Artificial turf systems are old and well-known. The original systems had the problem of losing their resiliency over a substantially short period of time, after which they became unsatisfactory for certain uses. Another factor which creates problems is that certain fillers are not fireproof, and in fact, will burn, which creates a fire hazard. Finally, certain fillers contain dust and when used indoors, tend to pollute the atmosphere.
Accordingly, it is an object of the instant invention to provide a filler for use with an artificial turf system which will allow the system to be evenly resilient throughout.
Another object of the instant invention is to provide a filler for use with an artificial turf system which retains its resiliency over an extended period.
Another object of the invention is the provision of a filler which does not pack or mound.
Another object of the invention is the provision of a hypdrophobic filler.
Another object of the invention is the provision of a hydrophobic filler which will not harbor bacteria.
Another object of the invention is the provision of a hydrophobic filler which may be recycled into other objects.
Another object of the invention is a filler which contains no sharp edges and can be of substantially evenly sized particles or varying sized particles.
Another object of the invention is the provision of a filler which is non-flammable, dust free, non-absorbent and recyclable.
Another object of the invention is a filler which is formed from waste glass or recycled glass granules.
Another object of the invention is a filler which maintains low G-max after extended use.
Another object of the invention is an artificial turf system with improved safety.
The instant invention is directed to a filler for use in an artificial turf system which may include a support layer, a base layer, and an outer layer. The support layer comprises an area of selected size which may consist of smoothed sand, compacted soil, fiber reinforced soil, gravel, asphalt, concrete or a combination thereof.
The base layer comprises at least one grid which consists of a plurality of interconnected cells arranged over and supported by the support layer. Each cell of the cells forming the grid comprises an upstanding tubular member having an upper portion of a first diameter, which functions to support the outer layer, and a lower portion of a second diameter, which functions to engage with the support layer. The lower portion provides the cell with vertical flexibility, which provides the artificial turf system with vertical movement during use. This vertical movement improves the ability of the turf system to absorb downward forces or impacts.
The outer layer includes pile secured with a backing fabric which is preferably supported on the transition layer. The pile may also be secured with a foam backing which may be supported directly on the upper surface of the mat. A filler is spread evenly over the pile fabric to cover the surface of the backing fabric and to surround and cover desired portions of the pile tufts. It is preferred that the filler is STF (coated silicon dioxide particles) or glass beads. The fillers may be combined with ground rubber or sand.
As stated in the related '509 patent, directed to the initial silicon dioxide embodiment, the invention is directed to an aggregate turf filler for use with the turf of athletic fields and landscaped areas. The turf may be natural or artificial. The turf filler is composed of: silica sand particles (SiO2) which are substantially round in shape and are sized to be between 12 and 40 mesh. The particles are coated with an acrylic sealer which seals the outer surface of each of the silica sand particles. So treated the silica sand particles possess an angle of repose of less than 30°, repel water, resist compacting, present no damaging sharp edges when incorporated with the turf and are environmentally safe. The silica sand particles are sized to be within no more than five mesh sizes.
The pile tufts extending from the backing fabric are between ¼″ to 4″ in length and preferably formed of synthetic ribbons of between about 1/32″ to ⅜″ in width. The backing fabric is preferably formed of porous synthetic material which secures the pile tufts in fixed positions.
A preferred filler comprises substantially equal size glass beads formed of molten particles of crushed glass, referred to as cullet, or from glass dust or dust particles created during the glass crushing operation. The filler is interspersed over the backing fabric to fill around or about the tufts up to at least half their length. The glass beads may be polished. The glass beads are selectively sized to maintain an angle of repose of more than 25 which maintains porosity through the filler.
The glass beads may be colored one of brown, green, red, and black. They may comprise a combination of these colors or they may be natural color. The silicon dioxide and glass beads range in size between 6 and 80 mesh. The glass beads are substantially round and have no sharp edges. The glass beads are sized to be within about five mesh sizes and are spread over the pile tufts evenly to a depth of between 0.25″ to 2.00.″ The glass beads are arranged over the backing at between 1 pounds and 6 pounds per square foot. The glass beads have a specific gravity of between 1.00-2.50.
