1. Field of the Invention
The present invention relates to a nickel, chromium, iron, aluminum, niobium, titanium welding alloy, articles made therefrom for use in producing weldments, and weldments and methods for producing these weldments. The present invention relates to Ni—Cr alloys useful as weld overlays applied for the purpose of enhancing corrosion resistance and, more particularly, where corrosion resistance in his temperature sulfidizing-oxidizing environments is a life-limiting factor.
2. Description of Related Art
In various welding applications including boiler waterwall tubing and reheater and superheater tubing, weld overlays are required to provide long-term corrosion resistance including resistance to corrosion fatigue cracking. The types of resistance requirements include sulfidation, carburization and coal ash corrosion resistance over a range of temperatures of 700° F. through 1450° F., which includes service in ultra-supercritical environments.
Prior to the initiation of NOx (oxides of nitrogen) control, boiler waterwalls did not require weld overlay and performed well when low alloy steels containing small amounts of chromium and sometimes molybdenum were used. Likewise, high-carbon austenitic stainless steel superheater and reheater tubes often performed well before the advent of low NOx boilers.
When environmental concerns dictated the need to reduce NOx emissions, coal-burning power plants began to install low-NOx burners and rationed the overall amount of air used for combustion. This resulted in a reducing environment firing condition within these boilers, the formation of H2S instead of SO2, and greatly increased corrosion rates of the boiler tubes. Protective weld metal overlays were chosen to extend the lives of both waterwall tubes and superheater and reheater tubes. Generally, overlays deposited with nickel-chromium-molybdenum alloy welding products were used until corrosion-fatigue failures became evident.
The next generation of weld overlays to be used was the molybdenum-free, nickel-chromium alloys that contained between 30-44% chromium. Superheater and reheater tubes seem to be performing well with 40-44% chromium-balance nickel overlays even in slightly reducing, carburizing and sulfidizing environments created by “supertuning”. However, waterwall tubes exposed to sulfidation in lower partial pressures of oxygen required greater protection during the most heavily reducing burn times. The present invention improves upon the current 40-44% chromium-balance nickel materials via additions of aluminum in the range of 0.5% to 2.0% and niobium in the range of up to 2%, in the interest of providing additional enhancements to corrosion resistance while maintaining the same degree of fabricability and usability as currently available materials.
Given the combination of high chromium content with added aluminum, with a nickel base, the alloy material of the invention is expected to find application for environments requiring resistance to metal dusting corrosion as well. Applications associated with production of syngas, consisting primarily of hydrogen and carbon monoxide, will be of primary interest.
The present invention overcomes the limitations of the prior art by providing a nickel, chromium, iron, niobium, titanium, aluminum welding alloy and weldments made therefrom that provide the desired corrosion resistance in addition to resistance to hot cracking, as well as corrosion fatigue cracking. The present invention further provides a welding alloy of the nickel, chromium, iron, titanium, aluminum type that is particularly adapted for use in fabricating equipment used in low NOx, coal-fired power generation.
It is a specific object of the present invention to provide a nickel, chromium, iron, titanium, aluminum welding alloy and weldments made therefrom that provide desired resistance to corrosion and corrosion fatigue under conditions of low partial-pressures of oxygen.
A further object of the invention is to provide a welding alloy of the nickel, chromium, aluminum type that is particularly adapted to fabricating and overlaying equipment, such as tubes, used in low NOx coal-fired power boilers.
In accordance with the invention, there is provided a nickel, chromium, iron, titanium, aluminum alloy for use in producing weld deposits. The alloy comprises, in weight percent, about 36-43% chromium, about 0.5-2.0% aluminum, about 0-2.0% Nb, about 0-1.0% Mo, about 0.2-5.0% iron, about 0.3-1.0% titanium, about 0.005-0.05% carbon, less than 0.50% silicon, preferably 0.10-0.30% silicon, less than 0.01% sulfur, less than 0.02% phosphorus, about 0.005-0.020% magnesium plus calcium and the balance substantially nickel and incidental impurities.
The alloy exhibits adequate corrosion resistance in view of the chromium and aluminum content. The alloy may be in the form of a weld deposit, a welding electrode, a welding electrode in the form of a wire with a flux cover, a welding electrode in the form of a sheath with a flux core, a weld deposit overlay or a weldment comprising an alloy substrate, such as steel with an overlay of the alloy of the invention. It may be used in a method for producing a weld deposit or weldment in the form of a flux-covered electrode used for producing a weld deposit that includes welding performed by submerged arc welding or electroslag welding. The weldment may be in the form of weld-overlaid superheater, reheater, or waterwall tubes of a fossil fuel-fired power generation boiler. It may be further used as an article for producing a weldment, with the article being in the form of welding wire, strip, sheet rod, electrode, prealloyed powder, or elemental powder. The method for producing the weld deposit may include producing a flux-covered electrode of a nickel, chromium wire, or a nickel, chromium, iron wire and melting the electrode to produce a weld deposit.
The NiCrFeAlNbTi welding alloy in accordance with the invention has sufficient chromium and aluminum along with tight control of secondary and trace elements to provide suitable corrosion resistance to sulfidation, carburization, and coal ash conditions as well as resistance to corrosion fatigue. In addition, the alloy has good weldability and resistance to solidification cracking during welding.
