang et al. Apr 2012 A1
20120312194 Riman et al. Dec 2012 A1
20130059934 Burgess et al. Mar 2013 A1
20130065980 Yoshitomi Mar 2013 A1
20130072588 Rosthauser et al. Mar 2013 A1
20130122267 Riman et al. May 2013 A1
20130206040 Zhang et al. Aug 2013 A1
20130284069 Dubey Oct 2013 A1
20130284070 Dubey Oct 2013 A1
Foreign Referenced Citations (68)
Number Date Country
2037130 Jan 2006 CA
1251596 Apr 2000 CN
1052991 May 2000 CN
1926282 Mar 2007 CN
101033642 Sep 2007 CN
2351844 Apr 1975 DE
9318515 Feb 1994 DE
115374 Aug 1984 EP
0654297 May 1995 EP
0771827 May 1997 EP
1336461 May 2002 EP
790527 Feb 1958 GB
1152306 May 1969 GB
1246940 Sep 1971 GB
1314707 Apr 1973 GB
2300627 Nov 1996 GB
2347933 Sep 2000 GB
355080456 Jun 1980 JP
58-132533 Aug 1983 JP
63-022819 Jan 1988 JP
63-202408 Aug 1988 JP
07-076395 Mar 1995 JP
07-313941 Dec 1995 JP
08-157638 Jun 1996 JP
08-157638 Jun 1996 JP
08-188634 Jul 1996 JP
11-171960 Jun 1999 JP
2001-326361 Nov 2001 JP
2004-131654 Apr 2004 JP
2005-138567 Jun 2005 JP
2002-0086327 Nov 2002 KR
226301 Mar 1990 NZ
8103026 Oct 1981 WO
8705541 Sep 1987 WO
9100304 Jan 1991 WO
9207892 May 1992 WO
9319110 Sep 1993 WO
9324549 Dec 1993 WO
9425529 Nov 1994 WO
9427697 Dec 1994 WO
9711114 Mar 1997 WO
9744373 Nov 1997 WO
9808893 Mar 1998 WO
9937592 Jan 1999 WO
9939891 Aug 1999 WO
0017249 Mar 2000 WO
0040650 Jul 2000 WO
0118087 Mar 2001 WO
0172863 Oct 2001 WO
0185140 Nov 2001 WO
0201530 Jan 2002 WO
02068490 Sep 2002 WO
2004078900 Sep 2004 WO
2004113248 Dec 2004 WO
2005053938 Jun 2005 WO
2005056267 Jun 2005 WO
2005072187 Aug 2005 WO
2005072188 Aug 2005 WO
2005094255 Oct 2005 WO
2005123798 Dec 2005 WO
2006012149 Feb 2006 WO
2006137672 Dec 2006 WO
2007112104 Oct 2007 WO
2007112105 Oct 2007 WO
2008089481 Jul 2008 WO
2011019997 Feb 2011 WO
2011085365 Jul 2011 WO
2013049401 Apr 2013 WO
Non-Patent Literature Citations (36)
Entry
Anonymous. “Rigid polyurethane foams having a strut/window mass ratio in the range of 90/10 to 10/90, made via extrusion.” Research Disclosure. Journal No. 40264, Published Oct. 1997.
Anonymous. “Cellular plastics made by extrusion.” Research Disclosure. Journal No. 40204, Published Oct. 1997.
Bayer Material Science Product Information, Multranol 3900, Jan. 2006.
Bayer Material Science, Arcol LG-56-Polyether Polyol, CAS No. 25791-96-2, Product Code: KLLG56 (2003).
Bayer Material Science, Multranol 4035—Polyether Polyol, CAS No. 9049-71-2, Product Code: K114 (1997).
International Search Report and Written Opinion issued in related International Application No. PCT/US2014/049735 on May 15, 2015.
Bledzki, Andrzej K., et al., Impact Properties of Natural Fiber-Reinforced Epoxy Foams, Journal of Cellular Plastics, vol. 35, Nov. 1999, pp. 550-562.
Cayli et al., “Soybean Oil Based Isocyanates: Synthesis, Characterizations, and Polymerizations,” Conference Abstract, 2nd Workshop on Fats and Oils as Renewable Feedstock for the Chemical Industry, Mar. 22-24, 2009.
Dolui, S.K., “Unusual effect of filler (CaCO3) on thermal degradation of polyurethane,” Journal of Applied Polymer Science, 53(4): 463-465 (2003).
Guhanathan, S. et al., “Studies on Castor Oil-based Polyurethane/Polyacrylonitrile Interpenetrating Polymer Network for Toughening of Unsaturated Polyester Resin,” Journal of Applied Polymer Science, 92:817-829 (2004).