The construction designed to carry out the invention will hereinafter be described, together with other features thereof.
The invention will be more readily understood from a reading of the following specification and by reference to the accompanying drawings forming a part thereof, wherein an example of the invention is shown and wherein:
Referring now in more detail to the drawings, the invention will now be described in more detail.
The artificial turf system is designed to be usable for many different purposes such as sports surfaces, landscaping, equine facilities and the like. The sports surface illustrated in
Turning now to
Support layer C may be no more than compacted soil or it may be comprised of crushed stone, crushed stone and sand, asphalt, concrete or a combination thereof. This layer is identified as support base 12.
It may be desirable to place a stabilizer sheet 14 over base 12. Stabilizer sheet 14 is a flexible non-porous plastic sheet which assists with drainage and provides a stabilizing support for grid system 16.
Base layer B is positioned over and is supported on support layer C. Base layer B includes a mat which is made up of a plurality of grids 16 connected together. The mat is preferably formed to conform with the shape of support layer C. There could be a plurality of mats laid side-by-side over an extremely large support layer.
Each grid 16 is formed of a plurality of interconnected cells 18 which comprise cylinders formed of semi-rigid or semi-flexible plastic. Grids 16 are preferably formed in rectangular or square segments, however, any polygonal shape is acceptable. Cells 18 are more fully described in co-pending application Ser. No. 10/811,737 earlier referred to.
Upper section 20 of each cell 18 has an upper end 21 which is generally designed to engage with outer layer A. Vents 23 are formed about the periphery of the upper section to allow hot air to exit the cylinder.
Lower section 22 of each cell 18 extends radially downward and outward from the lower end of upper section 20 forming a cone-shaped lower section. Lower section 22 extends from the vertical axis of the cell at an angle of about 75. Lower section 22 may have a continuous radial surface or it may be in the form of a plurality of radially extending members. In either instance, lower section 22 provides resilience or movement of a cell in the vertical direction when it is impacted with weight. The degree of downward movement from its normal height x to a compressed height y or between 1/16″ and ⅛.″
Cylinders 18 preferably extend vertically to about 1″ in height with the upper portion being bout ¾″ and the lower portion about ¼.″
Grids 16 comprise a plurality of cells 18 which are interconnected by securing members. The securing members engage with the adjacent cell peripheries, preferably the lower edge of lower section 22. The cells forming a grid are arranged along opposed axes with each axis being separated by about 4.″
The securing members are generally diamond shaped and comprise flexible synthetic filaments or rods interconnected to allow vertical, diagonal and horizontal movement between the adjacent cells. This flexibility allows the cells forming the grids to conform with the topography of the support layer, insuring even engagement between each cell and the support layer.
In use, grids 16 which may also be integrally formed, preferably by molding, are interconnected forming mat 16 or a plurality of mats which then are placed over support layer C. The lower ends of lower portions 22 are positioned in engagement with support layer 12 or with stabilizer sheet 14.
In certain instances, base layer B includes a transition layer 30 as best shown in
Preferably felts 34, 35, which are formed of synthetic yarns, are positioned to be secured with the top and bottom surfaces of screen 31. Felts 34, 35 are formed to be between 4 and 10 ounces per square yard. The felts must be sufficiently porous to provide drainage from the outer layer through the base layer. The transition layer primarily assists in providing uniform vertical support of the outer layer while the felts provide padding which assists in reducing wear between the outer layer and the tops of the coils.
Turning now to
Pile tufts 40 are preferably formed of polyethylene, polypropylene, nylon or a combination. The tuft forming synthetic filaments have a ribbon-like cross-section of between about 1/32″ to ⅜″ in width. The pile tufts are formed to a height, which may be uniform or may vary, of between ¼″ to 4.″ The pile tufts are secured with backing fabric 42, 43 by tufting, weaving, braiding or bonding as desired.