To confer resistance to solidification cracking, the alloy should have adequate solubility for its alloying elements and a narrow liquidus to solidus temperature range. Also, it should have low levels of sulfur, phosphorus, and other low-melting elements and it should contain minimum levels of elements that form low-melting point phases in the alloy. Because the very high chromium content challenges the limit of solubility in nickel, careful control of sulfur, magnesium and calcium is required for solidification cracking resistance, also.
Table I shows the composition of the alloys in the present invention that have been exposed to laboratory corrosion testing in which conditions were varied from oxidizing-sulfidizing (4 days per cycle) to oxidizing (3 days per cycle) at 1000° F. Table II shows the composition of alloys tested which lie outside the present invention. Table III shows the gaseous constituents of the environments to which the samples were exposed.
Because chromium in a nickel matrix provides outstanding resistance to sulfidation and vanadium accelerated oxidation attack due to a chromia-rich adherent layer formed in service, the high-chromium nickel alloys of 36-43% Cr perform satisfactorily in environments that contain more than a partial pressure of about 10−38 atmosphere partial pressure of oxygen, typical of a conventional coal-fired boiler but not likely present beneath the coal ash of a low NOx boiler. In environments with lower partial pressures of oxygen, the high chromium nickel alloys heretofore used develop less protective oxide scales that have been found to exhibit reduced sulfidation resistance. On the other hand, the alloy of the present invention shows that with a small addition of about 0.5% to 2% Al, the protection afforded by the known high chromium nickel alloys can be extended to environments exhibiting even lower partial pressures of oxygen as is present beneath the coal ash found to coat typical coal-fired boiler tubes. See Table IV, below.
In addition, the thermal conductivity of these alloys as weld overlays has been found to increase with time as the result of the precipitation of alpha chromium and the onset of a nickel-chromium ordering reaction. This enhancement of thermal conductivity improves the overall efficiency of the coal-fired power plant resulting in benefits to power providers, their customers and even the environment. The enhancement of the thermal conductivity over time under service conditions at 538° C. is presented in Table V, below.
The as-deposited overlay hardness allows for tube bending and field fabrication. In addition, the ordering and alpha chromium precipitation reactions that occur at the typical surface temperatures found on the waterwall, superheater and reheater boiler tubing increase the hardness of the weld overlay and thus provide improved erosion resistance for the boiler tubing, as reported below in Table VI. The hot workability of the alloy range has been improved by the use of a Mg and Ca deoxidation treatment as described in U.S. Pat. No. 6,106,643 to Suarez et al.
As reported above in Tables I-VI, the alloy of the present invention provides a weld overlay alloy for boiler tubes having enhanced coal-ash corrosion resistance under extreme reducing conditions, coupled with increasing thermal conductivity and hardness with time at service temperature in a coal-fired, low NOx boiler environment.
The welding alloy of the invention may be deposited on the boiler tubes by a spiral overlaying technique which in itself is well-known in the art. This technique may utilize a conventional integrated robotic overlay application system employing a plurality of full function robots, power supplies and microprocessor controller hardware to provide consistent weld metal deposition of uniform thickness. The spiral overlaid tubing can be post-weld bent to most any desired boiler layout configuration.
While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. The presently preferred embodiments described herein are meant to be illustrative only and not limiting as to the scope of the invention which is to be given the full breadth of the appended claims and any and all equivalents thereof.
This application claims the benefit of U.S. Provisional Patent Application No. 60/860,321 filed Nov. 21, 2006, which is incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3865581 | Sekino et al. | Feb 1975 | A |
3874938 | Benjamin et al. | Apr 1975 | A |
4010309 | Petersen | Mar 1977 | A |
4025314 | Sadowski et al. | May 1977 | A |
4400209 | Kudo et al. | Aug 1983 | A |
4662920 | Coupland et al. | May 1987 | A |
5543109 | Senba et al. | Aug 1996 | A |
5958332 | Hoeg | Sep 1999 | A |
6106643 | Suarez et al. | Aug 2000 | A |
20050045251 | Nishiyama et al. | Mar 2005 | A1 |
20050158203 | Sugahara | Jul 2005 | A1 |
Number | Date | Country |
---|---|---|
1386877 | Dec 2002 | CN |
0909830 | Apr 1999 | EP |
2185961 | Jul 1990 | JP |
6128671 | May 1994 | JP |
7011366 | Jan 1995 | JP |
7070680 | Mar 1995 | JP |
93616 | Jan 1997 | JP |
09-052194 | Feb 1997 | JP |
9108888 | Apr 1997 | JP |
2001239396 | Sep 2001 | JP |
2008115443 | May 2008 | JP |
Entry |
---|
Viswanathan, R. et al., “Boiler Materials for Ultra-Supercritical Coal Power Plants—Steamside Oxidation”, Journal of Materials Engineering and Performance, Jun. 2006, pp. 255-274, vol. 15(3), ASM International. |
Number | Date | Country | |
---|---|---|---|
20080241580 A1 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
60860321 | Nov 2006 | US |