Guo et al., “Polyols and Polyurethanes from Hydroformylation of Soybean Oil,” Journal of Polymers and the Environment 10(1-2):49-52 (Apr. 2002).
Guo et al., “Rigid Urethane Foams from a Soy Polyol-Dod Hybrid,” USDA Agricultural Research Service, http://ars.usda.gov/research/publications/publications.htm?SEQ-NO-115=145249 (May 9, 2003).
Hojabri et al., “Fatty Acid-Derived Diisocyanate and Biobased Polyurethane Produced from Vegetable Oil: Synthesis, Polymerization, and Characterization,” Biomacromolecules, 10(4):884-891 (2009), abstract.
Ionescu, “Chemistry and Technology of Polyols for Polyurethanes,” Rapra Technology Ltd,. (2005), pp. 535-550.
Inukai et al., “Glass Fiber Reinforced Rigid Polyurethane Foam (Elson Neo-Lumber FFU),” International Progress in Urethanes, vol. 5, Lancaster, PA, Technomic Publishing Co., Inc., 1988.
Javni, I. et al., “Thermal Stability of Polyurethanes Based on Vegetable Oils,” Journal of Applied Polymer Science, 77:1723-1734 (2000).
Klempner, D., ed., et al., Excerpts from Handbook of Polymeric Foams and Foam Technology, 2d ed., 2004, pp. 121-124, 126, 128, 129, Hanser Publishers, Munich.
Krishnamurthi, B, et al.., Nano- and Micro-Fillers for Polyurethane Foams: Effect on Density and Mechanical Properties, Symposium, Sep. 30-Oct. 3, 2001, pp. 239-244, Polyurethanes Expo 2001, Columbus, OH.
Morimoto et al., “Continuous Glass Fiber Reinforced Rigid Polyurethane Foam (Airlite FRU),” International Progress in Urethanes, vol. 5, Lancaster, PA, Technomic Publishing Co., Inc., 1988.
National Center for Environmental Research and Quality Assurance, Office of Research and Development, U.S. Environmental Protection Agency, Abstract of “The Use of Multi-Component Waste Products for Use in Roofing Materials,” May 9, 1998.
Nayak, P.L., “Natural Oil-Based Polymers: Opportunities and Challenges,” J. Macro. Sci. Rev. Macro. Chem. & Phys., C40(1):1-21 (2000).
Nosker, Thomas J., et al., Fiber Orientation and Creation of Structural Plastic Lumber, Plastics Engineering, Jun. 1999, pp. 53-56.
Oertel, G., ed., Polyurethane Handbook Second Edition, pp. 136, 182-183, 252-253; Carl Hanser, Verlag, Munich (1994).
Okagawa et al., “Glass Fiber Reinforced Rigid Polyurethane Foam,” Cellular and non cellular polyurethanes, Carl Hanser Verlag Munchen Wien Druck and Bindung, Germany, p. 453-467, 1980.
Okagawa, F., “Glass Fiber Reinforced Rigid Polyurethane Foam”, International Progress in Urethane, vol. 2, Lancaster, PA, Technomic Publishing Co., Inc., 1980.
OSi Specialties, “Fomrez Tin Catalysts”, 3 pages.
Petrovic et al., “Industrial Oil Products Program,” AOCS Archives, (2007).
Pollack, “Soy vs. Petro Polyols a Life-Cycle Comparison,” Omni Tech International, Ltd. (2002).
Rama, Shetty R. et al., Journal of Reinforced Plastics and Composites, 2010, 29:2099-2104 (Abstract).
Randall, D., ed., et. al., Excerpts from “The polyurethanes book”, 2002, pp. 1, 166-167, 210-213, 229-231, 263-264, Dunholm Publicity Ltd., United Kingdom.
Shutov, F.A., Excerpts from Integral/Structural Polymer Foams: Technology, Properties and Applications, 1986, pp. including preface, 3-4, 8-9, 13, 23-25, 131-134, 153-158, 167, 171, 176-179, 256.
Soya-based isocyanate alternatives coming? (US Newslines), Apr. 1, 2007.
Standard Practice for Polyurethane Raw Materials: Polyurethane Foam Cup Test, ASTM D7487-08, 2008.
Szycher, Michael. 17.7.1 Foam Production by Extruder Method. Szycher's Handbook of Polyurethanes. pp. 17-21-17-22. Copyright 1999 by CRC Press LLC.
Woods, G., Excerpts from “The ICI Polyurethanes Book”, 1987, pp. 119-120, 127, 135-140, 158-159, The Netherlands.
Wypych, G., Excerpts from “Fillers”, 1993, pp. 4, 48, 57, ChemTech Publishing, Ontario Canada.
Related Publications (1)
Number Date Country
20160280890 A1 Sep 2016 US