The backing is preferably a porous textile fabric as shown at 42. When the fabric is employed to retain the tufts, it is desirable that transition layer 30, as shown in
A filler 44 is distributed evenly over backing 42, 43 and about pile tufts 40. In
It has been found that a filler of silicon dioxide beads or particles, coated to have a non-porous outer surface as shown in
As stated in the related '509 patent, granules of silica sand are somewhat porous. In order to eliminate this feature and also to provide the granules, or beads, with an outer surface which is both water proof and very slick it is desirable that the granules be coated with an acrylic polymer based waterproofing sealer. The coating of choice comprises mineral spirits, xylene, ethylbenzene and acrylic polymer. The acrylic polymer based sealer is clear and therefore, the granules may still have their natural appearance after coating.
It has also been found that it may be desirable to color the silica sand for a desired aesthetic effect. The colorant of choice is natural pigment in order to ensure that the filler not be a health hazard. Desired colorants for coloring the silica sand is iron oxide (FeO2) for black and chromium (III) oxide (Cr2O3) for green. Other natural colorants and blends thereof are available should other colors be desired. It has been found, however, that black is the color which most enhances artificial turf or natural turf.
In order to prepare the pigment for application with the silica sand the sealant, is first mixed with the clear acrylic based sealant. The desired ratio for obtaining a mid-range hue is one part colorant to two parts sealer. This ratio may be adjusted to include more or less colorant in order to obtain the desired color depth.
Other substances may be combined with the silicon dioxide beads or particles during treating and tumbling, depending upon the desired use, texture, odor and color of the beads. These substances include natural or synthetic rubber, various plastic polymers, silver ions or nitrate, various fragrances, ultraviolet stabilizers, color pigment, ultraviolet stabilizers, a coolant and combinations of the above.
The silicon dioxide beads, after being coated with an acrylic polymer, have a hardness of at least six on the Mohs scale and provide permanent low G-max levels in the artificial turf system.
The silicon beads are formed normally with a natural color. It may also be desirable to color the silicon beads to enhance the appearance of the artificial turf. Desirable colorants are iron oxide for black and chromium (III) oxide (Cr2O3) for green. Other natural colorants are available for other colors or shades.
An equally desirable filler is one utilizing glass beads 50 as shown in
It is preferred that discarded glass or glass waste be used to form the glass beads. Glass in this form is called “cullet.” Normally, the cullet is first crushed, forming glass granules and glass dust. The granules are generally formed to a size of between 6 and 80 mesh with a specific gravity of 2.50+. The glass dust comprises extremely fine glass particles, ranging between 80 to 300 mesh, with each particle having a specific gravity of at least 1.00+.
The processed or crushed granules are passed through screens of selected sizes which isolates the granules into generally equal sized groups. The preferred size is between 0.25 mm and 5 mm or between 8 and 60 mesh. The sized groups of granules are then individually heated until the granules are in a slightly less than molten state. The almost molten granules are tumbled until they form glass beads which are round and have no sharp edges.
The crushed glass dust or particles have been formed into minute sizes, which range between 80 and 300 mesh. The glass dust or particles are formed into beads by heating the glass particles until they are slightly less than molten and tumbling the heated glass particles until beads which have no sharp edges and are between 6 and 80 mesh are formed.
In the case of forming beads from glass dust, it is noted that waste polymer products such as waste polypropylene filaments, polyethylene filaments or nylon filaments may be combined with the glass dust during heating and tumbling. The waste polymers adhere with the glass dust particles, enlarging their size, changing their appearance and outer texture. The beads formed of the combination of glass and synthetic polymers are smooth, water proof, resist abrasion, and may be colored, dependent upon the polymers. The beads formed from the glass dust or particles or from the glass dust and waste synthetic polymers are formed to be between 6 and 80 mesh. The above polymers may also be utilized in the treatment of the crushed particles.
Other substances may be combined with the beads or particles during treating and tumbling, depending upon the desired use, texture, odor and color of the beads. These substances include natural or synthetic rubber, various plastic polymers, silver ions or nitrate, various fragrances, ultraviolet stabilizers, color pigment, ultraviolet stabilizers, a coolant and combinations of the above.
The processes for forming the glass beads, whether from crushed cullet or dust, are known and are employed by Viceroy Ceramics, Dlubak Glass and others.
Glass beads 50, whether formed from cullet or dust, may be coated with synthetic polymer 52 to enhance the smoothness and lower the co-efficient of friction of their outer surface. Polymer 52 may be of the group consisting of epoxy, acrylic, urethane or Teflon® (e.g., a polytetrafluoroethylene).
Due to their low co-efficient of friction and their smooth outer surface, glass beads 50 maintain an angle of repose of less than 28° as indicated in
The glass beads, even those coated with a synthetic polymer, have a hardness of at least six on the Mohs scale and provide permanent low G-max levels in the artificial turf system.
It is noted that satisfactory results have been achieved when using mixtures of silicon dioxide or glass beads mixed with ground rubber or with sand. The ratios are dependent upon the intended use and may be achieved by trial and error.
Artificial turf systems when installed must be sufficiently stable so as to maintain a generally even outer surface. These systems must also be resilient within limits so that the stability of the surface is sufficiently hard so as to provide positive footing and yet is sufficiently resilient to provide sufficient give so as to not cause undue injury.
There have been tests developed to determine the physical capabilities of artificial turf systems. An industry accepted test for determining the resiliency or shock absorbing capability of artificial turf is conducted by TSI, i.e. Testing Services Inc. of Dalton, Ga. TSI conducts tests which reveal the G-max of an artificial turf system when installed and the G-max of that system after extended time or use.
For an artificial turf system to be acceptable, the G-max must be and remain within the range of 90 to 120.
Tests conducted on the artificial turf systems, using the combinations of fillers or beads as above described, provided results indicating that the systems, as installed, possessed a G-max of about 100, and as such, are at a very acceptable level of hardness. Continued testing over time, which equates with extended use when installed, resulted in an initial increase in G-max of between 5 and 14%, and generally about 7% with the system using silicon dioxide beads 46. With the system using glass beads 50, the initial increase in G-max was generally about 5%. The synthetic turf systems of the invention substantially retained this G-max of between 5% and 7% through extended further testing. The G-max for the system, after extended use, using silicon dioxide beads 46 held a G-max of about 110, while the system using glass beads 50 held a G-max of about 100. A G-max of between 105 and 114 is most acceptable.
It is noted that silicon dioxide beads 46 or the glass beads 50 have been tested with synthetic turf systems other than the ones herein disclosed with equally impressive results as pertains to retention of G-max, porosity and angle of repose.
Other artificial turf systems using sand or ground rubber have also been tested by TSI. The results of these tests indicated an initial G-max of about 100. However, with continued testing over time, the G-max of these products showed a continuous increase of up to between 25% to 40%, well above the accepted limit. This increase in the G-max indicates that these tested turf systems, in a short space in time, would degrade to the point of becoming unsatisfactorily hard, requiring replacement.
While preferred embodiments of the invention have been described using specific terms, such description is for illustrative purposes only, and it is to be understood that changes and variations may be made without departing from the spirit or scope of the following claims.
This application is a Continuation-in-Part of application Ser. No. 14/521,979, filed Oct. 23, 2014 (now abandoned), which is a Continuation-in-Part of application Ser. No. 12/980,149, filed Dec. 28, 2010 (now abandoned), which is a Divisional of application Ser. No. 11/713,891, filed Mar. 5, 2007, now U.S. Pat. No. 7,858,148, which is a Continuation-in-Part of application Ser. No. 11/373,885 filed Mar. 13, 2006, now U.S. Pat. No. 8,263,203, which is a Continuation-In-Part of application Ser. No. 10/811,737 filed Mar. 29, 2004, now U.S. Pat. No. 7,144,609 B2, which is a Continuation-In-Part of application Ser. No. 10/422,129, filed Apr. 24, 2003, now U.S. Pat. No. 6,884,509 the subject matters of which are incorporated herewith.
Number | Name | Date | Kind |
---|---|---|---|
2106317 | Dezendorf | Jan 1938 | A |
2695851 | Lodge | Nov 1954 | A |
2700003 | Gundlach | Jan 1955 | A |
2934455 | Dober | Apr 1960 | A |
3003643 | Thomas | Oct 1961 | A |
3079209 | Boggus | Feb 1963 | A |
3092836 | Boggus | Jun 1963 | A |
3099574 | Bernier | Jul 1963 | A |
3441362 | Streck | Apr 1969 | A |
3443492 | Pleass | May 1969 | A |
3503771 | Kroyer | Mar 1970 | A |
3513061 | Vinicki | May 1970 | A |
3513062 | Vinicki | May 1970 | A |
3557038 | Gebura | Jan 1971 | A |
3795180 | Larsen | Mar 1974 | A |
3917771 | Basile | Nov 1975 | A |
4188154 | Izatt | Feb 1980 | A |
4268551 | Moore, Jr. | May 1981 | A |
4356220 | Benedyk | Oct 1982 | A |
4412015 | Lustgarten et al. | Oct 1983 | A |
4462184 | Cunningham | Jul 1984 | A |
4497853 | Tomarin | Feb 1985 | A |
4606963 | Farrell | Aug 1986 | A |
4749479 | Gray | Jun 1988 | A |
4750909 | Streck | Jun 1988 | A |
4792133 | Hawkins et al. | Dec 1988 | A |
4913596 | Lambert, III | Apr 1990 | A |
4934865 | Varkonyi et al. | Jun 1990 | A |
4968024 | Hawkins | Nov 1990 | A |
5017040 | Mott | May 1991 | A |
5041320 | Meredith et al. | Aug 1991 | A |
5064308 | Almond et al. | Nov 1991 | A |
5076726 | Heath | Dec 1991 | A |
5151123 | Kviesitis | Sep 1992 | A |
5250340 | Bohnhoff | Oct 1993 | A |
5254364 | Kviesitis | Oct 1993 | A |
5262453 | Watanabe et al. | Nov 1993 | A |
5264029 | Kviesitis | Nov 1993 | A |
5306317 | Yoshizaki | Apr 1994 | A |
5383314 | Rothberg | Jan 1995 | A |
5411352 | Eren | May 1995 | A |
5458973 | Jeffs | Oct 1995 | A |
5460867 | Magnuson et al. | Oct 1995 | A |
5538165 | Frohn | Jul 1996 | A |
5538787 | Nachtman et al. | Jul 1996 | A |
5583165 | Kviesitis | Dec 1996 | A |
5618131 | Weber | Apr 1997 | A |
5688073 | Brodeur et al. | Nov 1997 | A |
5752784 | Motz et al. | May 1998 | A |
5780144 | Bradley | Jul 1998 | A |
5820296 | Goughnour | Oct 1998 | A |
5823711 | Herd et al. | Oct 1998 | A |
5848856 | Bohnhoff | Dec 1998 | A |
5849124 | Rusk, Jr. et al. | Dec 1998 | A |
5908673 | Muhlberger | Jun 1999 | A |
5950936 | Bergart | Sep 1999 | A |
5958527 | Prevost | Sep 1999 | A |
5961389 | Dickinson | Oct 1999 | A |
6029477 | Hanvey, Jr. | Feb 2000 | A |
6168102 | Bergart | Jan 2001 | B1 |
6221445 | Jones | Apr 2001 | B1 |
6235372 | Joedicke | May 2001 | B1 |
6238794 | Beesley et al. | May 2001 | B1 |
6263633 | Hagenah | Jul 2001 | B1 |
6299959 | Squires et al. | Oct 2001 | B1 |
6338871 | Shin | Jan 2002 | B1 |
6338885 | Prevost | Jan 2002 | B1 |
6432505 | Sweenie et al. | Aug 2002 | B1 |
6443996 | Mihelich et al. | Sep 2002 | B1 |
6500543 | Sakai | Dec 2002 | B2 |
6551689 | Prevost | Apr 2003 | B1 |
6582819 | McDaniel et al. | Jun 2003 | B2 |
6610405 | Iriguchi et al. | Aug 2003 | B2 |
6630530 | Han | Oct 2003 | B1 |
6632527 | McDaniel et al. | Oct 2003 | B1 |
6645627 | Rossi et al. | Nov 2003 | B1 |
6689447 | Prevost | Feb 2004 | B2 |
6723412 | Prevost | Apr 2004 | B2 |
6740387 | Lemieux | May 2004 | B1 |
6746752 | Prevost | Jun 2004 | B2 |
6800339 | Motz et al. | Oct 2004 | B2 |
6805936 | Seaton | Oct 2004 | B2 |
6818274 | Buck et al. | Nov 2004 | B1 |
6818300 | Loyd et al. | Nov 2004 | B2 |
6877932 | Prevost | Apr 2005 | B2 |
6884509 | Huff et al. | Apr 2005 | B2 |
6946181 | Prevost | Sep 2005 | B2 |
7144609 | Reddick | Dec 2006 | B2 |
7153553 | Tetrault | Dec 2006 | B2 |
7166340 | Clark | Jan 2007 | B1 |
7300689 | Prevost | Nov 2007 | B2 |
7306838 | Prevost | Dec 2007 | B2 |
8795834 | Tetrault | Aug 2014 | B2 |
9540777 | Tetrault | Jan 2017 | B1 |
20020006481 | Morris | Jan 2002 | A1 |
20030039511 | Prevost | Feb 2003 | A1 |
20030118755 | Motz et al. | Jun 2003 | A1 |
20030161996 | Prevost | Aug 2003 | A1 |
20030175448 | Prevost | Sep 2003 | A1 |
20030182855 | Prevost | Oct 2003 | A1 |
20040028841 | Motz et al. | Feb 2004 | A1 |
20040086664 | Seaton | May 2004 | A1 |
20040214000 | Huff et al. | Oct 2004 | A1 |
20040229007 | Motz et al. | Nov 2004 | A1 |
20050003193 | Stroppiana | Jan 2005 | A1 |
20050031803 | Prevost | Feb 2005 | A1 |
20050042032 | Motz et al. | Feb 2005 | A1 |
20060100342 | Jensen | May 2006 | A1 |
20060121236 | Prevost | Jun 2006 | A1 |
20060134374 | Bell et al. | Jun 2006 | A1 |
20060147670 | Reddick | Jul 2006 | A1 |
20070160800 | Reddick | Jul 2007 | A1 |
20070254131 | Shail et al. | Nov 2007 | A1 |
20080050516 | Dickinson | Feb 2008 | A1 |
20080141516 | Julicher et al. | Jun 2008 | A1 |
20080145574 | Julicher et al. | Jun 2008 | A1 |
20080176009 | Chereau et al. | Jul 2008 | A1 |
20080182040 | Chereau et al. | Jul 2008 | A1 |
20080268184 | Cook | Oct 2008 | A1 |
20090011845 | Weber et al. | Jan 2009 | A1 |
20090011873 | Weber et al. | Jan 2009 | A1 |
20090162578 | Van Balen et al. | Jun 2009 | A1 |
20090208674 | Murphy et al. | Aug 2009 | A1 |
20090226646 | Dlubak et al. | Sep 2009 | A1 |
20100015448 | Huff et al. | Jan 2010 | A1 |
20100055461 | Daluise et al. | Mar 2010 | A1 |
20100239790 | Stricklen | Sep 2010 | A1 |
20120258811 | Tetrault | Oct 2012 | A1 |
20140154432 | Packer | Jun 2014 | A1 |
20140322459 | Tetrault | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
19540623 | May 1997 | DE |
377925 | Jul 1990 | EP |
05171611 | Jul 1993 | JP |
2003171908 | Jun 2003 | JP |
754961 | Sep 2007 | KR |
03042293 | May 2003 | WO |
2004022853 | Mar 2004 | WO |
2004056881 | Jul 2004 | WO |
Entry |
---|
“Advantage Sport Coating Products”, Brochure by Van Bros. Inc. |
“Aggregate Filled Acrylic Color System Product Specifications”, Brochure by Latexite. |
“Angle of Repose of Soils,” landscapeinfoguide.com.au, undated. |
English translation of JP5171611 in the name of Sekisui Chemical Co., Ltd., published Jul. 9, 1993. |
English translation of KR754961 in the name of Jong Moon Kim et al., published Sep. 7, 2007. |
“FieldTurf Launches Fire-Retardant Infill and Fiber Synthetic Turf Components,” http://www.pr.com/press-release/373434, Dec. 2, 2011. |
JPO machine translation of JP 05-171611 A (1993). |
JPO machine translation of JP 2003-171908 A (2003). |
Latex-Ite, “Aggregate Filled Acrylic Color System Product Specifications”, brochure, 1997, 3 pp. |
“Material Safety Data Sheet” brochure, Jan. 15, 2003, 2 pp. |
Office Action in related U.S. Appl. No. 10/422,129, dated Jan. 12, 2005, 8 pp. |
Office Action in related U.S. Appl. No. 10/422,129, dated Oct. 4, 2004, 8 pp. |
Office Action in related U.S. Appl. No. 10/811,737, dated Feb. 3, 2006,14 pp. |
Office Action in related U.S. Appl. No. 10/811,737, dated Jul. 25, 2006, 11 pp. |
Office Action in related U.S. Appl. No. 10/811,737, dated May 9, 2006, 8 pp. |
Office Action in related U.S. Appl. No. 11/373,885, dated Dec. 24, 2009, 9pp. |
Office Action in related U.S. Appl. No. 11/373,885, dated Jan. 3, 2011, 11pp. |
Office Action in related U.S. Appl. No. 11/373,885, dated Mar. 16, 2011, 3pp. |
Office Action in related U.S. Appl. No. 11/373,885, dated Mar. 3, 2009, 15 pp. |
Office Action in related U.S. Appl. No. 11/373,885, dated Mar. 3, 2010, 3pp. |
Office Action in related U.S. Appl. No. 11/373,885, dated Mar. 31, 2008, 13pp. |
Office Action in related U.S. Appl. No. 11/373,885, dated May 25, 2010, 11pp. |
Office Action in related U.S. Appl. No. 11/373,885, dated Sep. 18, 2008, 12 pp. |
Office Action in related U.S. Appl. No. 11/713,891, dated Aug. 25, 2010, 9pp. |
Office Action in related U.S. Appl. No. 11/713,891, dated Dec. 29, 2009, 11pp. |
Office Action in related U.S. Appl. No. 11/713,891, dated Jul. 27, 2010, 3pp. |
Office Action in related U.S. Appl. No. 11/713,891, dated Jun. 17, 2009, 3pp. |
Office Action in related U.S. Appl. No. 11/713,891, dated May 13, 2009, 16pp. |
Office Action in related U.S. Appl. No. 11/713,891, dated May 24, 2010, 12pp. |
Office Action in related U.S. Appl. No. 11/713,891, dated Oct. 8, 2008, 10pp. |
Office Action in related U.S. Appl. No. 12/567,223, dated Mar. 2, 2011, 10pp. |
Office Action in related U.S. Appl. No. 12/567,223, dated Oct. 14, 2010, 8pp. |
Reddick Declaration, plus accompanying Exhibits A-AA. |
Three sheets alleged to support the “On sale” allegation, dated Sep. 1, 2001, Aug. 21, 2000, and Sep. 5, 2000. |
Vance Bros. Inc., “Advantage Sport Coating Products” brochure, 3 pp. |
Letter from Tyler Barrett, Esq. to Thomas J. Burger, Esq., dated Dec. 11, 2014, 2 pp. |
Letter from Tyler Barrett, Esq. to Thomas J. Burger, Esq., dated Jan. 19, 2015, 2 pp. |
Email from Tyler Barrett, Esq. to Thomas J. Burger, Esq., dated May 15, 2015, 1 p. |
Number | Date | Country | |
---|---|---|---|
20160362850 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11713891 | Mar 2007 | US |
Child | 12980149 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14521979 | Oct 2014 | US |
Child | 15227517 | US | |
Parent | 12980149 | Dec 2010 | US |
Child | 14521979 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11373885 | Mar 2006 | US |
Child | 11713891 | US | |
Parent | 10811737 | Mar 2004 | US |
Child | 11373885 | US | |
Parent | 10422129 | Apr 2003 | US |
Child | 10811737 | US |